
Parallel
Applications

Parallel
Hardware

Parallel
SoftwareIT industry

(Silicon Valley)
Users

1

The Parallel Revolution Has Started:
Are You Part of the Solution

or Part of the Problem?
Dave Patterson

Parallel Computing Laboratory
U.C. Berkeley
June, 2008

Outline

 What Caused the Revolution?
 Is it Too Late to Stop It?
 Is it an Interesting, Important Research

Problem or Just Doing Industry’s Dirty Work?
 Why Might We Succeed (this time)?
 Projected Hardware/Software Context?
 Example Coordinated Attack: Par Lab @ UCB
 Conclusion

2

3

A Parallel Revolution, Ready or Not
 PC, Server: Power Wall + Memory Wall = Brick Wall

⇒ End of way built microprocessors for last 40 years

⇒ New Moore’s Law is 2X processors (“cores”) per chip
every technology generation, but ≈ same clock rate
 “This shift toward increasing parallelism is not a

triumphant stride forward based on breakthroughs …;
instead, this … is actually a retreat from even
greater challenges that thwart efficient silicon
implementation of traditional solutions.”

The Parallel Computing Landscape: A Berkeley View, Dec 2006

 Sea change for HW & SW industries since changing
the model of programming and debugging

2005 IT Roadmap Semiconductors

4

C
lo

ck
 R

at
e

(G
H

z)
C

lo
ck

 R
at

e
(G

H
z) 2005 Roadmap2005 Roadmap

Intel single coreIntel single core

Change in ITS Roadmap in 2 yrs

5

C
lo

ck
 R

at
e

(G
H

z)
C

lo
ck

 R
at

e
(G

H
z) 2005 Roadmap2005 Roadmap

2007 Roadmap2007 Roadmap
Intel single coreIntel single core

Intel multicoreIntel multicore

You can’t prevent the start
of the revolution

 While evolution and global warming are
“controversial” in scientific circles, belief in
need to switch to parallel computing is
unanimous in the hardware community

 AMD, Intel, IBM, Sun, … now sell more
multiprocessor (“multicore”) chips than
uniprocessor chips
 Plan on little improvement in clock rate (8% / year?)
 Expect 2X cores every 2 years, ready or not
 Note – they are already designing the chips that will

appear over the next 5 years, and they’re parallel
6

7

0

50

100

150

200

250

300

1985 1995 2005 2015

Millions of
PCs / year

But Parallel Revolution May Fail
 100% failure rate of Parallel Computer Companies

 Convex, Encore, Inmos (Transputer), MasPar, NCUBE,
Kendall Square Research, Sequent, (Silicon Graphics),
Thinking Machines, …

 What if IT goes from a growth industry to a
replacement industry?
 If SW can’t effectively

use 32, 64, ...
cores per chip
⇒ SW no faster on
 new computer
⇒ Only buy if
computer wears out
⇒ Fewer jobs in
IT indsutry

How important and difficult is
parallel computing research?
 Jim Gray’s 12 Grand Challenges as part of

Turing Award Lecture in 1998
 Examined all past Turing Award Lectures
 Develop list for 21st Century

 Gartner 7 IT Grand Challenges in 2008
 a fundamental issue to be overcome within the field

of IT whose resolutions will have broad and extremely
beneficial economic, scientific or societal effects on all
aspects of our lives.

 David Kirk, NVIDIA, 10 Challenges in 2008
 John Hennessy’s assessment of parallelism

8

9

Gray’s List of 12 Grand Challenges
1. Devise an architecture that scales up

by 10^6.
2. The Turing test: win the impersonation game 30% of time.

a. 3.Read and understand as well as a human.
b. 4.Think and write as well as a human.

3. Hear as well as a person (native speaker): speech to text.
4. Speak as well as a person (native speaker): text to speech.
5. See as well as a person (recognize).
6. Remember what is seen and heard and quickly return it on request.
7. Build a system that, given a text corpus, can answer questions about the text and

summarize it as quickly and precisely as a human expert. Then add sounds:
conversations, music. Then add images, pictures, art, movies.

