
USENIX Association

February 23–25, 2021

Proceedings of the
19th USENIX Conference on

File and Storage Technologies (FAST ’21)

© 2021 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-20-5

Conference Organizers
Program Co-Chairs
Marcos K. Aguilera, VMware Research
Gala Yadgar, Technion—Israel Institute of Technology

Program Committee
Nitin Agrawal, ThoughtSpot
Marcos K. Aguilera, VMware Research
Woongki Baek, UNIST (Ulsan National Institute of Science and

Technology)
Mahesh Balakrishnan, Facebook
Suparna Bhattacharya, Hewlett Packard Enterprise
Janki Bhimani, Florida International University
Angelos Bilas, University of Crete and FORTH
Randal Burns, Johns Hopkins University
Feng Chen, Louisiana State University
Vijay Chidambaram, The University of Texas at Austin and

VMware Research
Natacha Crooks, University of California, Berkeley
Daniel Ellard, Raytheon BBN Technologies
Danny Harnik, IBM Research—Haifa
Dean Hildebrand, Google
Cheng Huang, Microsoft
William Jannen, Williams College
Song Jiang, The University of Texas at Arlington
Rob Johnson, VMware Research
Kimberly Keeton
Patrick P. C. Lee, The Chinese University of Hong Kong
Xiaosong Ma, Qatar Computing Research Institute, HBKU
Peter Macko, NetApp
Ethan L. Miller, University of California, Santa Cruz, and

Pure Storage
Dalit Naor, The Academic College of Tel Aviv–Yaffo
Don Porter, The University of North Carolina at Chapel Hill
Rob Ross, Argonne National Laboratory
Ken Salem, University of Waterloo and Amazon
Jiri Schindler, Tranquil Data
Russell Sears, Apple
Mehul A. Shah, Amazon AWS
Keith A. Smith, MongoDB
Amy Tai, VMware Research
Vasily Tarasov, IBM Research
Carl Waldspurger, Carl Waldspurger Consulting
Youjip Won, Korea Advanced Institute of Science and

Technology (KAIST)
Gala Yadgar, Technion—Israel Institute of Technology

Test of Time Awards Committee
Jiri Schindler, Tranquil Data
Bianca Schroeder, University of Toronto

Work-in-Progress Reports (WiPs) Co-Chairs
Peter Macko, NetApp
Amy Tai, VMware Research

Tutorial Coordinators
Andy Klosterman, NetApp
John Strunk, Red Hat

Steering Committee
Nitin Agrawal, ThoughtSpot
Angela Demke Brown, University of Toronto
Casey Henderson, USENIX Association
Kimberly Keeton
Geoff Kuenning, Harvey Mudd College
Arif Merchant, Google
Sam H. Noh, UNIST (Ulsan National Institute of Science and

Technology)
Raju Rangaswami, Florida International University
Erik Riedel
Jiri Schindler, Tranquil Data
Bianca Schroeder, University of Toronto
Keith A. Smith, MongoDB
Eno Thereska, Amazon
Carl Waldspurger, Carl Waldspurger Consulting
Hakim Weatherspoon, Cornell University
Brent Welch, Google
Ric Wheeler, Facebook
Erez Zadok, Stony Brook University

External Reviewers
Amogh Akshintala
Deniz Altinbüken

Irina Calciu
Yuval Cassuto
Moshe Gabel

Aishwarya Ganesan
Myungsuk Kim

Jean-Sebastien Legare
Beomseok Nam
Aalap Tripathy

Cong Xu
Eitan Yaakobi

Jun Yuan

Message from the
FAST ’21 Program Co-Chairs

Welcome to the 19th USENIX Conference on File and Storage Technologies (FAST ’21). This year’s conference continues
the tradition of bringing together researchers and practitioners from both industry and academia for a program of innovative
and rigorous storage-related research. It is, however, the first time that FAST is held online due to the current worldwide
travel restrictions. We are pleased to present a diverse set of papers on topics such as cloud storage, key-value stores, consis-
tency, reliability, caching, HPC systems, SSD, and traditional file systems. Submissions to the conference came from authors
representing academia, industry, and the open-source community.

FAST ’21 received 130 submissions. Of these, we accepted 28 papers, for an acceptance rate of 21%. The Program Committee
used a two-round online review process and then held a two-day virtual PC meeting to select the final program. In the first
round, each paper was assigned three reviewers. In the second round, 80 papers were assigned at least two more reviews. The
Program Committee discussed 35 papers in the PC meeting on December 7–8, 2020, spanning 17 time-zones. We used Eddie
Kohler’s excellent HotCRP service to manage all stages of the review process, from submission to author notification.

As in the previous years, we included a category of deployed-systems papers, which address experience with the practical
design, implementation, analysis, or deployment of large-scale, operational systems. We received 8 deployed-systems submis-
sions and we accepted 3. Unlike previous years, there was no special category for short papers.

We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to all the authors
who submitted their work to FAST ’21. We would also like to thank the attendees of FAST ’21 and the future readers of these
papers. Together with the authors, you form the FAST community and make storage research vibrant and exciting. We extend
our thanks to the entire USENIX staff, especially Casey Henderson, Jasmine Murcia, and Arnold Gatilao, who have provided
outstanding support throughout the planning and organizing of this conference with the highest degree of professionalism
and friendliness. Most importantly, their behind-the-scenes work makes this conference actually happen. We would like
to thank the Work-in-Progress Session Chairs, Peter Macko and Amy Tai. Our thanks go also to the members of the FAST
Steering Committee who provided invaluable advice and feedback, and to our Steering Committee Liaison, Keith Smith, for
his guidance and encouragement on many issues, large and small, over the past year.

Finally, we wish to thank our Program Committee for their many hours of hard work reviewing, discussing, and shepherding
the submissions. In total, the PC wrote 557 thoughtful and meticulous reviews and 1491 online comments. HotCRP recorded
approximately 375,000 words in reviews and comments (excluding HotCRP boilerplate language). The reviewers’ evaluations,
and their thorough and conscientious deliberations at the PC meeting, contributed significantly to the quality of our decisions.
Each paper had a shepherd that reviewed the final submission and provided additional feedback. In many cases, this led to
significant improvements in the final quality of the submissions. We look forward to an interesting and enjoyable conference!

Marcos K. Aguilera, VMware Research
Gala Yadgar, Technion—Israel Institute of Technology
FAST ’21 Program Co-Chairs

19th USENIX Conference on File and Storage Technologies (FAST ’21)

February 23–25, 2021

Tuesday, February 23
Indexing and Key-Value Store
ROART: Range-query Optimized Persistent ART . 1
Shaonan Ma and Kang Chen, Tsinghua University; Shimin Chen, SKL of Computer Architecture, ICT, CAS, and University
of Chinese Academy of Sciences; Mengxing Liu, Jianglang Zhu, Hongbo Kang, and Yongwei Wu, Tsinghua University

SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage .17
Hao Chen, University of Science and Technology of China & Qatar Computing Research Institute, HBKU; Chaoyi Ruan
and Cheng Li, University of Science and Technology of China; Xiaosong Ma, Qatar Computing Research Institute,
HBKU; Yinlong Xu, University of Science and Technology of China & Anhui Province Key Laboratory of High
Performance Computing

Evolution of Development Priorities in Key-value Stores Serving Large-scale Applications:
The RocksDB Experience . 33
Siying Dong, Andrew Kryczka, and Yanqin Jin, Facebook Inc.; Michael Stumm, University of Toronto

REMIX: Efficient Range Query for LSM-trees . 51
Wenshao Zhong, Chen Chen, and Xingbo Wu, University of Illinois at Chicago; Song Jiang, University of Texas at Arlington

Advanced File Systems
High Velocity Kernel File Systems with Bento . 65
Samantha Miller, Kaiyuan Zhang, Mengqi Chen, and Ryan Jennings, University of Washington; Ang Chen, Rice University;
Danyang Zhuo, Duke University; Thomas Anderson, University of Washington

Scalable Persistent Memory File System with Kernel-Userspace Collaboration . 81
Youmin Chen, Youyou Lu, and Bohong Zhu, Tsinghua University; Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau,
University of Wisconsin–Madison; Jiwu Shu, Tsinghua University

Rethinking File Mapping for Persistent Memory . 97
Ian Neal, Gefei Zuo, Eric Shiple, and Tanvir Ahmed Khan, University of Michigan; Youngjin Kwon, School of Computing,
KAIST; Simon Peter, University of Texas at Austin; Baris Kasikci, University of Michigan

pFSCK: Accelerating File System Checking and Repair for Modern Storage . 113
David Domingo and Sudarsun Kannan, Rutgers University

Pattern-Guided File Compression with User-Experience Enhancement for Log-Structured File System on
Mobile Devices . 127
Cheng Ji, Nanjing University of Science and Technology; Li-Pin Chang, National Chiao Tung University, National
Yang Ming Chiao Tung University; Riwei Pan and Chao Wu, City University of Hong Kong; Congming Gao, Tsinghua
University; Liang Shi, East China Normal University; Tei-Wei Kuo and Chun Jason Xue, City University of Hong Kong

Wednesday, February 24
Transactions, Deduplication, and More
ArchTM: Architecture-Aware, High Performance Transaction for Persistent Memory .141
Kai Wu and Jie Ren, University of California, Merced; Ivy Peng, Lawrence Livermore National Laboratory; Dong Li,
University of California, Merced

SPHT: Scalable Persistent Hardware Transactions . 155
Daniel Castro, INESC-ID & Instituto Superior Técnico; Alexandro Baldassin, UNESP - Universidade Estadual Paulista;
João Barreto and Paolo Romano, INESC-ID & Instituto Superior Técnico

The Dilemma between Deduplication and Locality: Can Both be Achieved? .171
Xiangyu Zou and Jingsong Yuan, Harbin Institute of Technology, Shenzhen; Philip Shilane, Dell Technologies; Wen Xia,
Harbin Institute of Technology, Shenzhen, and Wuhan National Laboratory for Optoelectronics; Haijun Zhang and Xuan
Wang, Harbin Institute of Technology, Shenzhen

Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes 187
You Zhou, Qiulin Wu, and Fei Wu, Huazhong University of Science and Technology; Hong Jiang, University of Texas at
Arlington; Jian Zhou and Changsheng Xie, Huazhong University of Science and Technology

CheckFreq: Frequent, Fine-Grained DNN Checkpointing . 203
Jayashree Mohan, UT Austin; Amar Phanishayee, Microsoft Research; Vijay Chidambaram, UT Austin and VMware research

Cloud and Distributed Systems
Facebook’s Tectonic Filesystem: Efficiency from Exascale .217
Satadru Pan, Facebook, Inc.; Theano Stavrinos, Facebook, Inc. and Princeton University; Yunqiao Zhang, Atul Sikaria,
Pavel Zakharov, Abhinav Sharma, Shiva Shankar P, Mike Shuey, Richard Wareing, Monika Gangapuram, Guanglei Cao,
Christian Preseau, Pratap Singh, Kestutis Patiejunas, and JR Tipton, Facebook, Inc.; Ethan Katz-Bassett, Columbia
University; Wyatt Lloyd, Princeton University

Exploiting Combined Locality for Wide-Stripe Erasure Coding in Distributed Storage . 233
Yuchong Hu, Liangfeng Cheng, and Qiaori Yao, Huazhong University of Science & Technology; Patrick P. C. Lee,
The Chinese University of Hong Kong; Weichun Wang and Wei Chen, HIKVISION

On the Feasibility of Parser-based Log Compression in Large-Scale Cloud Systems . 249
Junyu Wei and Guangyan Zhang, Tsinghua University; Yang Wang, The Ohio State University; Zhiwei Liu, China University
of Geosciences; Zhanyang Zhu and Junchao Chen, Tsinghua University; Tingtao Sun and Qi Zhou, Alibaba Cloud

CNSBench: A Cloud Native Storage Benchmark . 263
Alex Merenstein, Stony Brook University; Vasily Tarasov, Ali Anwar, and Deepavali Bhagwat, IBM Research–Almaden;
Julie Lee, Stony Brook University; Lukas Rupprecht and Dimitris Skourtis, IBM Research–Almaden; Yang Yang and
Erez Zadok, Stony Brook University

Concordia: Distributed Shared Memory with In-Network Cache Coherence . 277
Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and Jiwu Shu, Tsinghua University

Thursday, February 25
Caching Everywhere
eMRC: Efficient Miss Ratio Approximation for Multi-Tier Caching . 293
Zhang Liu, University of Colorado Boulder; Hee Won Lee, Samsung Electronics; Yu Xiang, AT&T Labs Research;
Dirk Grunwald and Sangtae Ha, University of Colorado Boulder

The Storage Hierarchy is Not a Hierarchy: Optimizing Caching on Modern Storage Devices with Orthus 307
Kan Wu, Zhihan Guo, Guanzhou Hu, and Kaiwei Tu, University of Wisconsin–Madison; Ramnatthan Alagappan, VMware
Research; Rathijit Sen and Kwanghyun Park, Microsoft; Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau,
University of Wisconsin–Madison

A Community Cache with Complete Information . 325
Mania Abdi, Northeastern University; Amin Mosayyebzadeh, Boston University; Mohammad Hossein Hajkazemi,
Northeastern University; Emine Ugur Kaynar, Boston University; Ata Turk, State Street; Larry Rudolph, TwoSigma;
Orran Krieger, Boston University; Peter Desnoyers, Northeastern University

Learning Cache Replacement with Cacheus . 341
Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Rangaswami, and Jason Liu, Florida International
University; Ming Zhao, Arizona State University; Giri Narasimhan, Florida International University

The SSD Revolution Is Not Over
FusionRAID: Achieving Consistent Low Latency for Commodity SSD Arrays . 355
Tianyang Jiang, Guangyan Zhang, and Zican Huang, Tsinghua University; Xiaosong Ma, Qatar Computing Research
Institute, HBKU; Junyu Wei, Zhiyue Li, and Weimin Zheng, Tsinghua University

Behemoth: A Flash-centric Training Accelerator for Extreme-scale DNNs . 371
Shine Kim, Seoul National University and Samsung Electronics; Yunho Jin, Gina Sohn, Jonghyun Bae, Tae Jun Ham, and
Jae W. Lee, Seoul National University

FlashNeuron: SSD-Enabled Large-Batch Training of Very Deep Neural Networks . 387
Jonghyun Bae, Seoul National University; Jongsung Lee, Seoul National University and Samsung Electronics;
Yunho Jin and Sam Son, Seoul National University; Shine Kim, Seoul National University and Samsung Electronics;
Hakbeom Jang, Samsung Electronics; Tae Jun Ham and Jae W. Lee, Seoul National University

D2FQ: Device-Direct Fair Queueing for NVMe SSDs . 403
Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong, Sungkyunkwan University

An In-Depth Study of Correlated Failures in Production SSD-Based Data Centers .417
Shujie Han and Patrick P. C. Lee, The Chinese University of Hong Kong; Fan Xu, Yi Liu, Cheng He, and Jiongzhou Liu,
Alibaba Group

ROART: Range-query Optimized Persistent ART

Shaonan Ma1, Kang Chen1∗, Shimin Chen2,3, Mengxing Liu1,
Jianglang Zhu1, Hongbo Kang1, and Yongwei Wu1

1Tsinghua University†, 2SKL of Computer Architecture, ICT, CAS
3University of Chinese Academy of Sciences

Abstract
With the availability of commercial NVM devices such as

Intel Optane DC PMM, it is time to start thinking about ap-
plying the existing persistent data structures in practice. This
paper considers three practical aspects, which have signifi-
cant influences on the design of persistent indexes, including
functionality, performance and correctness.