8. Simulate being some other place as an observer (Tele-Past) and a participant
(Tele-Present).

9. Build a system used by millions of people each day but administered by a _ time
person.

10. Do 9 and prove it only services authorized users.
11. Do 9 and prove it is almost always available: (out 1 sec. per 100 years).
12. Automatic Programming: Given a specification, build a system that implements

the spec. Prove that the implementation matches the spec.
Do it better than a team of programmers.

Gartner 7 IT Grand Challenges

1. Never having to manually recharge devices

2. Parallel Programming
3. Non Tactile, Natural Computing Interface
4. Automated Speech Translation
5. Persistent and Reliable Long-Term Storage
6. Increase Programmer Productivity 100-fold
7. Identifying the Financial Consequences of IT

Investing

10

David Kirk’s (NVIDIA) Top 10
1. Reliable Software
2. Reliable Hardware
3. Parallel Programming
4. Memory Power, Size,

Bandwidth Walls
5. Locality:

Eliminate/Respect
Space-time constraints

11

6. Threading: MIMD,
SIMD, SIMT

7. Secure Computing
8. Compelling U.I.
9. Extensible Distrib.

Computing
10. Interconnect
11. Power

Keynote Address, 6/24/08, IntKeynote Address, 6/24/08, Int’’l Symposium on l Symposium on
Computer Architecture, Beijing, ChinaComputer Architecture, Beijing, China

John Hennessy

 Computing Legend and President of
Stanford University:
“…when we start talking about parallelism
and ease of use of truly parallel computers,
we're talking about a problem that's as
hard as any that computer science has
faced.”

“A Conversation with Hennessy and Patterson,”
ACM Queue Magazine, 4:10, 1/07.

12

Outline

 What Caused the Revolution?
 Is it Too Late to Stop It?
 Is it an Interesting, Important Research

Problem or Just Doing Industry’s Dirty Work?
 Why Might We Succeed (this time)?
 Projected Hardware/Software Context?
 Example Coordinated Attack: Par Lab @ UCB
 Conclusion

13

Why might we succeed this time?

 No Killer Microprocessor
 No one is building a faster serial microprocessor
 Programmers needing more performance have no

other option than parallel hardware

 Vitality of Open Source Software
 OSS community is a meritocracy, so it’s more likely to

embrace technical advances
 OSS more significant commercially than in past

 All the Wood Behind One Arrow
 Whole industry committed, so more people working

on it

14

Why might we succeed this time?

 Single-Chip Multiprocessors Enable
Innovation
 Enables inventions that were impractical or

uneconomical

 FPGA prototypes shorten HW/SW cycle
 Fast enough to run whole SW stack, can change

every day vs. every 5 years

 Necessity Bolsters Courage
 Since we must find a solution, industry is more likely

to take risks in trying potential solutions

 Multicore Synergy with Software as a Service
15

16

Context: Re-inventing Client/Server

 Laptop/Handheld as future client,
Datacenter as future server

 “The Datacenter is the Computer”
Building sized computers: Google, MS, …

 “The Laptop/Handheld is the Computer”
 ‘07: HP no. laptops > desktops
 1B+ Cell phones/yr, increasing in function
 Otellini demoed "Universal Communicator”

 Combination cell phone, PC and video device

 Apple iPhone

Context: Trends over Next Decade

 Flash memory replacing mechanical disks
 Especially in portable client, but also increasing used

along side disks in servers

 Expanding Software As A Service
 Applications for the datacenter
 Web 2.0 apps delivered via browser
 Continue transition from shrink wrap software to

services over the Internet

 Expanding “Hardware As A Service” (aka
Cloud Computing aka Utility Computing)
 New trend to outsource datacenter hardware
 E.g, Amazon EC2/S3, Google Apps Engine, …