We design a new persistent index, ROART, based on adap-
tive radix tree (ART), taking all these practical aspects into
account. ROART (i) proposes a leaf compaction method
to reduce pointer chasing for range queries, (ii) minimizes
persistence overhead with three optimizations, i.e., entry com-
pression, selective metadata persistence and minimally or-
dered split, and (iii) designs a fast memory management to
prevent memory leaks, and eliminates the long recovery time
by proposing an instant restart strategy. Evaluations show
that ROART outperforms the state-of-the-art radix tree by up
to 1.65× and B+-Trees by 1.17∼8.27× respectively.

1 Introduction

Emerging Non-Volatile Memory (NVM) is attractive because
of its byte-addressability, low latency and durability. Many
researchers have focused on how to design fast persistent
data structures [1–30]. With the announcement of the first
generation products (Intel Optane DC PMM [31]), it is time
to investigate how to apply the achieved results in practice.

We point out that there are three significant aspects af-
fecting the design of persistent indexes, i.e., functionality,
performance, and correctness. Any persistent index designed
for practical uses needs to consider these aspects carefully.

1. Functionality: Variable-sized Keys and Range Queries.
Variable-sized keys are important in real world systems,
such as RDBMS [32–41] and Key-Value Stores [25, 42–47].

∗Corresponding author: Kang Chen (chenkang@tsinghua.edu.cn)
†Department of Computer Science and Technology, Beijing National

Research Center for Information Science and Technology (BNRist), Tsinghua
University, China

Whether an index supports variable-sized keys will have a
great impact on the direction of its optimization. Moreover,
range queries are used to support inequality comparisons in
many real-world applications [32–41]. Therefore, it is desir-
able that the index structure supports range queries efficiently
in addition to point read and write operations. In this paper,
we focus on index structures that support both variable-sized
keys and range queries.

2. Performance: Persistence Overhead. Persistence over-
head plays an essential role in the performance of indexes
targeting NVM. To guarantee crash consistency of indexes,
once an operation is completed, the modification must be
persisted to NVM by cache line flush and memory fence in-
structions. Due to the design of hardware, NVM writes have
lower throughput than reads and poor scalability of band-
width (because the writes issued by more threads exceed the
capability of underlying buffers [48]). Moreover, persistence
operations incur much larger (e.g., at least by 2.4×) overhead
than normal writes.

3. Correctness: Anomaly Resolution and Memory Safety.
First, persistent indexes may suffer from anomalies [26], such
as lost update and dirty read, if they provide no protection to
concurrent operations. These anomalies will cause the effect
of successful operations to disappear after system crash and
restart. Second, memory allocations in NVM need to deal with
crash consistency, which is not a problem in DRAM. Memory
leaks may happen after a crash due to (i) inconsistent memory
allocation metadata, and/or (ii) lazy GC (garbage collection)
used in the design of non-blocking data structures.

In order to support range queries, our work mainly focuses
on tree-based indexes rather than hash tables. According to
our experiments (§2.1), B+-Trees may not be the best per-
forming index for variable-sized keys. Therefore, we choose
the radix tree as our basis, which naturally supports variable-
sized keys. To the best of our knowledge, no recent persis-
tent radix tree has fully taken the above aspects into account.
WORT [19] is write-optimized but only runs in a single thread.
P-ART [24] is a concurrent persistent radix tree converted

USENIX Association 19th USENIX Conference on File and Storage Technologies 1

from the volatile ART [49, 50] index based on the principles
of RECIPE. There is little optimization on range queries and
persistence overhead. Moreover, neither of the two radix trees
considers memory safety, which may lead to memory leaks.

We propose a new index structure called ROART (Range-
query Optimized Adaptive Radix Tree), considering all the
above factors. To improve range queries, we propose leaf com-
paction (LC) that delays the leaf split and compacts multiple
leaf nodes into a leaf array. The benefits of this technique
are threefold. First, it reduces pointer chasing during range
queries. Second, it can decrease the number of complex split
operations. Finally, it tends to lower the height of the tree,
which is beneficial to all index operations.

To reduce persistence overhead, we propose three optimiza-
tions in ROART: (i) Entry compression (EC) that combines
the key and the child pointer in an 8-byte entry; (ii) Selec-
tive Metadata Persistence (SMP) to reduce the amount of
metadata to persist; and (iii) minimally ordered split (MO)
that relaxes the order of steps in a split operation to reduce
the number of sfence instructions. Previously mentioned LC
also helps here because it delays leaf node split and reduces
its persistence overhead.

For correctness, we protect ROART against anomalies
by using non-temporal store [24, 48] techniques. For
memory safety, there have been several previous proposals.
Logging-based allocators [51–53] suffer from heavy persis-
tence overhead for allocation/deallocation operations. Post-
crash garbage collection techniques [22, 54–56] reduce the
persistence overhead, but introduce long recovery time. We
propose a new technique, called instant restart, with con-
current post-crash garbage collection. While performing the
background GC during recovery, indexes can handle fore-
ground requests concurrently, i.e., restarting services instantly.
We integrate this technique in our new memory allocator,
called DCMM (Delayed Check Memory Management).

In summary, this paper makes the following contributions:
(1) We present an in-depth analysis on the three practi-

cal aspects of persistent indexes to understand the impact of
different design choices (§2).

(2) We propose ROART that addresses the three design
aspects (§3). For functionality, we choose ART as basis to
naturally support variable-sized keys and propose a leaf com-
paction method to optimize range queries. For performance,
we propose three techniques to reduce persistence overhead,
i.e., entry compression, selective metadata persistence and
minimally ordered split. For correctness, we carefully protect
ROART against anomalies, and design DCMM with instant
restart to support memory safety without long recovery time.

(3) We perform extensive experiments to compare
ROART with state-of-the-art tree-based indexes (§4), includ-
ing P-ART [24], PMwCAS-ART (implemented with PMw-
CAS [23]), FAST&FAIR [5], SkipList [22] and BzTree [6].
ROART outperforms the existing solutions by 1.15∼8.27×
under YCSB workloads.

Fixed-size
Variable-size

Th
ro

ug
hp

ut
 (M

op
/s

)

0

2

4

lookup insert update remove scan

Figure 1: Performance degradation of storing variable-size
data in FAST&FAIR.

2 Practical Considerations

We discuss the three aspects, i.e. functionality, persistence
overhead, and correctness, in detail in this section.

2.1 Functionality

2.1.1 Variable-sized Keys

Indexes supporting variable-sized keys can be applicable to a
wider range of applications, including database systems [32–
41]. However, such support may come with a price.

A number of persistent B+-Tree indexes maintain fixed-
sized (8-byte key and 8-byte value) entries in the array of
nodes such as NVTree [3], wB+-Tree [2], FPTree [4], RN-
Tree [7] and LB+-Tree [9], and entries are appended to the
arrays. FAST&FAIR [5], which also supports only fixed 8-
byte keys, reduces the number of clwbs if multiple keys and
values are in the same cache line. These B+-Trees have excel-
lent cache locality and high traversal performance based on
optimizing 8-byte keys only.

A straightforward way to adapt the indexes with 8-byte keys
to support variable-sized keys is to allocate extra data areas
and store the addresses of the keys in the indexes. However,
this incurs pointer chasing overhead. We use FAST&FAIR,
a state-of-the-art persistent B+-Tree, as an example to re-
veal the performance degradation using such a method. In
Figure 1, we evaluate the performance of five operations
(lookup/insert/update/remove/scan) with four threads using
modified FAST&FAIR. We use the above method to support
variable-sized keys, and use an appropriate NVM allocator
(with post-crash GC (§2.3.2)) to eliminate the persistence
overhead during allocation, so that we can focus on the per-
formance difference between fixed-sized and variable-sized
keys. We find the degradations of the five operations are about
3.9/1.8/2.79/2.15/1.94× respectively. The main performance
difference comes from pointer chasing and string comparison
during traversal. To persist extra data areas, operations like
insert/update introduce more persistence.

BzTree [6] employs a different approach, slotted pages,
for variable-sized keys. Based on this approach, fixed-sized
metadata grows downward into the node, and variable-sized
keys and values grow upward. Such an approach can reduce
pointer chasing during traversal, but introduce the cost of

2 19th USENIX Conference on File and Storage Technologies USENIX Association

additional metadata [8]. The performance of BzTree is in
Figure 14, its lookups are fast but writes are slow.

Indexes based on radix tree [49] have better performance
(Figure 14) in supporting variable-sized keys than B+-Tree
due to less comparison in traversal. However, they also have
their own shortcomings, such as inefficiency on range queries.

2.1.2 Range Queries

Range query is an important feature in RDBMS [32–41]
and Key-Value Stores [25, 42–47]. This paper focuses on
tree-based indexes which naturally support range queries. B+-
Trees support efficient range queries because multiple keys
are stored in one leaf node, and scan in leaf nodes causes no
pointer chasing. In other tree structures, such as radix trees
and binary search trees, one node can only store one key, and
keys can be stored in leaf nodes but also in non-leaf nodes.
Range queries on these trees have to traverse different levels
of the trees, and chase more pointers. As the performance gap
between sequential read and random read is larger in NVM
than that in DRAM [48], more random accesses deteriorate
the range query performance in NVM.

However, B+-Trees may not be the best choice for indexes
when both variable-sized keys and range queries are required.
In Figure 1, the scan throughput of B+-Trees decreases by
48.5% when variable-sized keys are used. In §3, we optimize
the adaptive radix tree (ART) for range queries.

2.2 Persistence Overhead
Explicit persistence is required to guarantee crash consistency
for indexes in NVM. However, cache line flush and memory
fence are costly compared to other instructions. Due to the
poor scalability of NVM writes [48], reducing the persistence
overhead is crucial for improving performance.

There are several general methods to convert a volatile in-
dex to its non-volatile counterpart in NVM. PMwCAS [23]
records the metadata of each CAS (Compare-and-Swap) into
a descriptor to ensure multiple CASs can execute atomically.
RECIPE [24] adds a persistent instruction (flush and fence)
after each store to ensure persistence. Unfortunately, with-
out any optimization to reduce persistence operations, such
generality comes with high overhead [8].

Other works propose special optimizations to eschew heavy
persistence. wB+-Tree [2], NVTree [3], FPTree [4], and LB+-
Tree [9] abandon the order of keys in leaf nodes to reduce
writes for insertions and deletions. FAST&FAIR [5] and LB+-
Tree [9] reduce persistence operations by making data share
the same cache line as much as possible. RNTree [7] uses
HTM [57] to increase the granularity of atomic writes to re-
duce the number of persistence operations. From the above,
we see that it is important to exploit the properties of tar-
get data structures. In this paper, we optimize persistence in
ROART by exploiting inherent properties of ART (§3).

Table 1: States of three steps in an insert operation.
next pointer Step (i) Step (ii) Step (iii)
volatile state old new new
persistent state old old new

A B

C

A B

C

(a)	Dirty	Read

A B

C

A B

C
(b)	Lost	Update

D

Figure 2: Two anomalies in unmodified lock-free linked list.
The dotted line indicates that it has not been persisted.

2.3 Correctness

2.3.1 Anomaly Resolution

When designing lock-free non-volatile data structures, two
anomalies (Dirty Read and Lost Update), are prone to oc-
cur [26]. The main reason is that threads may access data yet
to be persisted, which are lost after crash and restart.

We use the lock-free linked list [58] as an example to de-
scribe the two anomalies. The insert operation has three steps.
Step (i) creates a new node, sets its next pointer to point to the
successor, and then persists the new node. Step (ii) updates the
next pointer of the predecessor to point to the new node. Step
(iii) persists the next pointer of the predecessor. The states
of the predecessor’s next pointer are shown in Table 1. Note
that there is an inconsistency between volatile and persistent
states in step (ii). Without extra protection mechanisms, two
anomalies can happen, as illustrated in Figure 2.
Dirty Read. In Figure 2(a), an insert operation inserts a new
node C between A and B. Suppose, the operation finishes
step (ii) but has not executed step (iii) yet. At this moment,
a concurrent read operation visits C. If the system crashes at
this point, C is lost after restart and the read operation has
read the uncommitted dirty data.

Lost Update. In Figure 2(b), two insert operations want to
insert two adjacent nodes C and D between A and B. The
successful result should be A→C→ D→ B. Suppose that a
thread completes step (i) and (ii) for inserting C. Then another
thread inserts D between C and B, and completes all three
steps. If the system crashes before the insert of C completes
step (iii), we can only recover A→ B from NVM, but lose the
completed insert operation of D.

These anomalies can be fixed in various ways. For lock-
free designs, link-and-persist [22] and PMwCAS [23] can
be used, e.g., BzTree stays away from anomalies by PMwCAS,
SkipList can ensure correctness by link-and-persist. For
lock-based designs, implementations can replace temporal
store with non-temporal store [24], such as P-ART [24].

USENIX Association 19th USENIX Conference on File and Storage Technologies 3

Th
ro

ug
hp

ut
 (M

op
/s

)

(a) Performance of raw allocators (b) Allocators in FAST&FAIR
0

0.2

0.4Raw allocator Allocation in FF

0

2

4

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

Figure 3: Comparison of different allocators.

VolatileGC
PersistentGC

Th
ro

ug
hp

ut
 (M

op
/s

)

of threads

0

0.5

1.0

5 10 15 20

Figure 4: Volatile GC vs. Persistent GC.

Makalu

Ti
m

e
(s

ec
)

recovery data size (MB)

1

10

128 512 2048 8192

Figure 5: Recovery time of Makalu.

2.3.2 Memory Safety

It is important to guarantee crash consistency for NVM mem-
ory management. Inconsistent metadata for allocation/deallo-
cation operations and/or lazy garbage collection can lead to
memory leaks.

NVM Allocation. Many existing studies employ the sim-
plistic solution that uses volatile allocators, such as malloc,
libvmmalloc [59], for persistent memory. An allocation typi-
cally consists of three steps: (i) allocate a free NVM block, (ii)
modify the allocator’s metadata, and (iii) return the allocated
block to the application. However, these volatile allocators
pay no attention to crash consistency of allocators’ metadata.
Once the system crashes during the allocation process, the
metadata is likely to be inconsistent, making part of the NVM
memory unreachable. Moreover, volatile allocators can result
in inaccurate performance evaluation for applications based
on them [48], because they overlook the expensive persistent
instructions. Therefore, using volatile allocators directly for
NVM is not appropriate.

Correct NVM allocators are divided into two categories,
logging-based allocator [51–53] and post-crash GC [22, 54–
56]. The former uses logging to ensure the atomicity of op-
erations, introducing additional persistence overhead. The
latter reclaims garbage data by scanning all memory space
during recovery. It reduces persistence overhead during allo-

Table 2: Analysis of recent works1.

Name Functionality Correctness

Variable Range Query Anomaly Allocation GC

NVTree l 4 t s t
wB+-Tree l 4 t s t

FPTree l 4 4 s t
FAST&FAIR l 4 4 6 6

RNTree l 4 4 6 6
WORT 4 l t 6 t
BzTree 4 4 4 4 4
P-ART 4 l 4 6 6

LB+-Tree l 4 4 s t

NOTE: s: not open-sourced t: no need l: not optimized
4: support 6: poor support

cation/deallocation operations, but suffers long recovery time
as the amount of data increases.

Allocation Performance. We evaluate five commonly used
(volatile and persistent) NVM allocators as follows:

a1: malloc, the standard volatile allocator for DRAM.
a2: libvmmalloc, volatile allocator based on jemalloc.
a3: PMDK [51], logging-based persistent allocator.
a4: nvm_malloc [52], logging-based persistent allocator.
a5: Makalu [54], persistent allocator with post-crash GC.
Figure 3(a) shows the raw performance of the allocators.

The test continuously allocates 64-byte chunks, then writes
and persists them in a single thread. Makalu is 50% and 28%
slower than malloc and libvmmalloc, respectively. PMDK and
nvm_malloc are 81% and 38% slower than Makalu, respec-
tively. Performance of FAST&FAIR using different allocators
is shown in Figure 3(b). We see that the gaps between differ-
ent cases are narrowed due to the tree’s traversal overhead.
Makalu is 22% and 12% slower than malloc and libvmmal-
loc, respectively. PMDK and nvm_malloc are 25% and 10%
slower than Makalu, respectively.

Garbage Collection. Many indexes support non-blocking
lookups [60–62] to improve the read performance. Lazy GC
mechanism is necessary in such implementations. An item
to delete is firstly labeled as logically deleted before it is
physically deleted for avoiding dangerous concurrent accesses
from other threads. After a grace period, GC threads sweep
and collect the logically deleted items.

For example, epoch-based GC [63] is a commonly used
strategy for lazy GC [60, 61, 64]. However, a volatile epoch-
based GC implementation may incur memory leaks in NVM
because it does not persist the metadata of labeled garbage
data. After restart, these garbage data will be unreachable.

A naïve way to address this problem is to persist the meta-
data of labeled garbage data for every metadata modification.
We compare the volatile and naïve persistent epoch-based GC
in FAST&FAIR, which supports lock-free lookup operations
and needs a GC mechanism. As shown in Figure 4, we see
that the performance of persistent epoch-based GC is 25.7%
worse than the volatile GC.

1not open-sourced means that we are not sure what it uses. no need means
that it does not need to consider this factor.

4 19th USENIX Conference on File and Storage Technologies USENIX Association

Table 3: Optimizations on practical aspects in ROART.

ROART Design
Functionality Leaf Compaction (§3.2) to optimize range queries.

Performance

Entry Compression (§3.3) to use only one persistent
instruction for structural information.
Selective Metadata Persistence (§3.3.1) to reduce the
amount of persisted metadata.
Minimally Ordered Split (§3.3.2) to reduce sfence
instructions in internal node split.

Correctness

non-temproal store to resolve anomaly (§3.4.1).
DCMM (§3.4.2) to prevent memory leaks with minimal
persistence during allocation. Instant Restart to
eliminate the long recovery time for DCMM.

Post-crash GC [22, 54–56] reduces the persistence over-
head during normal operations. We test the recovery time of
Makalu [54] with post-crash GC in Figure 5, and find that
the recovery time increases linearly as the amount of data
increases.

We would like to design a GC solution that neither incurs
the persistence overhead in the naïve epoch-based GC nor
suffers long recovery time of the post-crash GC.

In summary, Table 2 compares the functionality and cor-
rectness features of recent studies. We find that most studies
do not consider all these aspects (BzTree takes these into ac-
count, but it suffers heavy persistence overhead [8]). Thus,
there are still a lot of opportunities for improvement.

3 Design of ROART

Based on the discussion and analysis above, we propose a
persistent index, ROART, which takes the three aspects into
account. Table 3 summarizes the distinct features of ROART.

3.1 Radix Tree and its Persistent Variants
A radix tree is a search tree in which each node represents a
chunk of bits in the key. The key in a leaf node equals to the
string constructed along the path, starting from the root to the
corresponding leaf node. Suppose one node stores s bits of
a key. The node has at most r = 2s children. r is called the
radix of the tree. ART [49, 50] is a space-efficient radix tree.
Its radix is 256 and each node represents a 1-byte character
(8-bit, r = 256 = 2s, s = 8) of the key. We will discuss its
node types in §3.3.

Path Compression. The height of the radix tree can be re-
duced by path compression [49], as illustrated in Figure 6.
A node with only one child is merged into its child, and the
character it represents is merged into the prefix of its child.

Node Split. With path compression, node splits may happen
during insertions. Node splits are divided into two categories,
i.e., internal node split and leaf node split, as shown in Fig-
ure 7. An internal node split occurs when a new insertion (e.g.,
L3) mismatches the prefix of an internal node (old). The node
new is created and inserted into the tree, which points to L3

path	compression

L0 L1 L2

L0 L1

L2

L0 L1

L2

mismatch	
at	old

internal	
node	split

mismatch	
at	L2

leaf	node
split L0 L1 L2 L3

L0 L1

L2
L3

insert L3

new

old
old

Figure 6: Path compression in radix tree.

path	compression

L0 L1 L2

L0 L1

L2

L0 L1

L2

mismatch	
at	old

internal	
node	split

mismatch	
at	L2

leaf	node
split L0 L1 L2 L3

L0 L1

L2
L3

insert L3

new

old
old

Figure 7: Two ways of node split.

and old as its children. The prefix of old will be updated. A
leaf node split occurs when a new insertion (L3) mismatches
the key in a leaf node (L2). A new node pointing to both L2
and L3 will be created and inserted into the tree.

Persistent Variants. Because of ART’s efficiency, most per-
sistent radix trees are based on ART. The ART implementa-
tion in WORT [19] supports only single thread, and uses a sep-
arate slot array and a bitmap in its node to help locate entries.
However, this incurs extra persistence overhead. RECIPE [24]
proposes a method to convert any volatile data structure to
its persistent counterpart. Based on this method, P-ART is
directly converted from the volatile ART-ROWEX [50]. How-
ever, this leaves many opportunities for persistence optimiza-
tions. Neither WORT nor P-ART has optimized range queries.

3.2 Our Solution: ROART Structure
Compared to B+-Trees, the radix tree performs poorly in
range queries because each leaf node stores only a pair of key
and value, and leaf nodes can be on many different levels in
the tree. A range scan has to visit a large number of non-leaf
nodes on different levels in addition to leaf nodes, incurring
significant overhead. We propose leaf compaction (LC) to
compact the pointers of leaf nodes into a leaf array in the
radix tree. A leaf array can contain up to m leaf pointers. If a
subtree of the radix tree has less than or equal to m leaf nodes,
the subtree is compacted into a leaf array. (We set m = 64
in our implementation.) For simplicity of presentation, the
figures in this subsection use m = 4.

Figure 8(a) and 8(b) show the structural differences be-
tween ART and ROART with the same leaf nodes. We see
that the subtrees rooted at B and D are compacted into leaf
array F and G, respectively. For range queries, leaf com-
paction can effectively reduce the number of pointer chas-
ing in the different levels of the tree. For instance, to run a
range query covering L0−L5, ART dereferences 15 pointers
(A−B−C−L0−L1−C−B−L2−B−A−D−L3−E−

USENIX Association 19th USENIX Conference on File and Storage Technologies 5

L3

L4 L5

L2

L0 L1

L0 L1 L2 L3 L4 L5

A

B

(a)	ART (b)	ROART

C

D

E

A

F G

L0 L1 L2 L3 L4 L5L6
L0 L1L2

L3 L4 L5
L6 L7

Leaf array F
splitF

(e)	Leaf	Array	Split

L0

A

L2

L0 L1

A

B

C

insert L1,	L2

…
…

(c)	Insertions	in	ART

A

…

L0

insert L1,	L2
A

L0 L1 L2

…

(d)	Insertions	in	ROART

Figure 8: Leaf compaction in ROART.

L4− L5), while ROART requires only 11 pointer derefer-
ences (A−F−L0−L1−L2−F−A−G−L3−L4−L5).

We modify the index operations to support leaf compaction.
For lookup, a reader searches the tree as before until it reaches
a leaf array. It has to check each leaf node that the leaf
array points to, which can be costly. To minimize this ef-
fect, we embed a 16-bit fingerprint (hash value) [17, 18] of
each leaf key into the pointer in the leaf array (current ar-
chitectures support only 48-bit addresses), represented as
fingerprint: 16-bit | address: 48-bit . In this way, the reader com-

pares the fingerprint of the search key with the fingerprints in
the leaf array to filter out most unnecessary cases. The proba-
bility of false positives is low (e.g., < 0.001 for m = 64).

For insert, when it reaches a leaf array, a writer checks to
see if the key already exists. If not, the writer chooses an
empty slot to insert, as shown in Figure 8(d). The complex
case is when the leaf array is full and the leaf array splits, as
shown in Figure 8(e). Here, the writer wants to insert a new
leaf L7 into leaf array F , which is already full. Note that all
keys in F correspond to a subtree in the original radix tree,
and therefore share a common prefix. To split, we need to find
the first byte position, denoted as P, where the keys diverge.
We call the P-th byte as the identifying byte. We divide the
keys into subsets based on their identifying bytes. We build
a leaf array for each subset, and create a new internal node,
which contains each identifying byte and the pointer to the
associated leaf array. For example, in Figure 9, a leaf array
with four leaf pointers is to split into three new leaf arrays.
The keys diverge at the 5th byte, i.e. P = 5. The keys are
divided, and then new leaf arrays are created. Note that the
cost of a leaf array split is high, but fortunately, this is a rare
operation.

For update and delete, the procedure is similar to lookup.
After the matching key is found, the corresponding modifica-

L1: 12345678
L2:	12347789
L3:	12347890
L4:	12349990

P

Leaf	array	split

L1:	12345678

L2:	12347789
L3:	12347890

L4:	12349990
Figure 9: An example of leaf array split.

Header Byte
array

Pointer	
array

4	(1-byte)	entries	(byte)

N4

4	(8-byte)	pointers

Header Byte
array

Pointer	
array

16	(1-byte)	entries	(byte)

N16

16	(8-byte)	pointers

Header Child
index

Pointer	
array

256	(1-byte)	slots

N48

48	(8-byte)	pointers

Header Pointer	
arrayN256

256	(8-byte)	pointers

Header prefix other metadata

Figure 10: Node types in ART.

tion or deletion is performed.
For range query, the only difference with ART is that keys

in a leaf array are not sorted, but keys are ordered between
leaf arrays. Thus, we only need to check/sort the begin and
the last leaf arrays to ensure that the return values are within
the requested range. If values need to be fully sorted before
returned, it will bring about 8.9% performance degradation
with some optimizations, e.g., by skipping the prefix of keys
and comparing only the different parts of keys.

Interestingly, leaf compaction can improve not only range
queries but also traversals and insertions. Traversal is an essen-
tial step in all operations (lookup/insert/update/delete/scan).
Leaf compaction tends to reduce the root-to-leaf path lengths,
as can be clearly seen in Figure 8(a) and (b). Shorter path
lengths are beneficial to traversals. Moreover, when a new
insertion mismatches the key in a leaf node, ART incurs a
leaf node split (Figure 7) while ROART simply inserts the
new leaf in the leaf array, reducing the number of persistent
instructions. (Please see Table 4 for detailed counts.)

In summary, leaf compaction has several benefits: (i) de-
creasing the number of pointer chasing for range queries, (ii)
reducing root-to-leaf path lengths and traversal overhead, (iii)
reducing persistence overhead of insertions. We will evaluate
the benefits of this structure in §4.

3.3 Reducing Persistence Overhead
Figure 11 shows the node structures of ROART, which are
based on the design of ART. Figure 10 shows the four types
of nodes in ART that can store up to 4, 16, 48, and 256 entries,
respectively. Each entry contains a byte and a child pointer.
The byte is equal to the character represented by the corre-

6 19th USENIX Conference on File and Storage Technologies USENIX Association

Zentry
array

N4
Byte
array

N16
Zentry
array

Child
index

N48
Zentry
array

Pointer
array

N256

Leaf	array
Bitmap Leaf

array

Header

Header

Header

DepthType

Header

Generation Prefix

Header

Nextpos CountHeader Lock

Persistent field

Header

Volatile field

Figure 11: Node structures in ROART.

sponding child node. In N4 and N16, bytes and pointers are
stored in Byte array and Pointer array, respectively. In
N48, Child index has 256 slots so that bytes can be used as
an index to search in Child index to find the location of the
corresponding child pointer, because the range of a byte is
0-255. N256 directly has an array with 256 pointers. A node
expands to a larger node type when it is full and a new entry
is to be inserted, and shrinks to a smaller node type when the
number of entries is below a threshold.

In ROART, we propose entry compression (EC)
to pack the key byte into the pointer (where 48-bit
are used) in N4, N16, and N48. The resulting entry
empty: 8-bit | key: 8-bit | pointer: 48-bit is called Zentry, as

shown in Figure 11. An invalid Zentry (for a deleted or
unused slot) is set to 0. Since a Zentry is 8-byte and can
be updated atomically, compared to ART, EC reduces one
persistent instruction for persisting each entry in ROART.

3.3.1 Selective Metadata Persistence

We observe that not all metadata need to be persisted for
correctness. For example, Nextpos and Count in the header
indicate the next empty entry slot and the number of used
slots. The Bitmap in the leaf array shows which leaf array
entry is in use. They can all be computed by scanning the
Zentry or the pointer array, where empty slots are set to 0.
Moreover, the Byte array in N16 is used to accelerate search
with SIMD instructions. It can be rebuilt by retrieving the
embedded key byte from each Zentry. The Child index in
N48 can be restored in the same way. Finally, Lock is used for
concurrency control and can be cleared upon crash recovery.

Based on this observation, we propose selective metadata
persistence (SMP) to selectively persist a subset of the meta-
data and recompute the rest of the metadata after recovery. As
shown in Figure 11, volatile metadata are highlighted with
white background. Fields with grey background are persisted.

Traditional recovery needs to suspend processing requests
and scan the whole indexes, which incurs long recovery time
as the amount of data increases. Inspired by the generation
lock in NV-Heaps [65], we implement selective metadata per-
sistence using generation numbers to hide the recovery over-
head. ROART maintains a global generation number (GGN)
in NVM. GGN is increased upon each restart. Each node
in ROART has its own persistent node generation number
(NGN). When accessed, if NGN equals to GGN, the metadata

Table 4: Persistence analysis. Two values are the numbers of
clwb and sfence respectively (lower is better).

Name Insert Split

N4 N16 N48 N256 Leaf Internal
ROART 2, 2 2, 2 2, 2 2, 2 2, 2 4, 2
P-ART 2, 2 3, 3 3, 3 2, 2 3, 3 4, 4
WORT 3, 3 4, 4 3, 3 2, 2 3, 3 4, 4

in the node is up-to-date. Otherwise, the metadata in the node
is restored, then GGN is assigned to NGN. Per-node latch for
recovery (implemented by using flags in memory and CAS
instructions) protects the concurrent access on the same node
from multiple threads. In this way, after restart, ROART does
not suspend normal operations for recovering the whole lost
metadata. Instead, it restores the metadata on demand and at
the same time executes normal operations.