17

Context: Excitement of
Utility/Cloud Computing/HW as a
Service
 0$ Capital for your own “Data Centers”

 Pay as you go: for startups “S3 means no VC”

 Cost Associativity for Data Center: cost of
1000 servers x 1 hr = 1 server x 1000 hrs

 Data Center Price Model  Reward
Conservation, “Just In Time” Provisioning
 “Fast” scale-down  No dead or idle CPUs
 “Instant” scale-up  No provisioning

18

Outline

 What Caused the Revolution?
 Is it Too Late to Stop It?
 Is it an Interesting, Important Research

Problem or Just Doing Industry’s Dirty Work?
 Why Might We Succeed (this time)?
 Projected Hardware/Software Context?
 Example Coordinated Attack: Par Lab @ UCB
 Conclusion

19

20

Need a Fresh Approach to Parallelism

 Berkeley researchers from many backgrounds
meeting since Feb. 2005 to discuss parallelism
 Krste Asanovic, Ras Bodik, Jim Demmel, Kurt Keutzer, John

Kubiatowicz, Edward Lee, George Necula, Dave Patterson,
Koushik Sen, John Shalf, John Wawrzynek, Kathy Yelick, …

 Circuit design, computer architecture, massively parallel
computing, computer-aided design, embedded hardware
and software, programming languages, compilers,
scientific programming, and numerical analysis

 Tried to learn from successes in high performance
computing (LBNL) and parallel embedded (BWRC)

 Led to “Berkeley View” Tech. Report 12/2006 and
new Parallel Computing Laboratory (“Par Lab”)

 Goal: Productive, Efficient, Correct, Portable SW for
100+ cores & scale as double cores every 2 years (!)

21

Try Application Driven Research?
 Conventional Wisdom in CS Research

 Users don’t know what they want
 Computer Scientists solve individual parallel problems

with clever language feature (e.g., futures), new
compiler pass, or novel hardware widget (e.g., SIMD)

 Approach: Push (foist?) CS nuggets/solutions on users
 Problem: Stupid users don’t learn/use proper solution

 Another Approach
 Work with domain experts developing compelling apps
 Provide HW/SW infrastructure necessary to build,
compose, and understand parallel software written in
multiple languages
 Research guided by commonly recurring patterns
actually observed while developing compelling app

22

5 Themes of Par Lab
1. Applications

� Compelling apps drive top-down research agenda

2. Identify Common Design Patterns
Breaking through disciplinary boundaries

3. Developing Parallel Software with Productivity,
Efficiency, and Correctness

2 Layers + Coordination & Composition Language
+ Autotuning

4. OS and Architecture
Composable primitives, not packaged solutions
Deconstruction, Fast barrier synchronization, Partitions

5. Diagnosing Power/Performance Bottlenecks

23

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore
HypervisorOS

Arch.

Productivity

Layer

Efficiency

Layer Co
rre

ct
ne

ss

Applications

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

Di
ag

no
sin

g
Po

we
r/P

er
fo

rm
an

ce

24

 “Who needs 100 cores to run M/S Word?”
 Need compelling apps that use 100s of cores

 How did we pick applications?
1. Enthusiastic expert application partner, leader in field,

promise to help design, use, evaluate our technology
2. Compelling in terms of likely market or social impact,

with short term feasibility and longer term potential
3. Requires significant speed-up, or

a smaller, more efficient platform to work as intended
4. As a whole, applications cover the most important

 Platforms (handheld, laptop)
 Markets (consumer, business, health)

Theme 1. Applications. What are
the problems?

25

Compelling Laptop/Handheld Apps
(David Wessel)

 Musicians have an insatiable appetite for
computation

 More channels, instruments, more processing,
more interaction!

 Latency must be low (5 ms)
 Must be reliable (No clicks)

1. Music Enhancer
 Enhanced sound delivery systems for home

sound systems using large microphone and
speaker arrays

 Laptop/Handheld recreate 3D sound over ear
buds

2. Hearing Augmenter
 Laptop/Handheld as accelerator for hearing aide

3. Novel Instrument User Interface
 New composition and performance systems

beyond keyboards
 Input device for Laptop/Handheld

Berkeley Center for New Music and
Audio Technology (CNMAT) created a
compact loudspeaker array:
10-inch-diameter icosahedron
incorporating 120 tweeters.

26

Content-Based Image Retrieval
(Kurt Keutzer)

Relevance
Feedback

ImageImage
DatabaseDatabase

Query by example

Similarity
Metric

Candidate
Results Final ResultFinal Result

 Built around Key Characteristics of personal
databases
 Very large number of pictures (>5K)
 Non-labeled images
 Many pictures of few people
 Complex pictures including people, events, places,

and objects

1000’s of
images

27

Coronary Artery Disease (Tony Keaveny)

 Modeling to help patient compliance? Modeling to help patient compliance?
•• 450k deaths/year, 16M w. symptom, 72M↑BP
 Massively parallel, Real-time variations Massively parallel, Real-time variations
•• CFD FECFD FE solid (non-linear), fluid (Newtonian),solid (non-linear), fluid (Newtonian), pulsatile pulsatile
•• Blood pressure, activity, Blood pressure, activity, habitus habitus, cholesterol, cholesterol

Before After

28

Compelling Laptop/Handheld Apps
(Nelson Morgan)

 Meeting Diarist
 Laptops/ Handhelds

at meeting
coordinate to
create speaker
identified, partially
transcribed text
diary of meeting

 Teleconference speaker identifier,
speech helper

 L/Hs used for teleconference, identifies who is
speaking, “closed caption” hint of what being said

29

Parallel Browser
(Ras Bodik)
 Web 2.0: Browser plays role of traditional OS

 Resource sharing and allocation, Protection

 Goal: Desktop quality browsing on handhelds
 Enabled by 4G networks, better output devices

 Bottlenecks to parallelize
 Parsing, Rendering, Scripting

 “SkipJax”
 Parallel replacement for JavaScript/AJAX
 Based on Brown’s FlapJax

30

Compelling Laptop/Handheld Apps
 Health Coach

 Since laptop/handheld always with you,
Record images of all meals, weigh plate
before and after, analyze calories
consumed so far

 “What if I order a pizza for my next meal?
A salad?”

 Since laptop/handheld always with you,
record amount of exercise so far, show
how body would look if maintain this
exercise and diet pattern next 3 months

 “What would I look like if I regularly ran
less? Further?”

 Face Recognizer/Name Whisperer
 Laptop/handheld scans faces, matches

image database, whispers name in ear
(relies on Content Based Image Retrieval)

31

Theme 2. Use design patterns

 How invent parallel systems of future when tied to
old code, programming models, CPUs of the past?

 Look for common design patterns (see A Pattern
Language, Christopher Alexander, 1975)

 design patterns: time-tested solutions to
recurring problems in a well-defined context

 “family of entrances” pattern to simplify comprehension of
multiple entrances for a 1st-time visitor to a site

 pattern “language”: collection of related and
interlocking patterns that flow into each other
as the designer solves a design problem

32

Theme 2. What to compute?

 Look for common computations across many areas
1. Embedded Computing (42 EEMBC benchmarks)
2. Desktop/Server Computing (28 SPEC2006)
3. Data Base / Text Mining Software
4. Games/Graphics/Vision
5. Machine Learning
6. High Performance Computing (Original “7 Dwarfs”)
 Result: 13 “Motifs”

(Use “motif” instead when go from 7 to 13)

33

 How do compelling apps relate to 13 motifs?