3.3.2 Minimally Ordered Split

Internal node split is costly as shown in Figure 7. It has four
steps: (i) allocating a new leaf L3, (ii) allocating an internal
node, marked as new, with two children (L3 and node old),
(iii) changing the pointer (from old to new) of parent node, (iv)
updating the prefix of old (not shown in the figure). Without
optimizations, the four steps need four sfence instructions.

We observe that the order of these four steps can be relaxed.
Step (i) and step (ii) are not visible to other threads, we can use
only one sfence after initializing the two nodes. Step (iii) and
(iv) cannot execute atomically. Under concurrent execution,
readers may see the incomplete split with inconsistent prefixes.
Note that the depth of a node (including the prefix) stays
constant. This property can be exploited to detect inconsistent
prefixes, as is also used in other work [19, 50]. Once such
inconsistency is detected, it is easy to repair the inconsistency
by recomputing the prefix. Consequently, the order of step
(iii) and step (iv) is not important.

ROART performs the internal split as follows. It performs
step (i), (ii) and (iv), flushes the modified cache lines, then
calls a single sfence. After that, it performs step (iii), flushes
the modified cache line, and calls a second sfence. In this
way, ROART reduces the numbrer of sfence instructions of
an internal split from four to two.

3.3.3 Persistence Analysis

Table 4 compares the number of persistence instructions, clwb
and sfence, for insert and split operations in ROART, P-
ART [24], and WORT [19]. ROART incurs the smallest num-
ber of persistence instructions among the three indexes.

3.4 Making ROART Correct
3.4.1 Anomaly Resolution in ROART

ROART employs a concurrency control strategy similar to
ART-ROWEX [50], i.e., lock-free read and lock-based write.

USENIX Association 19th USENIX Conference on File and Storage Technologies 7

Global	
naming	space NVM	pages

Free page list

epoch-based	GC

Free	chunk	
lists

Core	1

epoch-based	GC

Free	chunk	
lists

Core	2

Free	chunk	
lists

Core	N

…

recycle allocate

First layer
Global	manager

Second layer
Thread-local	
allocator

Applications
DLART

L L L L
…

epoch-based	GC

… Owner	mapping

Figure 12: DCMM architecture

Readers may see incomplete write operations, resulting from
inconsistency between volatile and persistent states. So extra
protection is required. §2.3.1 discusses several methods to
address this problem. We adopt non-temporal store [24]
to fix the potential anomalies in ROART.

3.4.2 Delayed Check Memory Management

NVM allocation and GC have a large performance impact on
practical indexes (§2.3.2). We propose a new memory man-
agement method, called DCMM, which uses post-crash GC
to minimize the persistence during allocation/deallocation,
and supports instant restart to eliminate the waiting time after
restart. To reduce the contention in memory allocation for
multiple threads, DCMM uses a two-layer architecture, as in
Figure 12.

First Layer. This layer is a global memory manager that
manages the entire NVM area at the granularity of pages.
The page size is adjustable, and defaults to 128MB [53, 56].
The global memory manager maintains a global naming
space. It contains the roots of indexes and an offset field
indicating the offset of the last allocated page. These are
persistent fields. There are also two volatile fields, i.e.,
owner_mapping and free_page_list. The former keeps
a map between each page and its owner thread, and the
latter implements a volatile lock-free linked list for recy-
cled free pages. A thread requests a new page by searching
free_page_list. If free_page_list is empty, it uses an
atomic fetch-and-add to obtain the offset and increase
the offset by the page size, then persists the offset.

Second Layer. For each application thread, a thread-local
allocator performs allocation using multiple block classes
with different sizes. Each block class is maintained by
a volatile linked-list, called free_chunk_list. A thread
requests a page from the first layer and divides it into
free_chunk_lists, like in the buddy system [66].

Garbage Collection. DCMM implements post-crash epoch-
based GC for supporting lock-free reads and lazy deletions.

L0 L1

L2

❶

occupied	memory free	memory

Page	address:	PA											Page	size:	PS

①
②
③
④
⑤
❶
❷
❸

① ② ③ ④ ⑤

❶Traverse	the	index
collect	(addr,	size)	in	a	sorted	array

Sorted	array
Page	A:
Chunk	②:	(a1,	s1)
Chunk	④:	(a2,	s2)
Page	B:
……

Page	A

❷calculate	the	free	memory	in	Page	A

Chunk	① :	(PA,	a1	- PA)
Chunk	③ :	(a1	+	s1,	a2	– a1– s1)
Chunk	⑤ :	(a2	+	s2,	PS	– a2	– s2)	

Index

Sorted	array
（addr,	size）

used free❷
Page

Thread-local
Allocator

core	1
Thread-local
Allocator

core	N
Thread-local
Allocator

core	2

❸❸

Figure 13: The procedure of recovery.

We implement a decentralized version [60] of epoch-based
GC for better scalability.

Persistence Overhead. As discussed in §2.3.2, the allocator
based on post-crash GC does not need to persist any metadata
during normal operations. Therefore, persistence overhead
only occurs in the first layer, for persisting offset. This
overhead is amortized by multiple memory allocations in the
second layer. Most allocations do not invoke the first layer.

Recovery Processing. Upon recovery, owner_mapping can
be simply reset by mapping each page in the range [0, offset)
to application threads in the round-robin fashion. Other
volatile information can be restored by the recovery process
in three steps (Figure 13) : (i) Recovery threads traverse all
NVM areas used by the application (i.e., starting from the per-
sistent index root pointers and traversing the trees), and collect
all used chunks with their description tuples (address, size).
(ii) Free chunks can be calculated based on the used chunks in
each page. (iii) Free chunks are put in the free_chunk_lists
and free pages are put in the free_page_list.

Instant Restart. The recovery process as described in the
above can take a long time as the amount of data increases
(Figure 5). In order to reduce the waiting time after restart,
we propose instant restart for DCMM. Note that offset in
the first layer is persisted. Therefore, after restart, we can
immediately allocate new pages after offset without waiting
for other metadata recovery to complete. (If offset exceeds
the current NVM file limit, a new NVM file will be created and
opened for allocation [53, 56].) Hence, we can immediately
allow front-end operations and provide memory allocation
service instantly after restart, while the background recovery
threads run in parallel. In this way, DCMM avoids the front-
end from waiting long time for the recovery to complete.

Multi-threading Optimization. The background recovery
process can be accelerated by multi-threading. Consider the
three steps in recovery processing. Step (i) can be parallelized
based on the data structures. For example, multiple threads
can be used to traverse different subtrees of ROART. The
(address, size) pairs produced during traversal can be put into
different sorted arrays based on address ranges. Then, Step
(ii) and (iii) can examine different sorted arrays and collect
free chunks in parallel.

8 19th USENIX Conference on File and Storage Technologies USENIX Association

4 Evaluation

Our evaluations consist of four parts to reflect the performance
improvements of each proposed design.
1. Overall Performance Comparison. We choose several
tree-based data structures in experiments. For a fair compari-
son, some modifications are necessary such as adding DCMM
to some indexes, and implement missing functions.
2. Detailed Test of Each Design. Several aspects are evalu-
ated: (i) performance improvement by each optimization, (ii)
range query (scan) performance with different numbers of
keys, (iii) fixed-sized (8-byte) keys performance, (iv) skew
tests, (v) latency tests, (vi) space consumption, and (vii) re-
covery and instant restart.
3. NVM Allocators. We evaluate DCMM with sev-
eral open-sourced persistent allocators, e.g., PMDK [51],
nvm_malloc [52] and Makalu [54].
4. Real-world System Evaluation. We incorporate ROART
into a real-world system: Memcached [67]. The core index
in Memcached is a volatile hash index and our modification
enables Memcached to support persistent storage.

4.1 Evaluation Setup
All evaluations use a Dell PowerEdge R740 server with four
Intel(R) Xeon(R) Gold 5220 processors supporting clwb,
6×128GB Optane DC PMM per socket. The processor has
32KB L1-cache, 1MB L2-cache, and 25MB L3-cache. The
persistent memory is managed by a DAX file system [68]
and mapped to a pre-defined address. We choose five other
tree-based indexes to compare the performance with ROART.
P-ART. P-ART [24] is a persistent counterpart of ART-
ROWEX [50]. For a fair comparison, we use DCMM in
P-ART, and implement its missing functions (e.g., update
operations, and selective metadata persistence for metadata).
PMwCAS-ART. PMwCAS-ART is a baseline we implement
by using PMwCAS [23]. PMwCAS allows atomically mod-
ifying multiple 8-byte words in NVM and uses PMDK to
guarantee the memory safety. We leverage the persistent prim-
itives it provides to modify ART-ROWEX.
FAST&FAIR-DCMM. FAST&FAIR [5] is a state-of-the-art
persistent B+-Tree (§2). We modify it to support variable-
sized keys and use DCMM to manage NVM.
SkipList-DCMM. We modify the open-source lock-free
SkipList [22] to support variable-sized keys and use DCMM.
BzTree. BzTree [6] is a lock-free persistent B+-Tree based
on PMwCAS. It can naturally support variable-sized keys by
using slotted pages.

4.2 Overall Performance
To evaluate the overall performance, we test micro-
benchmarks with 4 threads and YCSB benchmark. For the
micro-benchmarks, keys are randomly generated with sizes

ROART
P-ART

PMwCAS-ART
FAST&FAIR-DCMM

SkipList-DCMM
BzTree

Th
ro

ug
hp

ut
 (M

op
/s

)

0

1

2

lookup insert update remove scan

Figure 14: Microbench of six indexes under 4 threads.

between 4 to 128 bytes, and values are fixed as 8 bytes. An
8-byte value can represent an indirect pointer, commonly used
in DBMS [32,33]. Each test firstly warms up using 30 million
KVs [5, 7, 24], which exceeds the size of the L3-cache and
reflects the performance of NVM. After warming up, each
test runs 20 seconds for different workloads and reports the
average throughput.

Micro-benchmarks contain the operations of lookup, insert,
update, remove and scan. The results are in Figure 14. The
lookup performance of ROART is 2.562 Mop/s which is
faster than P-ART (2.129 Mop/s) and PMwCAS-ART (2.06
Mop/s). The main improvement comes from leaf compaction
which lowers the height of the tree and benefits traversal.
BzTree is fast because its slotted-page node layout has good
cache locality for supporting variable-sized KVs and binary
search. ROART is 2.29× and 4.98× faster than FAST&FAIR
and SkipList respectively, because FAST&FAIR cannot use
binary search inside its nodes and SkipList suffers from poor
cache locality.

The insert performance of ROART is significantly
better (1.704 Mop/s) than all other five indexes
(1.3/5.16/4.15/5.24/6.65×). There are several reasons
for the improvement. (i) DCMM has higher allocation perfor-
mance than PMwCAS (PMDK). (ii) Less persistent related
instructions (clwb and fence) in ROART (§3). PMwCAS
suffers from more persistent instructions, P-ART makes
no optimization, and FAST&FAIR also causes multiple
persistent instructions once the entry moving exceeds one
cache line. (iii) Compared with B+-Tree (FAST&FAIR,
BzTree), no rebalance operations are required in ROART.

For the update operation, ROART can achieve 1.6
Mop/s throughput and outperforms the others up to
1.16/3.18/1.86/3.9/3.61×. The major performance differences
are similar to lookup operation. For the remove operation,
SkipList performs very poor, and others are similar. The main
reason is that SkipList has a complicated remove operation
and suffers from many retries. For the scan operation, with
leaf compaction, the performance of ROART can outperform
P-ART up to 1.65× and is close to FAST&FAIR/BzTree.

We use YCSB [69] benchmark to generate five workloads,
which are (a) write-intensive (50% lookup and 50% insert),
(b) read-intensive (95% lookup and 5% insert), (c) read-only,
(d) insert-only, and (e) scan-insert (95% scan and 5% insert).

USENIX Association 19th USENIX Conference on File and Storage Technologies 9

10 20 30 40 10 20 30 40

10 20 30 40 10 20 30 40

10 20 30 40 10 20 30 40

0

4

8

12

16

0

2

4

6

8

0

1.5

3.0

4.5

6.0

ROART
P-ART

PMwCAS-ART
BzTree

FAST&FAIR-DCMM
SkipList-DCMM

Th
ro

ug
hp

ut
 (M

op
/s

)
Th

ro
ug

hp
ut

 (M
op

/s
)

Th
ro

ug
hp

ut
 (M

op
/s

)

(a) Write-Intensive (b) Read-Intensive

(c) ReadOnly (d) InsertOnly

(e) ScanInsert (f) ReadModifyWrite

0

0.5

1.0

1.5

2.0

0

4

8

12

16

0

2

4

6

8

10 20 30 40 10 20 30 40

Figure 15: Performance of YCSB.

The results of five workloads are shown in Figure 15.
In workload (a), ROART outperforms P-ART up to 1.27×

and other four indexes up to 2.78∼6.57× using 36 threads.
The main performance gain is from its less traversal and per-
sistence. In workload (b), ROART outperforms the other five
indexes by 1.17∼8.27× using 36 threads. In workload (c),
the performance of all indexes is scaled, but ROART can still
outperform others by 1.15∼5.13×. In workload (d), due to
the influence of NUMA, performance of all indexes begins to
decline after more than 18 threads. ROART decreases 27%
and P-ART decreases 30% from 18 threads to 36 threads. In
workload (e), ROART can perform 1.52× and 1.53× better
than P-ART and FAST&FAIR. It is only 3% and 20% slower
than lock-free BzTree in the cases of 18 and 36 threads, be-
cause BzTree stores variable-sized keys and values in the
nodes, instead of extra data areas, located by metadata in the
head of nodes.

4.3 Effects of Each Design
1. Improvement of Each Optimization in ROART. We
test the performance improvement of each optimization (§3)
in Figure 16. The raw version is the implementation of
ROART without the four optimizations (SMP/EC/MO/LC).
Selective metadata persistence can improve by 13% and
10.1% for insertion and deletion. Entry compression can bring
about 9.7% and 10.8% improvement for insert and remove
operations. Minimally ordered split reduces the fence instruc-
tions for internal node split so that it can improve the insert
performance by 4.8%. Leaf compaction can lower the height
of radix tree and benifit every operation, especially scan. It
can bring 17.2%/13.5%/14.7%/8.4%/64.8% improvement for

raw +SMP +EC +MO +LC

Th
ro

ug
hp

ut
 (M

op
/s

)

0

1

2

lookup insert update remove scan

Figure 16: Performance improvement of each optimization.
(SMP: Selective Metadata Persistence, EC: Entry Compres-
sion, MO: Minimally Ordered split, LC: Leaf Compaction)

no LC with LC

Th
ro

ug
hp

ut
 (M

op
/s

)

Number of KVs in a scan operation

0

0.4

0.8

20 50 100 200 300 400 500

Figure 17: Range queries with different key numbers.

ROART
P-ART

FAST&FAIR-DCMM
SkipList-DCMM

Th
ro

ug
hp

ut
 (M

op
/s

)

0

2

4

lookup insert update remove scan

Figure 18: Performance with fixed-sized keys.

the five operations respectively.

2. Range Queries with Different Key Numbers. In Fig-
ure 17, we evaluate the range query performance by scan
operations with different key numbers, and the necessary pa-
rameters of scan are the maximum and minimum keys as
well as the number of required keys. The result shows that
ROART with LC can outperform the version without LC by
1.07∼2.01×. When the number of keys is less than 50, the
improvement brought by LC is not very much, and when the
number of keys is more than 100, the performance is improved
at least by 1.65×.