“Motif" Popularity
(Red Hot → Blue CoolBlue Cool)

E
m

b
ed

S
P

E
C

D
B

G
am

es

M
L

H
P

C

Health Image Speech Music Browser
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

Graph Algorithms

Dynamic Programming

Dense Linear Algebra

Sparse Linear Algebra

Unstructured Grids

Structured Grids

Model-view controller

Bulk synchronous

Map reduce

Layered systems

Arbitrary Static Task Graph

Pipe-and-filter

Agent and Repository

Process Control

Event based, implicit
invocation

Graphical models

Finite state machines

Backtrack Branch and Bound

N-Body methods

Combinational Logic

Spectral Methods

Task Decomposition _ Data Decomposition
Group Tasks Order groups data sharing data access Patterns?

Applications

Pipeline

Discrete Event

Event Based

Divide and Conquer

Data Parallelism

Geometric Decomposition

Task Parallelism

Graph Partitioning

Fork/Join

CSP

Master/worker

Loop Parallelism

Distributed Array

Shared Data

Shared Queue

Shared Hash Table

Barriers

Mutex

Thread Creation/destruction

Process Creation/destruction
Message passing

Collective communication

Speculation

Transactional memory

Choose your high level
structure – what is the
structure of my application?
Guided expansion

Identify the key
computational patterns –
what are my key
computations?
Guided instantiation

Implementation methods – what are the building blocks of parallel programming? Guided implementation

Choose you high level architecture? Guided decomposition

Refine the strucuture - what concurrent approach do I use? Guided re-organization

Utilize Supporting Structures – how do I implement my concurrency? Guided mapping

Pr
od

uc
tiv

ity
 L

ay
er

E
ff

ic
ie

nc
y

L
ay

er

Digital Circuits

Semaphores

35

Themes 1 and 2 Summary

 Application-Driven Research (top down) vs.
CS Solution-Driven Research (bottom up)
 Bet is not that every program speeds up with more

cores, but that we can find some compelling ones
that do

 Drill down on (initially) 5 app areas to guide
research agenda

 Design Patterns + Motifs to guide design of
apps through layers

36

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

BrowserDesign Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore
HypervisorOS

Arch.

Productivity

Layer

Efficiency

Layer Co
rre

ct
ne

ss

Applications

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

Di
ag

no
sin

g
Po

we
r/P

er
fo

rm
an

ce

Efficiency Language Compilers

37

Theme 3: Developing Parallel SW
 2 types of programmers ⇒ 2 layers

 Efficiency Layer (10% of today’s programmers)
 Expert programmers build Frameworks & Libraries,

Hypervisors, …
 “Bare metal” efficiency possible at Efficiency Layer

 Productivity Layer (90% of today’s programmers)
 Domain experts / Naïve programmers productively build

parallel apps using frameworks & libraries
 Frameworks & libraries composed to form app frameworks

 Effective composition techniques allows the efficiency
programmers to be highly leveraged ⇒
Create language for Composition and Coordination (C&C)

38

C & C Language Requirements
(Kathy Yelick)

Applications specify C&C language requirements:
 Constructs for creating application frameworks
 Primitive parallelism constructs:

 Data parallelism
 Divide-and-conquer parallelism
 Event-driven execution

 Constructs for composing programming frameworks:
 Frameworks require independence
 Independence is proven at instantiation with a variety

of techniques

 Needs to have low runtime overhead and ability to
measure and control performance

39

Ensuring Correctness
(Koushek Sen)
 Productivity Layer

 Enforce independence of tasks using decomposition
(partitioning) and copying operators

 Goal: Remove chance for concurrency errors (e.g.,
nondeterminism from execution order, not just
low-level data races)

 Efficiency Layer: Check for subtle concurrency
bugs (races, deadlocks, and so on)
 Mixture of verification and automated directed testing
 Error detection on frameworks with sequential code as

specification
 Automatic detection of races, deadlocks

40

21st Century Code Generation
(Demmel, Yelick)