3. Performance with Fixed-sized Keys. Many indexes are
optimized for fixed-sized KV, such as FAST&FAIR. We test
the performance of ROART (without any optimization for
fixed-sized keys) while processing 8-byte fixed-sized keys,
compared to P-ART, FAST&FAIR and SkipList. The results
are shown in Figure 18. SkipList runs slowest because of
its poor cache locality. FAST&FAIR outperforms P-ART by
up to 1.09/1.21× in lookup and update because fixed-sized

10 19th USENIX Conference on File and Storage Technologies USENIX Association

ROART
FAST&FAIR-DCMM

P-ART
SkipList-DCMM

BzTree
Th

ro
ug

hp
ut

 (M
op

/s
)

Zipfian coefficient

0
2
4
6
8

0.5 0.6 0.7 0.8 0.9 1.0

Figure 19: Performance with different zipfian.

Table 5: Latency tests under write-intensive workload (50%
lookup and 50% insert) with 16 threads (lower is better).

latency (us) ROART P-ART PMwCAS-ART
avg. 1.2 1.5 3.4
p99 3.5 4.4 8.8

latency (us) FAST&FAIR SkipList BzTree
avg. 3.5 4.4 4.2
p99 11.8 8.9 9.5

ROART P-ART

Sp
ac

e
(M

B)

of keys (M)
0

1000
2000
3000
4000
5000

4 8 16 32

Figure 20: Space consumption of ROART and P-ART

optimized FAST&FAIR has better cache locality. But with
the optimization LC, ROART can outperform FAST&FAIR
in lookup even with fixed-sized keys, and it is only sightly
slower than FAST&FAIR in update. For scan with fixed-sized
keys, B+-Tree is still the better index than radix tree.

4. Skew Tests. Figure 19 shows the experiment under a
skewed workload (50% lookup and 50% update with 16
threads). The cache brings more benefits when the coeffi-
cient is smaller than 0.85. When larger than 0.85, ROART,
P-ART and FAST&FAIR all suffer from the lock contention.
The performance of ROART and P-ART drops about 28%
and 29.5% from 0.5 to 0.99, while FAST&FAIR drops about
80.3%. Performance of SkipList improves because of its lock-
free manner. BzTree drops about 87% because it has a com-
plex structure and heavy persistence overhead [8] although it
also has a non-blocking design.

5. Latency Test. Latency numbers of each index are shown
in Table 5 under a write-intensive workload (50% lookup
and 50% insert) with 16 threads. In average latency, ROART
can outperform all other indexes by 20% ∼ 73% because of
its faster traversal. In p99 latency, ROART can outperform
all other indexes by 21% ∼ 71%. SkipList and BzTree is
lock-free design so that their p99 latencies increase less than
other four lock-based indexes. In ROART, we make no extra
optimization on tail latency, which is orthogonal to our work.

6. Space Consumption. We introduce leaf arrays in ROART,

0

5

10

Recovery+Reclamation
Only recovery

Ti
m

e
(s

ec
)

(a) Recovery with different sizes (b) Instant restart

72 threads
36 threads

1 threads

Th
ro

ug
hp

ut
 (M

op
/s

)

of keys (M) Time (sec)

Normal

Crash Restart10

20

1 2 4 8 16 32 64 128 10 20 30 40 50 60

Figure 21: Data structure recovery and instant restart.

which does not exist in ART. In our implementation, the size
of leaf array is predefined, which may cause the waste of
space. So we evaluate the space consumption of ROART and
P-ART to show the impact of leaf arrays. In Figure 20, when
the amount of keys is smaller than 8M, the space consump-
tion of ROART is larger than P-ART because most of the
entries in leaf arrays are empty and much space is wasted.
As the amount of keys increases and empty entries are filled,
ROART consumes less space than P-ART. Under extreme
cases, if each leaf array only has one valid entry, the space
waste of ROART will become serious. We think this case
is rare because it is hard to construct. To solve this problem,
we can use the approach of ART to provide leaf arrays with
various sizes.

7. Recovery and Instant Restart. In Figure 21(a), we test
normal recovery time with different key numbers. With 128M
keys (about 25 GB in total of tree size), data structure recovery
takes 19 seconds. With reclamation of free memory (recovery
for DCMM), it takes 27 seconds. In this case, free memory
chunks in 195 pages (25 GB in total) are reclaimed.

All metadata of data structure and allocator will be restored
after restart. So we introduce selective metadata persistence
(§3.3.1) and instant restart (§3.4.2) to hide the recovery over-
head of data structure and allocator respectively. The effects
of the two techniques are illustrated in Figure 21(b). The test
uses 32M keys and 1/36/72 background reclamation threads
respectively. The simulation injects a crash at the 11th sec-
ond, halting for 5 seconds. After restart, ROART can process
requests immediately. The recovery of data structure can be
delayed until nodes are accessed. Background threads per-
form the reclamation of free memory chunks in parallel with
foreground threads. Experiments show that more threads ac-
celerate recovery process, but causing a greater impact on the
foreground performance.

4.4 Performance of NVM Allocators
We make a comparison in Figure 22 between DCMM and
other open-sourced persistent allocators, e.g., PMDK [51],
nvm_malloc [52] and Makalu [54]. The test workload is to
continuously allocate 64-byte chunks, write and persist them.
The results show the performance of each thread. PMDK is
slow but scalable, the scalability of nvm_malloc and Makalu
is poor. DCMM has better performance and scalability than

USENIX Association 19th USENIX Conference on File and Storage Technologies 11

DCMM
PMDK

nvm_malloc
Makalu

op
./t
hr
ea
d/
s

0

2

4

2 4 6 8

Figure 22: Performance with different allocators.

ROART P-ART FAST&FAIR

Th
ro

ug
hp

ut
 (K

op
/s

)

0

40

80

120

set get

Figure 23: Evaluations in Memcached.

Makalu because DCMM allocates larger pages in a lock-free
manner in the first layer, while the page size is only 4K in
Makalu and the design in its first layer is lock-based.

There are some other persistent allocators. PAllocator [53]
is logging-based with good scalability, but it also suffers extra
persistence during allocation/deallocation. PMDK [70] also
has a post-crash GC technique, but it is still logging-based.
NV-Epochs [22] provides post-crash GC but only supports
fixed-sized allocation, and suffers long recovery time. NVM-
Reconstruction [55] is a Clang/LLVM extension and runtime
library that provides the reconstruction of persistent heaps.
Ralloc [56] improves the performance of allocators with post-
crash GC, but it still needs a blocked recovery process.

4.5 Real-World System Evaluation
We modify Memcached 1.4.17 to replace its hash
index to three persistent indexes, e.g., ROART, P-
ART and FAST&FAIR, for persistent storage. We use
memtier_benchmark to test the performance of set and get
operations with single thread. In Figure 23, ROART can
outperform P-ART and FAST&FAIR by up to 1.07× and
1.38× in set operations, 1.06× and 1.19× in get operations.
The evaluation confirms our previous experiments.

5 Related Works

ROART well resolves the three practical aspects mentioned
in §2. Many other related works not mentioned before have
also made a lot of efforts.
Persistent Tree-based Indexes. CDDS Tree [1] firstly pro-
poses a multi-version persistent B+Tree design, using copy-
on-write techniques without overwriting the original entry, but
suffers heavy persistence overhead. DPTree [12] proposes a

method to batch modifications in DRAM buffer to reduce per-
sistent overhead, but it needs a background merging process
which may stall foreground requests and consume extra band-
width of NVM. µtree [13] focuses on tail latency in persistent
indexes, which is an orthogonal work.
Persistent Hash Indexes. Persistent hash indexes can sup-
port fast point access, but has difficulties for range queries.
Level hashing [15] proposes a novel two-level hash table
structure, reducing the overhead of resizing. Clevel hash-
ing [18] is the multi-thread version of level hashing, based
on a lock-free manner and concurrent resize operation in
the background. CCEH [16] proposes a three-layer structure
based on extendible hashing to reduce NVM writes. Dash [17]
uses optimistic concurrent control to improve the parallelism
of CCEH, and proposes bucket load balancing strategy to
improve load factor of hash table.
Universal Conversion. The general method usually gives a
simpler solution to achieve persistent indexes, but less op-
timization for performance. Izraelevitz et al. [21] design
an approach transforming any non-blocking transient data
structure to a non-blocking durable one, by adding flush and
fence instructions after read or store instructions, but suffer-
ing heavy persistence overhead. David et al. [22] propose a
link-and-persist method to implement log-free concur-
rent data structures and guarantee durable linearizability. But
it can only be applied to 8-byte store/CAS instructions.

6 Conclusion

This paper firstly analyzes three practical aspects, including
functionality, performance and correctness. Then ROART is
proposed with several optimizations, i.e., (i) leaf compaction,
(ii) entry compression, (iii) selective metadata persistence,
(iv) minimally ordered split, and (v) instant restart. Finally,
evaluations indicate that ROART can outperform other state-
of-the-art indexes by 1.17∼8.27× under various workloads.

Acknowledgments

We are grateful to our shepherd, Vijay Chidambaram,
and the anonymous reviewers for their constructive com-
ments and suggestions. This work is supported by Na-
tional Key Research & Development Program of China
(2016YFB1000504), Natural Science Foundation of China
(61877035, 61433008, 61373145, 61572280).

References

[1] Shivaram Venkataraman, Niraj Tolia, Parthasarathy
Ranganathan, Roy H Campbell, et al. Consistent
and Durable Data Structures for Non-Volatile Byte-
Addressable Memory. In FAST, volume 11, pages 61–75,
2011.

12 19th USENIX Conference on File and Storage Technologies USENIX Association

[2] Shimin Chen and Qin Jin. Persistent b+-trees in non-
volatile main memory. Proceedings of the VLDB En-
dowment, 8(7):786–797, 2015.

[3] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. NV-Tree: reduc-
ing consistency cost for NVM-based single level sys-
tems. In 13th USENIX Conference on File and Storage
Technologies FAST 15), pages 167–181, 2015.

[4] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A hybrid
SCM-DRAM persistent and concurrent B-tree for stor-
age class memory. In Proceedings of the 2016 Inter-
national Conference on Management of Data, pages
371–386. ACM, 2016.

[5] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable transient inconsistency in
byte-addressable persistent b+-tree. In 16th USENIX
Conference on File and Storage Technologies (FAST 18),
pages 187–200, 2018.

[6] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas,
and Per-Ake Larson. BzTree: A high-performance latch-
free range index for non-volatile memory. Proceedings
of the VLDB Endowment, 11(5):553–565, 2018.

[7] Mengxing Liu, Jiankai Xing, Kang Chen, and Yongwei
Wu. Building Scalable NVM-based B+ tree with HTM.
In Proceedings of the 48th International Conference on
Parallel Processing, page 101. ACM, 2019.

[8] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng
Wang, and Thomas Willhalm. Evaluating persistent
memory range indexes. Proceedings of the VLDB En-
dowment, 13(4):574–587, 2019.

[9] Jihang Liu, Shimin Chen, and Lujun Wang. Lb+
trees: optimizing persistent index performance on 3dx-
point memory. Proceedings of the VLDB Endowment,
13(7):1078–1090, 2020.

[10] Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beom-
seok Nam. clfB-tree: Cacheline Friendly Persistent B-
tree for NVRAM. ACM Transactions on Storage (TOS),
14(1):5, 2018.

[11] Ping Chi, Wang-Chien Lee, and Yuan Xie. Making
B+-tree efficient in PCM-based main memory. In Pro-
ceedings of the 2014 international symposium on Low
power electronics and design, pages 69–74. ACM, 2014.

[12] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang
Chen. Dptree: differential indexing for persistent mem-
ory. Proceedings of the VLDB Endowment, 13(4):421–
434, 2019.

[13] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang,
and Jiwu Shu. utree: a persistent b+-tree with low tail
latency. Proceedings of the VLDB Endowment, 13(11).

[14] Pengfei Zuo and Yu Hua. A write-friendly hashing
scheme for non-volatile memory systems. In Proceed-
ings of the 33rd International Conference on Massive
Storage Systems and Technology (MSST), pages 1–10,
2017.

[15] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and
high-performance hashing index scheme for persistent
memory. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
461–476, 2018.

[16] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H
Noh, and Beomseok Nam. Write-optimized dynamic
hashing for persistent memory. In 17th USENIX Confer-
ence on File and Storage Technologies (FAST 19), pages
31–44, 2019.

[17] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: scalable hashing on persistent memory. arXiv
preprint arXiv:2003.07302, 2020.

[18] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo.
Lock-free concurrent level hashing for persistent mem-
ory. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 799–812, 2020.

[19] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H Noh. WORT: Write Optimal Radix
Tree for Persistent Memory Storage Systems. In 15th
USENIX Conference on File and Storage Technologies
(FAST 17), pages 257–270, 2017.

[20] Wen Pan, Tao Xie, and Xiaojia Song. Hart: A concur-
rent hash-assisted radix tree for dram-pm hybrid mem-
ory systems. In 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 921–
931. IEEE, 2019.

[21] Joseph Izraelevitz, Hammurabi Mendes, and Michael L
Scott. Linearizability of persistent memory objects un-
der a full-system-crash failure model. In International
Symposium on Distributed Computing, pages 313–327.
Springer, 2016.

[22] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui,
and Igor Zablotchi. Log-free concurrent data struc-
tures. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 373–386, 2018.

[23] Tianzheng Wang, Justin Levandoski, and Per-Ake Lar-
son. Easy lock-free indexing in non-volatile memory.
In 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pages 461–472. IEEE, 2018.

USENIX Association 19th USENIX Conference on File and Storage Technologies 13

[24] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. Recipe: convert-
ing concurrent DRAM indexes to persistent-memory
indexes. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 462–477. ACM,
2019.

[25] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: a hybrid index key-value store for DRAM-NVM
memory systems. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 349–362, 2017.

[26] David Schwalb, Markus Dreseler, Matthias Uflacker,
and Hasso Plattner. NVC-hashmap: A persistent and
concurrent hashmap for non-volatile memories. In Pro-
ceedings of the 3rd VLDB Workshop on In-Memory Data
Mangement and Analytics, page 4. ACM, 2015.

[27] Michal Friedman, Maurice Herlihy, Virendra Marathe,
and Erez Petrank. A persistent lock-free queue for non-
volatile memory. In ACM SIGPLAN Notices, volume 53,
pages 28–40. ACM, 2018.

[28] Hyungjun Oh, Bongki Cho, Changdae Kim, Heejin Park,
and Jiwon Seo. Anifilter: parallel and failure-atomic
cuckoo filter for non-volatile memories. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems, pages 1–15, 2020.

[29] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai
Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.
DudeTM: Building durable transactions with decou-
pling for persistent memory. In ACM SIGARCH Com-
puter Architecture News, volume 45, pages 329–343.
ACM, 2017.

[30] Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song,
Yongwei Wu, and Xuehai Qian. Asymnvm: An efficient
framework for implementing persistent data structures
on asymmetric nvm architecture. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 757–773, 2020.

[31] Intel Optane DC Persistent Memory Mod-
ule. https://www.intel.com/content/
www/us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[32] MySQL. https://www.mysql.com/.