Search space for
block sizes
(dense matrix):
• Axes are block

dimensions
• Temperature is

speed

 Problem: generating optimal code is
like searching for needle in a haystack

 Manycore ⇒ even more diverse

 New approach: “Auto-tuners”
 1st generate program variations of

combinations of optimizations (blocking,
prefetching, …) and data structures

 Then compile and run to heuristically
search for best code for that computer

 Examples: PHiPAC (BLAS), Atlas (BLAS),
Spiral (DSP), FFT-W (FFT)

 Example: Sparse Matrix (SpMV) for 4 multicores
 Fastest SpMV; Optimizations: BCOO v. BCSR data

structures, NUMA, 16b vs. 32b indicies, …

41

Example: Sparse Matrix * Vector

Name Clovertwn Opteron Cell Niagara 2

Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8 1*8 = 8
Architecture 4-/3-issue, SSE3,

OOO, caches, prefch
2-VLIW,

SIMD,RAM
1-issue,

cache,MT
Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz 1.4 GHz
Peak MemBW 21 GB/s 21 GB/s 26 GB/s 41 GB/s
Peak GFLOPS 74.6 GF 17.6 GF 14.6 GF 11.2 GF

Base SpMV
(median of many matrices)

 1.0 GF 0.6 GF -- 2.7 GF

Efficiency % 1% 3% -- 24%
Autotuned 1.5 GF 1.9 GF 3.4 GF 2.9 GF

Auto Speedup 1.5X 3.2X ∞ 1.1X

42

Theme 3: Summary
 SpMV: Easier to autotune single local RAM + DMA

than multilevel caches + HW and SW prefetching
 Productivity Layer & Efficiency Layer
 C&C Language to compose Libraries/Frameworks
 Libraries and Frameworks to leverage experts

43

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

BrowserDesign Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Multicore/GPGPU RAMP Manycore

OS

Arch.

Productivity

Layer

Efficiency

Layer Co
rre

ct
ne

ss

Applications

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

Di
ag

no
sin

g
Po

we
r/P

er
fo

rm
an

ce

Efficiency Language Compilers

Hypervisor
OS Libraries & ServicesLegacy OS

Multicore/GPGPU RAMP Manycore

44

 Traditional OSes brittle, insecure, memory hogs
 Traditional monolithic OS image uses lots of precious

memory * 100s - 1000s times
(e.g., AIX uses GBs of DRAM / CPU)

 How can novel OS and architectural support
improve productivity, efficiency, and correctness
for scalable hardware?
 Efficiency instead of performance to capture energy as

well as performance
 Other HW challenges: power limit, design and

verification costs, low yield, higher error rates
 How prototype ideas fast enough to run real SW?

Theme 4: OS and Architecture
(Krste Asanovic, Eric Brewer, John
Kubiatowicz)

45

Deconstructing Operating Systems

 Resurgence of interest in virtual machines
Hypervisor: thin SW layer btw guest OS and HW

 Future OS: libraries where only functions
needed are linked into app, on top of thin
hypervisor providing protection and sharing of
resources
Opportunity for OS innovation

 Leverage HW partitioning support for very thin
hypervisors, and to allow software full access
to hardware within partition

46

Partitions and Fast Barrier Network

 Partition: hardware-isolated group
 Chip divided into hardware-isolated partition, under control of

supervisor software
 User-level software has almost complete control of hardware

inside partition

 Fast Barrier Network per partition (≈ 1ns)
 Signals propagate combinationally
 Hypervisor sets taps saying where partition sees barrier

InfiniCore chip
with 16x16 tile
array

47

HW Solution: Small is Beautiful
 Want Software Composable Primitives,

Not Hardware Packaged Solutions
 “You’re not going fast if you’re headed in the wrong direction”
 Transactional Memory is usually a Packaged Solution

 Expect modestly pipelined (5- to 9-stage)
CPUs, FPUs, vector, SIMD PEs
 Small cores not much slower than large cores