[33] PostgreSQL. https://www.postgresql.org/.

[34] Peloton. https://db.cs.cmu.edu/projects/
peloton/.

[35] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake
Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma,

and Mike Zwilling. Hekaton: SQL server’s memory-
optimized OLTP engine. In Proceedings of the 2013
ACM SIGMOD International Conference on Manage-
ment of Data, pages 1243–1254. ACM, 2013.

[36] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32. ACM, 2013.

[37] Thomas Neumann, Tobias Mühlbauer, and Alfons Kem-
per. Fast serializable multi-version concurrency control
for main-memory database systems. In Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data, pages 677–689, 2015.

[38] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and
Ippokratis Pandis. Ermia: Fast memory-optimized
database system for heterogeneous workloads. In Pro-
ceedings of the 2016 International Conference on Man-
agement of Data, pages 1675–1687, 2016.

[39] Tianzheng Wang and Hideaki Kimura. Mostly-
optimistic concurrency control for highly contended dy-
namic workloads on a thousand cores. Proceedings of
the VLDB Endowment, 10(2):49–60, 2016.

[40] Hyeontaek Lim, Michael Kaminsky, and David G An-
dersen. Cicada: Dependably fast multi-core in-memory
transactions. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, pages
21–35, 2017.

[41] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-
vas Devadas. Tictoc: Time traveling optimistic concur-
rency control. In Proceedings of the 2016 International
Conference on Management of Data, pages 1629–1642,
2016.

[42] RocksDB. https://rocksdb.org/.

[43] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. Flatstore: An efficient log-
structured key-value storage engine for persistent mem-
ory. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1077–1091,
2020.

[44] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. Mica: A holistic approach to fast
in-memory key-value storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, 2014.

14 19th USENIX Conference on File and Storage Technologies USENIX Association

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.mysql.com/
https://www.postgresql.org/
https://db.cs.cmu.edu/projects/peloton/
https://db.cs.cmu.edu/projects/peloton/
https://rocksdb.org/

[45] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolf-
gang Lehner. Enabling low tail latency on multicore
key-value stores. Proceedings of the VLDB Endowment,
13(7):1091–1104, 2020.

[46] Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. Silt: A memory-efficient, high-
performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 1–13, 2011.

[47] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation of
a fast persistent key-value store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
pages 447–461, 2019.

[48] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 169–182, 2020.

[49] Viktor Leis, Alfons Kemper, and Thomas Neumann. The
adaptive radix tree: ARTful indexing for main-memory
databases. In ICDE, volume 13, pages 38–49, 2013.

[50] Viktor Leis, Florian Scheibner, Alfons Kemper, and
Thomas Neumann. The ART of practical synchroniza-
tion. In Proceedings of the 12th International Workshop
on Data Management on New Hardware, page 3. ACM,
2016.

[51] PMDK. https://pmem.io/.

[52] David Schwalb, Tim Berning, Martin Faust, Markus
Dreseler, and Hasso Plattner. nvm malloc: Memory
Allocation for NVRAM. ADMS@ VLDB, 15:61–72,
2015.

[53] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolf-
gang Lehner, Thomas Willhalm, and Grégoire Gomes.
Memory management techniques for large-scale
persistent-main-memory systems. Proceedings of the
VLDB Endowment, 10(11):1166–1177, 2017.

[54] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J
Boehm. Makalu: Fast recoverable allocation of non-
volatile memory. In ACM SIGPLAN Notices, volume 51,
pages 677–694. ACM, 2016.

[55] Nachshon Cohen, David T Aksun, and James R Larus.
Object-oriented recovery for non-volatile memory. Pro-
ceedings of the ACM on Programming Languages,
2(OOPSLA):1–22, 2018.

[56] Wentao Cai, Haosen Wen, H Alan Beadle, Chris Kjel-
lqvist, Mohammad Hedayati, and Michael L Scott. Un-
derstanding and optimizing persistent memory alloca-
tion. In Proceedings of the 2020 ACM SIGPLAN In-
ternational Symposium on Memory Management, pages
60–73, 2020.

[57] Zhaoguo Wang, Hao Qian, Haibo Chen, and Jinyang Li.
Opportunities and pitfalls of multi-core scaling using
hardware transaction memory. In Proceedings of the 4th
Asia-Pacific Workshop on Systems, pages 1–7, 2013.

[58] Maurice Herlihy and Nir Shavit. The art of multiproces-
sor programming. Morgan Kaufmann, 2011.

[59] libvmmalloc. https://pmem.io/vmem/
libvmmalloc/.

[60] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis,
Huanchen Zhang, Michael Kaminsky, and David G An-
dersen. Building a bw-tree takes more than just buzz
words. In Proceedings of the 2018 International Con-
ference on Management of Data, pages 473–488. ACM,
2018.

[61] Robert Binna, Eva Zangerle, Martin Pichl, Günther
Specht, and Viktor Leis. HOT: a height optimized Trie
index for main-memory database systems. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, pages 521–534. ACM, 2018.

[62] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM european conference on
Computer Systems, pages 183–196. ACM, 2012.

[63] Keir Fraser. Practical lock-freedom. Technical report,
University of Cambridge, Computer Laboratory, 2004.

[64] Justin J Levandoski, David B Lomet, and Sudipta Sen-
gupta. The Bw-Tree: A B-tree for new hardware plat-
forms. In 2013 IEEE 29th International Conference on
Data Engineering (ICDE), pages 302–313. IEEE, 2013.

[65] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M
Grupp, Rajesh K Gupta, Ranjit Jhala, and Steven Swan-
son. NV-Heaps: making persistent objects fast and safe
with next-generation, non-volatile memories. ACM Sig-
plan Notices, 47(4):105–118, 2012.

[66] James L Peterson and Theodore A Norman. Buddy
systems. Communications of the ACM, 20(6):421–431,
1977.

[67] Memcached. https://http://memcached.org/.

[68] Andy Rudoff. Persistent memory programming. Login:
The Usenix Magazine, 42:34–40, 2017.

USENIX Association 19th USENIX Conference on File and Storage Technologies 15

https://pmem.io/
https://pmem.io/vmem/libvmmalloc/
https://pmem.io/vmem/libvmmalloc/
https://http://memcached.org/

[69] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.

ACM, 2010.

[70] pmemobj. https://pmem.io/pmdk/manpages/
linux/master/libpmemobj/pmemobj_first.3.

16 19th USENIX Conference on File and Storage Technologies USENIX Association

https://pmem.io/pmdk/manpages/linux/master/libpmemobj/pmemobj_first.3
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/pmemobj_first.3

SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage

Hao Chen†‡ Chaoyi Ruan† Cheng Li†⇤ Xiaosong Ma‡ Yinlong Xu†z

†University of Science and Technology of China
‡Qatar Computing Research Institute, HBKU

zAnhui Province Key Laboratory of High Performance Computing

Abstract
Key-Value (KV) stores support many crucial applications and
services. They perform fast in-memory processing, but are
still often limited by I/O performance. The recent emergence
of high-speed commodity NVMe SSDs has propelled new KV
system designs that take advantage of their ultra-low latency
and high bandwidth. Meanwhile, to switch to entirely new
data layouts and scale up entire databases to high-end SSDs
requires considerable investment.

As a compromise, we propose SpanDB, an LSM-tree-based
KV store that adapts the popular RocksDB system to utilize
selective deployment of high-speed SSDs. SpanDB allows
users to host the bulk of their data on cheaper and larger SSDs,
while relocating write-ahead logs (WAL) and the top levels
of the LSM-tree to a much smaller and faster NVMe SSD.
To better utilize this fast disk, SpanDB provides high-speed,
parallel WAL writes via SPDK, and enables asynchronous re-
quest processing to mitigate inter-thread synchronization over-
head and work efficiently with polling-based I/O. Our evalua-
tion shows that SpanDB simultaneously improves RocksDB’s
throughput by up to 8.8⇥ and reduces its latency by 9.5-
58.3%. Compared with KVell, a system designed for high-end
SSDs, SpanDB achieves 96-140% of its throughput, with a
2.3-21.6⇥ lower latency, at a cheaper storage configuration.

1 Introduction
Persistent key-value (KV) stores are widely used today
to store data in various formats/sizes for a wide range
of applications, such as online shopping [32], social net-
works [12], metadata management [7], etc. The write-friendly
log-structured merge tree (LSM-tree) is widely adopted as
the underlying storage engine by mainstream KV stores,
such as RocksDB [1], LevelDB [28], Cassandra [23], and
X-Engine [32]. It remains appealing as production KV envi-
ronments are often found write-intensive [9, 14, 25, 32, 46],
especially due to aggressive memory caching [11, 50, 53].

⇤{cighao, rcy, chengli7, ylxu}@ustc.edu.cn, xma@hbku.edu.qa. Cheng
Li is the corresponding author.

The recent availability of fast, commodity NVMe SSDs
can bring dramatic KV performance boosts, as demonstrated
by recent systems, such as KVell [46] and KVSSD [40]. By ei-
ther discarding the LSM-tree data structures designed for hard
disks or offloading KV data management to specialized hard-
ware, these systems provide high throughput and scalability,
with the entire dataset hosted on high-end devices.

This work, instead, aims at adapting mainstream LSM-tree
based KV design to fast NVMe SSDs and I/O interfaces, with
a special focus on cost-effective deployment in production
environments. This is motivated by our study (Sec 2) showing
that current LSM-tree based KV stores fail to exploit the full
potential of NVMe SSDs. For example, deploying RocksDB
atop Optane P4800X only improves throughput by 23.58%
compared with a SATA SSD for a 50%-write workload. In
particular, the I/O path of common KV store designs severely
under-utilizes ultra-low latency NVMe SSDs, especially for
small writes. For instance, going through ext4 brings a latency
6.8-12.4⇥ higher than via the Intel SPDK interfaces [37].

This hurts particularly write-ahead-logging (WAL) [52],
crucial for data durability and transaction atomicity, which
sits on the critical path of writes and is bottleneck-prone [31].
Second, existing KV request processing assumes slow devices,
with workflow designs embedding high software overhead or
wasting CPU cycles if switched to fast, polling-based I/O.

In addition, new NVMe interfaces come with access con-
straints (such as requiring binding the entire device for SPDK
access, or recommending pinning threads to cores). This com-
plicates KV design to utilize high-end SSDs for different
types of KV I/O, and renders current common practices, such
as synchronous request processing less efficient.

Finally, top-of-the-line SSDs like the Optane are costly for
large-scale deployment. As large, write-intensive KV stores
inevitably possess large fractions of cold data, to host all data
on these relatively small and expensive devices is likely be-
yond the budget of users or cloud database service providers.

Targeting these challenges, we propose SpanDB, an LSM-
tree based KV system that adopts partial deployment of high-
end NVMe SSDs. It is based on a comprehensive analysis of

USENIX Association 19th USENIX Conference on File and Storage Technologies 17

bottlenecks/challenges in porting a popular KV store to use
SPDK I/O (Sec 2), and contains the following innovations:

• It scales up the processing of all writes and reads of more
recent data by incorporating a relatively small yet fast speed
disk (SD), while scaling out data storage on one or more
larger and cheaper capacity disks (CD).

• It enables fast, parallel accesses via SPDK to better utilize
the SD, bypassing the Linux I/O stack and allowing high-
speed WAL writing in particular. (To our best knowledge,
this is the first work studying SPDK support for KV stores.)

• It devises an asynchronous request processing pipeline
suitable for polling-based I/O, which removes unneces-
sary synchronization, aggressively overlaps I/O wait with
in-memory processing, and adaptively coordinates fore-
ground/background I/O.

• It strategically and adaptively partitions data according to
the actual KV workload, actively involving the CD for its
I/O resources, especially bandwidth, to help share the write
amplification common in contemporary KV systems.

We implement SpanDB as an extension to Facebook’s
RocksDB [1], a leading KV store deployed in many pro-
duction systems [2, 5]. SpanDB re-designs RocksDB’s KV
request processing, storage management, and group WAL
writing to utilize fast SPDK interfaces, and retains RocksDB’s
data structures and algorithms, such as LSM-tree organiza-
tion, background I/O mechanism, and transaction support fea-
tures. Therefore its design stays complementary to many other
RocksDB optimizations [9, 10, 17, 48, 57]. Existing RocksDB
databases can be migrated to SpanDB when an SD is added.

Our evaluation using YCSB and LinkBench shows that
SpanDB significantly outperforms RocksDB in all categories
(throughput, average latency, and tail latency) in all test cases,
especially write-intensive ones. Against KVell, a recent sys-
tem designed to leverage high-end SSDs, SpanDB delivers
higher throughput in most cases (at a fraction of KVell’s la-
tency), without sacrificing transaction support.

2 Background and Motivation
2.1 LSM-tree based KV Stores
Overall architecture. LSM-tree based KV stores organize
on-disk data in levels, denoted as L0, L1, ..., Lk, with capacity
generally growing by 10⇥ between adjacent levels except L0.
KV pairs are stored in Static Sorted Tables (SSTs), each an
immutable file. To avoid data loss/inconsistency, a sequential
write-ahead-log (WAL) file, often sized around tens of GBs, is
maintained on persistent storage. Updates are logged there be-
fore being made visible, upon the completion of a write opera-
tion/transaction. In-memory updates are made in MemTables,
one active while the rest are immutable. The active MemTable
accommodates updates and becomes immutable when full,
whereupon one or more immutable MemTables need to be
flushed to make space for a new active one.

EnQue Win as
leader

WaitEnQue

Make
group

Batch
writes

Wake up
followers

Insert to
memtable

EnQue

Wait
all

finish

Exit Insert to
memtable

Wait

EnQue Wait

Insert to
memtable

Make
group…

Transition to leader

Wakeup

Wakeup

Thrd 1

Thrd 2

Thrd 4

1 2 3 4 5 6 7 8

…

Thrd 3

Figure 1: RocksDB group WAL write workflow

Foreground write/read. Upon the arrival of a write opera-
tion/transaction, to avoid data loss/inconsistency, its updates
(along with associated metadata) must be first appended to
a WAL file on persistent storage. Then, the corresponding
changes made to the database can be applied to the active
MemTable for subsequent visits. Given that failures are com-
mon on typical KV platforms today [18,20,26,62], WAL [52]
remains an integral part of customer facing databases and sits
on the critical path of processing write requests.

User reads may generate random accesses at multiple tree
levels, until the target key hits at a certain level or misses
all the way. Though production KV systems today greatly
improve average read performance through aggressive in-
memory caching [11, 25, 50, 53, 60], disk I/O cannot be
avoided, especially with larger databases or lower access local-
ity. The inevitable accesses to slow storage contribute heavily
to tail latency and may affect the overall performance.
Background flush and compaction. These include (1) flush,
where an immutable MemTable is written to an L0 SST file
(often making L0 temporarily larger than L1), and (2) com-
paction, where SST files selected from a level Li are read and
merged with SSTs of overlapping key ranges at level Li+1,
with invalid KV pairs removed. The former is triggered by the
number of immutable MemTables reaching a limit, and the
latter by a level becoming full. Both operations create large,
sequential I/O, whose impact on foreground request process-
ing manifests in I/O contention and write stalls (when user
writes need to wait for flushes to empty MemTable space).
Foreground-background coordination. RocksDB and Lev-
elDB control the rate of background I/O through a user-
configurable number of flush/compaction threads. They are
activated when there are background I/O tasks, sleeping other-
wise. Researchers have noted the performance impact of back-
ground thread settings and proposed related optimizations [9].
However, existing solutions still retain the background thread
design, assuming slow I/O and interrupt-based synchroniza-
tion, which does not work well with new, polling-based I/O
interfaces (to be discussed below).

2.2 Group WAL Writes
The current common practice in writing WAL is group log-
ging, which batches multiple write requests for one log data
write [27, 30, 54, 76]. This technique is widely adopted by

18 19th USENIX Conference on File and Storage Technologies USENIX Association

mainstream databases today, including MySQL [4], Mari-
aDB [3], RocksDB [1], LevelDB [28], and Cassandra [44].
Beside fault tolerance, group logging also offers better write
performance on slow storage devices (where random accesses
tend to be even slower), by promoting sequential writes.

Fig 1 illustrates the RocksDB/LevelDB group logging
workflow. The WAL write process is sequential: at any time,
at most one group is writing to the log. When there is an
ongoing write, worker threads handling write requests form a
new group by joining a shared queue, with the first en-queued
thread designated the group’s leader (1 - 3). The leader
(Thread 1 in this case) collects log entries from peers, until
notified to proceed by the leader of the previous group, who
just finished writing. This closes the door for the current group
and subsequently arriving threads will start a new one.

The leader writes log entries to persistent storage in a sin-
gle synchronous I/O step (using fsync/fdatasync, 4). The
leader then wakes up group members to actuate updates in
MemTables, making such writes visible to subsequent re-
quests (5 - 6). It finalizes the group commit by advancing
the last visible sequence to the latest sequence number among
its entries (7), disbanding the group (8), and passing the
green light to the next leader (Thread 4).

With high-end NVMe SSDs and faster I/O interfaces (de-
tails in Section 2.3), the group write time (4) is dramatically
reduced. Meanwhile, batching writes still helps by consoli-
dating small requests. Consequently, the software overhead
caused by the synchronous group logging rises to render
most of the threads wasting their time on different types of
wait (steps 1 - 3 and 7). For example, we measured that
RocksDB spends, on average, 68.1% of write request process-
ing time on these 4 steps on a SATA SSD accessed via ext4,
which grows to 81.0% on Optane via SPDK.

2.3 High-Performance SSDs Interfaces
Recent high-end commodity SSDs, such as Intel Optane [36],
Toshiba XL-Flash [63], and Samsung Z-SSD [59], offer low
latency and high throughput [66]. Recognizing that the Linux
kernel I/O stack overhead is no longer negligible in total
I/O latency [45, 69], Intel developed SPDK (Storage Per-
formance Development Kit) [37, 69], a set of user-space li-
braries/tools for accessing high-speed NVMe devices. SPDK
moves drivers into user space, avoiding system calls and en-
abling zero-copy access. It polls hardware for completion
instead of using interrupts and avoids locks in the I/O path.
Here we summarize SPDK performance behavior and policy
restrictions found relevant to KV stores in this work.
SPDK overall performance. We benchmarked two modern
NVMe SSDs, Intel Optane P4800X and P4610. Fig 2 gives
Optane results for request type/size combinations, simulating
typical LSM-tree based KV I/O as described earlier (P4610
results show similar trends). We use write calls for ext4
(each followed with fdatasync), and the SPDK build-in perf
tool (spdk_nvme_perf) for SPDK.

4K-RR 64K-SR 4K-SW 64K-SW

(a) Bandwidth

0

500

1000

1500

2000

2500

B
a

n
d

w
id

th
 (

M
B

/s
)

4K-RR 64K-SR 4K-SW 64K-SW

(b) Latency

0

200

400

600

800

L
a

te
n

c
y

 (
u

s
) ext4

SPDK

Figure 2: Optane P4800X performance via ext4 and SPDK at
different request sizes by 16 threads. “RR”, “SR”, and “SW”
stand for random read, sequential read, and sequential write,
respectively.

1-N 2-N 3-N 1-O 2-O 3-O

(a) Throughput

0

200

400

600

IO
P

S
 (

K
)

1-N 2-N 3-N 1-O 2-O 3-O

(b) Latency

0

5

10

15

20

25

L
a
te

n
c
y
 (

u
s
)

CR=1 CR=2 CR=3 CR=4

Figure 3: Concurrency evaluation w. 4KB sequential writes

For large sequential reads, going through a file system
(as done by current KV stores) actually matches SPDK re-
sults. 4KB sequential writes (WAL-style) via ext4, meanwhile,
achieve a small fraction of the hardware potential, with la-
tency 4.05⇥ higher than SPDK (IOPS accordingly lower).
The 4KB random read and 64KB sequential write tests see
ext4-SPDK gaps between these extremes. Such results high-
light that SPDK may bring significant improvement to KV
I/O, especially for logging and write-intensive workloads.
SPDK concurrency. To assess SPDK’s capability of serv-
ing concurrent sequential writes, we profile individual SPDK
requests, and find the bulk of the 7-8µs single-thread latency
indeed occupied by busy-wait, which grows with more threads
concurrently writing, due to slower I/O under contention.

We then devise a pipeline scheme, where each thread man-
ages multiple concurrent SPDK requests. It allows to “steal”
I/O wait time to issue new requests and check the completion
status of outstanding ones (each taking under 1µs).

Fig 3 gives latency and throughput results on the Intel
P4610 (N) and Intel Optane (O) SSDs. We vary the number
of threads (“3-N” having 3 threads writing to SSD N) and the
upper limit for concurrent requests per thread (“CR=2” having
each thread issuing up to 2 requests). NVMe SSDs do offer
parallelism beyond utilized by the current RocksDB/LevelDB
single-WAL-writer design. In particular, Optane (O) shows
higher concurrency than P4610 (N), with slower latency and
faster throughput growth with more writers. However, even
with O, going beyond 3 concurrent writers does not provide
higher SPDK IOPS: Using 3 loggers each with CR=3 appears
to offer peak WAL speed, which we denote as 3L3R. N, on
the other hand, saturates at 2L4R.
SPDK access restrictions. The performance benefit of fast

USENIX Association 19th USENIX Conference on File and Storage Technologies 19

!"#$%& '(")!
!*%+,-#-./0!,"#1/,-#-./

!"#$
%&'()*+,)-./001

!"#2(3"#-45($$%&' ()*+,

2#3#)22!)"#4!)%5(0*+,)-&6/1!' 789:;<)22!,)=>'*+,)-.&&.

?!
!"#$%&'
!"(#)&'

!
678
#9/#

2!

)5:/,;<;4/3

=33>4#?:/,@'; @>4#?:/,@'

$%&'

@!
@"

@#
@$
@%
@&

7;<$-,9/A>/;4,"9(-/;;5$1

!"#$%&'()*++$,+-+,./"))"0$%&'()*++$,+-+,.

!"#%&'
!"(#%&'
!"#$*&'

Figure 4: SpanDB storage overview. The dimmed (grey) com-
ponents reuse RocksDB implementation

SPDK-enabled access to high-end NVMe SSDs comes with
strings attached: once an SSD is bound to SPDK by one
process, it cannot be accessed by others, either via SPDK
or via the Linux I/O stack. This simplifies inter-workload
isolation associated with user-level accesses, but also disables
partial deployment of file systems to an SSD accessed via
SPDK. In addition, users are recommended to bind SPDK-
accessing threads to specific cores [22]. We verified that not
doing so brings significant I/O performance loss. This, plus
the polling-based I/O mode, renders the common practice
of using background flush/compaction threads unsuitable for
SPDK accesses: unbound threads suffer slow I/O, while bound
threads cannot easily yield core resources when idle.

3 SpanDB Overview
Design rationale. We propose SpanDB, a high performance,
cost-effective LSM-tree based KV store using heterogeneous
storage devices. SpanDB advocates the use of a small, fast,
and often more expensive NVMe SSD as a speed disk (SD),
while deploying larger, slower, and cheaper SSD (or arrays
of such devices) as the capacity disk (CD). SpanDB uses the
SD for two purposes: (1) WAL writes and (2) storing the top
levels of the RocksDB LSM-tree.

As WAL processing cost is user-visible and directly im-
pacts latency, we reserve enough resources (cores and concur-
rent SPDK requests, plus sufficient SPDK queues), to maxi-
mize its performance. Meanwhile, WAL data only needs to be
maintained till the corresponding flush operation and typically
require GBs of space, while today’s “small” high-end SSDs,
such as Optane, offer over 300GB. This motivates SpanDB
to move the top levels of the RocksDB LSM-tree to the SD.
This also offloads a significant amount of flush/compaction
traffic from the CD, where the bulk of colder data resides.
SpanDB architecture. Fig 4 gives a high-level view of
SpanDB storage structure. Within DRAM, it retains the
RocksDB MemTable design, with one mutable and multi-
ple immutable MemTables. Note that SpanDB introduces no

modifications to RocksDB’s KV data structures, algorithms,
or operation semantics. The major difference here lies in its
asynchronous processing model (Sec 4.1), to reduce synchro-
nization overhead and adaptively schedule tasks.

On-disk data are distributed across the CD and SD, two
physical storage partitions. The SD is further partitioned, with
a small WAL area and the rest of its space used as a data
area. SpanDB manages the SD as a raw device via SPDK
and redesigns the RocksDB group WAL writes (Sec 4.2),
for fast, parallel logging, improving logging bandwidth by
10⇥. The data area manages raw SSD pages to host the top
levels of the LSM-tree (Sec 4.3). To minimize changes to
RocksDB, here SpanDB implements TopFS, a lightweight
file system (including its own cache), which allows easy and
dynamic level relocation. The CD partition, meanwhile, stores
the “tree stump”, often containing the colder majority of data.
Its management remains unchanged from RocksDB, accessed
via a file system and assisted by the OS page cache.

Fig 4 also depicts the different types of SpanDB I/O traffic.
While the SD WAL area is dedicated to logging, its data area
receives all flush operations, which write entire MemTables
to L0 SST files. In addition, both SD data area and CD ac-
commodate user reads and compaction reads/writes, where
SpanDB performs additional optimization to enable simulta-
neous compaction on both partitions and automatically co-
ordinate foreground/background tasks. Finally, SpanDB is
capable of dynamic tree level placement based on real-time
bandwidth monitoring of both partitions.
Sources of performance benefits. SpanDB improves LSM-
tree based KV store design in multiple ways:

• By adopting a small yet fast SD accessed via SPDK, it
speeds up WAL by fast, parallel WAL writes.

• By using the SD also for data storage, it optimizes the
bandwidth utilization of such fast SSDs.

• By enabling workload-adaptive SD-CD data distribution, it
actively aggregates I/O resources available across devices
(rather than using CD only as an “overflow layer”).

• Though mainly optimizing writes, by offloading I/O to the
SD, it reduces tail latency with read-intensive workloads.

• By trimming synchronization and actively balancing fore-
ground/background I/O demands, it exploits fast polling
I/O while saving CPU resources.

Limitations. We recognize two limitations with SpanDB’s
approach: (1) due to the aforementioned SPDK access con-
straint, the SD needs to be bound to one process, making
it hard to share this resource; (2) for all-read workloads,
SpanDB produces little speedup and introduces slight over-
head in asynchronous processing.

4 Design and Implementation
4.1 Asynchronous Request Processing
KV stores like RocksDB and LevelDB (plus many new sys-
tems based on them [8–10, 13, 17, 48, 51, 57, 73]) use embed-

20 19th USENIX Conference on File and Storage Technologies USENIX Association

! !

"#$%&'(

!"#$%#&

!"#$

)*'$+*,-*.'$/0123*'&04$.'5'-.

6*57
2+0/*..&48

9+&'*
/0123*'&04

:+0-2
3088&48

9+&'*
2+0/*..&48

!!"#$!%&'()*

!+,)()* !()*

'!"#$%

'&'()*+,

;3-.%<
=012/'>

()*%+,&

A_get

A_check

A_put

)254?@

A

B

-"..%#

Figure 5: Asynchronous request processing workflow

ded DB processing, where all foreground threads assume the
“client” role, each synchronously processing one KV request
at a time. With such processing often being I/O-bound (espe-
cially with WAL writes), users typically obtain higher overall
throughput (requests per second) by thread-overprovisioning,
having more client threads than cores. With fast NVMe SSDs
and interfaces such as SPDK, as discussed in Section 2.3,
thread synchronization (such as sleep and wakeup) could
easily take longer than an I/O request. In this case, thread
overprovisioning not only trades off latency, but also reduces
overall resource utilization and consequently throughput.

In addition, with polling-based SPDK I/O, having threads
co-exist on the same cores loses the appeal of improving
CPU utilization during I/O waits. This also applies to the
common practice of managing LSM-tree flush/compaction
tasks using background threads. In particular, as “fsync” with
SPDK I/O involves busy-wait, the existing RocksDB design
of unleashing potentially many background threads would
create huge disruption to other threads and waste CPU cycles.

Recognizing these, SpanDB adopts asynchronous request
processing, as illustrated in Fig 5. On an n-core machine,
users configure the number of client threads as Nclient , each
occupying one core. The remaining (n�Nclient) cores host
SpanDB internal server threads, internally partitioned into
two roles: loggers and workers. All these threads spin
on their assigned cores. Loggers are dedicated to WAL
writes, while workers handle both background processing
(flush/compaction) and non-I/O tasks such as MemTable reads
and updates, WAL entry preparation, and transaction related
locking/synchronization. Based on the write intensity ob-
served, a head-server thread automatically and adaptively
decides the number of loggers, who are bound to cores with
SPDK queue allocation that protect WAL write bandwidth.
Asynchronous APIs. SpanDB provides simple, intuitive
asynchronous APIs. For existing RocksDB synchronous get
and put operations, it adds their asynchronous counterparts
A_get and A_put, plus A_check to examine request status.
Similar API expansion applies to scan and delete. Accord-
ingly, SpanDB expands RocksDB’s status enumeration.

Fig 6 gives a sample client code segment. Here the client
adopts the inherent spirit of asynchronous processing: to over-

Request *req = null;
while(true){
 if(req == null)
 req = GenerateRequest();
 LogsDB->A_put(req->key, req->value, req->status);// issue async req

 if(!(req->status->IsBusy())){
 pending_queue->enqueue (req);
 req = null; // ready to generate next req
 }
 for(Request* r in pending_queue){
 if (A_check(r->status)==completed) { // check outstanding reqs
 pending_queue.remove(r);
 custom_process(r);
 }
 } // end for
} // end while

Figure 6: SpanDB API example

lap wait with active work. It issues A_put requests in a loop,
moving on to check the status of outstanding requests (and
perform proper processing upon their completion), followed
by issuing another request. A new request may be temporar-
ily rejected by SpanDB, via the IsBusy status set within the
A_put call, in which case the client will resubmit later.
SpanDB request processing. SpanDB manages the stages
of foreground request processing, as well as background
flush/compaction tasks in a number of queues. These queues
pass sub-tasks among threads and also provide feedback on a
certain system component’s stress level. Based on such feed-
back, SpanDB could regulate the client request issuing rate
(via the aforementioned IsBusy interface) or dynamically
adjust its internal task allocation among workers.