 Parallel is energy efficient path to performance:CV2F
 Lower threshold and supply voltages lowers energy per op

 Configurable Memory Hierarchy (Cell v. Clovertown)
 Can configure on-chip memory as cache or local RAM
 Programmable DMA to move data without occupying CPU
 Cache coherence: Mostly HW but SW handlers for complex cases
 Hardware logging of memory writes to allow rollback

48

1008 Core “RAMP Blue”
 (Wawrzynek, Krasnov,… at Berkeley)

 1008 = 12 32-bit RISC cores /
FPGA, 4 FGPAs/board, 21 boards
 Simple MicroBlaze soft cores @ 90 MHz

 Full star-connection between modules

 NASA Advanced Supercomputing (NAS)
Parallel Benchmarks (all class S)
 UPC versions (C plus shared-memory abstraction)

CG, EP, IS, MG

 RAMPants creating HW & SW for many-
core community using next gen FPGAs
 Chuck Thacker & Microsoft designing next boards
 3rd party to manufacture and sell boards: 1H08
 Gateware, Software BSD open source

49

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

BrowserDesign Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Multicore/GPGPU RAMP Manycore

OS

Arch.

Productivity

Layer

Efficiency

Layer Co
rre

ct
ne

ss

Applications

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

Di
ag

no
sin

g
Po

we
r/P

er
fo

rm
an

ce

Efficiency Language Compilers

Hypervisor
OS Libraries & ServicesLegacy OS

Multicore/GPGPU RAMP Manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services
Hypervisor

RAMP Manycore

50

 Collect data on Power/Performance bottlenecks
 Aid autotuner, scheduler, OS in adapting system
 Turn data into useful information that can help

efficiency-level programmer improve system?
 E.g., % peak power, % peak memory BW, % CPU, %

network
 E.g., sample traces of critical paths

 Turn data into useful information that can help
productivity-level programmer improve app?
 Where am I spending my time in my program?
 If I change it like this, impact on Power/Performance?

Theme 5: Diagnosing Power/
Performance Bottlenecks

51

Par Lab Summary
 Try Apps-Driven vs. CS

Solution-Driven Research
 Design patterns + Motifs
 Efficiency layer for ≈10%

today’s programmers
 Productivity layer for ≈90%

today’s programmers
 C&C language to help

compose and coordinate
 Autotuners vs. Compilers
 OS & HW: Primitives vs.

Solutions
 Diagnose Power/Perf.

bottlenecks

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives

Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

O
S

Ar
ch

.
Pr

od
uc

tiv
ity

Ef
fic

ie
nc

y

Co
rre

ct
ne

ss

Ap
ps

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with

Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

Easy to write correct programs that run
efficiently and scale up on manycore

Di
ag

no
sin

g
Po

we
r/P

er
fo

rm
an

ce
 B

ot
tle

ne
ck

s

Conclusion

 Power wall + Memory Wall = Brick Wall for
serial computers

 Industry bet its future on parallel computing,
one of the hardest problems in CS

 Once in a career opportunity to reinvent
whole hardware/software stack if can make it
easy to write correct, efficient, portable,
scalable parallel programs

 Failure is not the sin; the sin is not trying.
 Are you going to be part of the problem or

part of the solution?
52

53

Acknowledgments
 Intel and Microsoft for being founding sponsors

 of the Par Lab
 Faculty, Students, and Staff in Par Lab
 See parlab.eecs.berkeley.edu
 RAMP based on work of RAMP Developers:

 Krste Asanovic (Berkeley), Derek Chiou (Texas),
James Hoe (CMU), Christos Kozyrakis (Stanford),
Shih-Lien Lu (Intel), Mark Oskin (Washington),
David Patterson (Berkeley, Co-PI), and
John Wawrzynek (Berkeley, PI)

 See ramp.eecs.berkeley.edu
 CACM update (if time permits)

CACM Rebooted July 2008: to become
Best Read Computing Publication?

 New direction, editor, editorial board, content
 Moshe Vardi as EIC + all star editorial board

 3 News Articles for MS/PhD in CS
 E.g., “Cloud Computing”, “Dependable Design”

 6 Viewpoints
 Interview: “The ‘Art’ of being Don Knuth”
 “Technology Curriculum for 21st Century”: Stephen

Andriole (Villanova) vs. Eric Roberts (Stanford)
 3 Practice articles: Merged Queue with CACM

 “Beyond Relational Databases” (Margo Seltzer, Oracle),
“Flash Storage” (Adam Leventhal, Sun), “XML Fever”

 2 Contributed Articles
 “Web Science” (Hendler, Shadbolt, Hall, Berners-Lee, …)
 “Revolution inside the box” (Mark Oskin, Wash.)

(New) CACM is worth reading (again):
Tell your friends!
 1 Review: invited overview of recent hot topic

 “Transactional Memory” by J. Larus and C. Kozyrakis

 2 Research Highlights: Restore field overview?
 Mine the best of 5000 conferences papers/year:

Nominations, then Research Highlight Board votes
 Emulate Science by having 1 page Perspective +

 8-page article revised for larger CACM audience
 “CS takes on Molecular Dynamics” (Bob Colwell) +

“Anton, a Special-Purpose Machine for Molecular
Dynamics” (Shaw et al)

 “Physical Side of Computing” (Feng Shao) + “The
Emergence of a Networking Primitive in Wireless
Sensor Networks” (Levis, Brewer, Culler et al)

Parallel
Applications

Parallel
Hardware

Parallel
SoftwareIT industry

(Silicon Valley)
Users

56

Backup Slides

Utility Computing Arrives?
 Many attempts at utility computing over the

years: Sun $1/CPU hour (2004), HP, IBM,
.com collocation SW, …

 Amazon Elastic Computing Cloud (EC2) /
 Simple Storage Service (S3) bet is:
 Low-level platform: Standard VMM/OS, x86 HW
 Customers store data on S3, install/manage whatever

SW they want as VM images on S3
 NO guarantees of quality, just best effort
 But very low cost per CPU hour, per GB month, not

trivial cost per GB of network traffic

57

Utility Computing Arrives?

 EC2 CPU: 1 hour of 1000 cores = $100
 1 EC2 Compute Unit
≈ 1.0-1.2 GHz 2007 Opteron or 2007 Xeon core

 S3 Disk: $0.15 / GB-Month capacity used
 Network: Free between S3 and EC2;

External: ≈ $0.10/GB (in or out)

58

“Instances” Platform Cores Memory Disk

Small - $0.10 / hr 32-bit 1 1.7 GB 160 GB

Large - $0.40 / hr 64-bit 4 7.5 GB 850 GB – 2 spindles

XLarge - $0.80 / hr 64-bit 8 15.0 GB 1690 GB – 3 spindles

••AnimotoAnimoto adds application to adds application to Facebook Facebook

•• 25,000 to 250,000 users in 3 days 25,000 to 250,000 users in 3 days

•• Signing up 20,000 new users per Signing up 20,000 new users per
hour at peakhour at peak

•• 50 EC2 instances to 3500 in 2 days 50 EC2 instances to 3500 in 2 days

4/114/11 4/124/12 4/134/13 4/144/14 4/154/15 4/164/16 4/174/17 4/184/18

(Every (Every
16 hours)16 hours)

http://blog.rightscale.com/2008/04/23/animoto-facebook-scale-up/http://blog.rightscale.com/2008/04/23/animoto-facebook-scale-up/
http://www.omnisio.com/v/9ceYTUGdjh9/jeff-bezos-on-animotohttp://www.omnisio.com/v/9ceYTUGdjh9/jeff-bezos-on-animoto