Fig 5 illustrates the relevant SpanDB task queues. The
flush and compaction queues (QFlush and Qcompact) are from
RocksDB’s existing design, though SpanDB modifies the
actual operations to use SPDK I/O. In addition, SpanDB adds
four queues: one for reads (QRead), and three to break up
writes (QProLog, QLog, and QE piLog).

For asynchronous reads, SpanDB retains the RocksDB syn-
chronous model when a request requires no I/O. With typical
locality in KV applications, many reads are served from the
MemTable, especially with larger MemTables enabled by spa-
cious DRAM today. Given a key, the client quickly checks
whether it is a MemTable hit and if so, completes the read
operation itself. Such a “lucky read” takes only 4-6µs end
to end, as opposed to 30µs on average even when reading
from Optane under contention. Otherwise, the client inserts
the request into QRead and returns. A worker will later pick
it up, completing the rest of the RocksDB read routine and
setting its completion status.

For asynchronous writes, SpanDB breaks its processing
into three parts. The client simply dumps a request into
QProLog, to be processed by a worker. The latter generates
a WAL log entry, which in turn is passed into QLog. Both
queues are designed to promote batched logging (described
in Sec 2.2): a worker/logger would grab all the items in these
queues. Beyond batching, the loggers pipeline log writes, max-
imizing SPDK write concurrency (see Sec 4.2). After writing
a batch to the SD, a logger adds the appropriate requests to
QE piLog, for workers to complete their final processing, in-

USENIX Association 19th USENIX Conference on File and Storage Technologies 21

cluding the actual MemTable updates. Like reads, tasks here
require individual attention and no speedup can be achieved
from their batching. As seen in Fig 5, QProLog and QLog are
flat lock-free queues, which allow easy “grab all” dequeuing.
The other two, QRead and QE piLog, are circular queues and
only require locks in dequeue operations.
Task scheduling. The above SpanDB queues provide natu-
ral feedback for adjusting internal resource allocation. Our
SPDK benchmarking results (Fig 3) shows that high-end
NVMe SSDs offer parallelism but can be saturated by a
few cores each issuing several concurrent requests. Hence
SpanDB starts with one logger, growing and shrinking this
allocation between 1 and 3 according to the current write in-
tensity. The workers, however, are flexible to work on all the
other queues, both foreground and background. Among the 3
foreground queues, SpanDB performs load balancing based
on their queue length weighted by their average per-task pro-
cessing time. Between the foreground and background queues,
SpanDB prioritizes foreground, with an adaptive threshold
to monitor background queue length, to proactively perform
cleaning up, especially with write-intensive workloads.
Transaction support. SpanDB fully supports transactions
and provides an asynchronous commit interface A_commit

by making a few minor changes to RocksDB. Note that in
RocksDB’s transaction mode, writes will generate WAL en-
tries in an internal buffer, which is only written by the commit
call. The difference here is that A_commit inserts correspond-
ing write tasks into QProLog.

4.2 High-speed Logging via SPDK
Enabling parallelism and pipelining. SpanDB uses SPDK
to flush log entries to raw NVMe SSD devices, bypassing the
file system and Linux I/O stack. It retains the group logging
mechanism described in Sec 2.3, but enables multiple con-
current WAL write streams. Rather than having one client as
leader (and forcing followers to wait), it employs dedicated
loggers, who issue simultaneous batch writes. Each logger
grabs all requests it sees in QLog and aggregates these WAL
entries into as few 4KB blocks as possible. It performs pipelin-
ing by stealing the SPDK busy-wait time for one request to
prepare/check others, as introduced in Sec 2.3. For instance,
with 2L4R, there are up to 8 outstanding WAL write groups.
Log data management. Parallel WAL writes complicate log
data management, especially on a raw device without a file
system. Luckily, with atomic 4KB SPDK writes, coordinating
concurrent WAL streams adds little overhead.

SpanDB allocates a configurable number of logical pages
on the SD to its WAL area (10GB in our evaluation), each with
a unique log page number (LPN). One of them is set aside
as a metadata page. At any time, there is only one mutable
MemTable, whose log “file” grows. We allocate a fixed num-
ber of log page groups, each containing consecutive pages
and large enough to hold logs for one MemTable. Occupied
log pages are organized by their corresponding MemTables:

Figure 7: SpanDB’s parallel WAL logging mechanism

SpanDB conveniently reuses the RocksDB MemTable’s “log
file number” field as a log tag number (LTN), embedded at
the beginning of all log pages for recovery.

Fig 7 gives an example of having four MemTables, one
mutable (active) and three immutable, with different status
(“A” for “active” and “I” for “inactive”) in the metadata page.
The long stripes in the bottom show two of the log page groups
allocated. After a MemTable is flushed, its entire stripe of log
pages is recycled, guaranteeing a MemTable’s contiguous log
storage. For each immutable MemTable, the metadata page
records the start and end LPN of its log pages. Given that
typical KV stores use a small number of MemTables, one
page is more than enough to hold such metadata.

With loggers issuing concurrent requests, each supplying a
WAL data buffer and size, the only synchronization point is
log page allocation. We implement lightweight atomic page
allocation with compare-and-swap (CAS) operations. Fig 7
shows 3 requests allocated 1, 3, and 2 pages, respectively,
who can then proceed in parallel. These WAL writes do not
modify the metadata page, where the per-MemTable end LPN
is only appended when that MemTable becomes immutable.

Within a log page, the logger first records the current LTN,
followed by a set of log entries, each annotated with its size.
The zoom-in part in Fig 7 portraits such layout, including the
per-entry checksum (already calculated in RocksDB).
Correctness. SpanDB’s parallel WAL write design preserves
the RocksDB consistency semantics. It does not change the
concurrency control mechanism used to coordinate and order
client requests. Therefore, transactions with happened-before
restrictions never appear out of order in the log pages, as
briefly explained below. RocksDB’s default isolation guar-
antee is READ COMMITTED. It also checks write-write con-
flicts and serializes two concurrent transactions that simulta-
neously update common KV items. With these two isolation
guarantees, for any two update transactions T1 and T2, READ
COMMITTED implies that if T1 happens before T2 (i.e., T2 sees
the effects of T1), then T1 must commit before T2 started. By
the design of the RocksDB group WAL write protocol, the
above implies that the log entries of T1 and T2 should appear
in two batches, where the batch commit of T1 arrive earlier
than and complete before the one of T2. While log batches

22 19th USENIX Conference on File and Storage Technologies USENIX Association

are written in parallel with SpanDB, they pass a serialization
point for atomic page allocation. Therefore T1’s batch is still
guaranteed to obtain a lower sequence number than the one
of T2, for the latter to see the updates of the former. Similarly,
When recovering from WAL data, SpanDB always performs
redo in ascending order of sequence numbers.
Log recovery. Recovery is rather straightforward. When
rebooting from a crash, the recovery process first reads the
metadata page, to retrieve the number of log page groups and
their corresponding page address ranges. The actual recovery
from a log page group is highly similar to RocksDB’s from a
log file. Again the LTN number in each page helps identify
the “end” of the active log page group.

However, the one complication we find is that as SpanDB
recycles log page groups, which contain old log pages, during
recovery SpanDB needs to know which pages of the current
log group have been overwritten. RocksDB relies on the file
system during recovery: it reads whatever data is contained
in the active log file. Without the file system, SpanDB could
persist a separate metadata update or wipe out old log pages
(e.g., by writing 0s) before recycling them. Both approaches
double the WAL I/O volume and cut the SD’s effective WAL
write bandwidth in half. Instead, we reuse the per-MemTable
LTN as a log page “color”. Since the SSDs can guarantee 4K
atomic writes to the device and the LTN is always written
at the beginning of a page, the pages themselves reveal the
location of the last successful writes. Recall the metadata
page maintains the current/active LTN (the one with status
“A”) – a page within this group but with an obsolete LTN has
not yet been overwritten from the current MemTable.

4.3 Offloading LSM-tree Levels to SD
For sustained, balanced execution of KV servers, SpanDB
migrates the top levels of the RocksDB LSM-tree to the SD,
offering users more return from their hardware investment. Be-
low we discuss the major challenges and solutions involved.
Data area storage organization. One constraint in using
SPDK on an NVMe SSD is that the whole device has to
be unbound from the native kernel drivers, and cannot be
accessed through the conventional I/O stack. Therefore one
cannot partition the SD, to use SPDK only for writing WAL
to one area and install a file system on the other.

To minimize modifications to RocksDB I/O, SpanDB im-
plements TopFS, a stripped-down file system, providing fa-
miliar file interface wrappers on top of SPDK I/O. The SST
files’ append-only and thereafter immutable nature, plus their
single-writer access pattern, simplifies the TopFS design. For
example, file sizes are known at creation (for flush, with an
immutable MemTable’s size fixed) or have a known limit (for
compaction). Also, each SST file is written in entirety once,
by a single thread, from either flush or compaction. In both
cases, the input data are not deleted till the SST file write
successfully completes. In addition, TopFS does guarantee
data persistence upon file close. These enable the allocation

of per-file contiguous LPN ranges, similar to the aforemen-
tioned log page groups. Metadata management is then simple:
a hash table, indexed by file name, stores the files’ start and
end LPNs. TopFS manages space allocation using an LPN
free list, where contiguous LPN ranges are merged.
Ensuring WAL write priority. While flush/compaction
could eventually block foreground writes if neglected long
enough, in most cases, their latency remains hidden from
users. Therefore the SD should ideally utilize the residual
bandwidth available, but yield to WAL writes, whose latency
is fully visible to users. SPDK provides enough NVMe queue
pairs (each composed of one submission and one completion
queue): 31 on Intel Optane P4800X and 128 on Intel P4610.
This enables separate management of different request types.
Unfortunately, none of the existing commodity SSDs imple-
ment priority management over these queues [29]. Also, these
queues offer very limited operations: users could only issue
requests and check completion status.

Therefore, besides the foreground-background coordina-
tion done at its queues (Section 4.1), SpanDB needs to prior-
itize WAL requests. We found their priority could be effec-
tively protected by (1) allocating dedicated queues to each
logger request slot (i.e., 8 queues for L2R4), (2) reducing the
flush/compaction I/O request size from the RocksDB default
of 1MB to 64KB to minimize their I/O contention with WAL,
and (3) limiting the number of worker threads assigned to
perform flush/compaction.
SpanDB SPDK cache. Another challenge SpanDB faces
is that SPDK bypasses the OS page cache. If unattended,
this brings excellent raw I/O but disastrous application I/O
performance. To overcome this, we implement SpanDB’s
own cache on TopFS. Note that with SPDK I/O, all data
buffers passed must be allocated in pinned memory via
spdk_dma_malloc(). SpanDB reuses such buffers as a
cache, hereby saving additional memory copying.

Upon SpanDB initialization, it allocates a large memory
cache (size configurable) in hugepage. Upon an SST file’s
creation, SpanDB reserves the appropriate number of con-
tiguous 64KB buffers in the cache (recall that the file size
or size limit is known). SpanDB manages this cache using
another hash table, again with the RocksDB SST file name as
the key. The value field is an array storing the cache entry for
each file block, storing the appropriate memory address if the
block is cached, otherwise NULL. The block size configuration
clearly involves a tradeoff between cache data granularity and
metadata overhead. Our evaluation uses the SpanDB default
block size of 64KB, producing a <500KB metadata overhead
for a 100GB database.
Dynamic level placement. With all the above mechanisms,
we can dynamically adjust the number of tree levels residing
on SD. Initially, we pursued an analytical model to directly
compute an optimal SD-CD level partitioning that maximizes
overall system throughput. However, we could not find ac-
curate LSM-tree write amplification models that agree with

USENIX Association 19th USENIX Conference on File and Storage Technologies 23

our measurement. In particular, state-of-the-art work on this
front [49] seems to not take into account write speed and its
variation. Our tests show that these factors could heavily im-
pact the transient “tree shape” (with the top levels bulging out
at different degrees beyond their size limit) and consequently
the write/read amplification level.

Therefore, SpanDB settles for ad-hoc, dynamic partitioning,
by observing the sustained resource utilization level imbal-
ance between the SD and CD. Its head-server thread monitors
the SD bandwidth usage, and triggers the SST file relocation
when it is below BWL, till either it reaches BWH or the SD is
full, where BWL and BWH are two configurable thresholds.

Rather than migrating data between SD and CD, as the
SST files constantly go through merging, SpanDB gradually
“promotes” or “demotes” a whole level by redirecting their
file creation to a different destination. It has a pointer that
indicates currently which levels should go to the fast NVMe
device. For example, a pointer of 3 covers all top 3 levels.
However, this pointer only determines the destination of new
SST files. Therefore it is possible to have a new L3 file on SD
and an older L2 file on CD, though such “inversions” are rare
as the top levels are smaller and their files are updated more
often.

5 Evaluation
5.1 Experimental Setup

We implemented SpanDB1 on top of RocksDB, with around
6000 lines of C++ code for its core functionality, plus 300
lines for integration with RocksDB.
Platform. We use a server with 2 20-core Xeon Gold 6248
processors and 256GB DRAM, running CentOS 7.7. The
storage setting, denoted in “CD-SD” pairs, involves four data
center device types. Among them, SATA SSDs (Intel S4510,
“S”) are used to form an 4+1 RAID5 group. As SPDK does
not apply to SATA devices, S is used as CD only.

Beside Optane P4800X (“O”), we test two more Intel DC
NVMe SSDs as CD and SD respectively: P4510 (“N1”) and
P4610 (“N2”), the former being larger, cheaper, and with
higher bandwidth. The device details are in Table 1. Finally,
we access CD via ext4, widely adopted in KV stores stud-
ies [13, 17, 51, 57].

Baseline and system configurations. Our natural baseline
is vanilla RocksDB (v6.5.1), the base of SpanDB’s develop-
ment. Unless otherwise stated, all tests with RocksDB and
SpanDB share the following configurations. Considering the
current trend of larger DRAM space in servers, we use four
1GB MemTables, and set the maximum WAL size to 1GB.
RocksDB is set to use up to 6 threads for compaction and 2
for flush. We follow common practice in performance eval-
uation that turns off compression when using synthetically
generated requests [9, 48, 51, 57]. The remaining parameters

1Publicly available at https://github.com/SpanDB/SpanDB

Table 1: Enterprise disks tested (pricing from CDW-G on
09/15/2020). DWPD (Drive Writes Per Day) measures the
times/day one could overwrite an entire drive for its lifetime.
Note that H and S are used in (4+1) RAID5 arrays, while the
listed numbers here are single-disk data.

ID Model Interface Capacity Price Seq. write
bandwidth

Write
latency

Endurance
(DWPD)

S Intel SSD DC
S4510 SATA 960 GB

$248
$0.26/GB

510 MB/s 37 us 1.03

N1 Intel SSD DC
P4510 NVMe 4.0 TB

$978
$0.25/GB

2900 MB/s 18 us 1.03

N2 Intel SSD DC
P4610 NVMe 1.6 TB

$634
$0.40/GB

2080 MB/s 18 us 1.03

O Intel Optane SSD
P4800X NVMe 375 GB

$1221
$3.25/GB

2000 MB/s 10 us 30

0

200

400

600

800

T
h

p
t

(K
O

P
S

)

PL
LAD-0

LAD-1
LAD-2

LAD-3
Auto

(a) Throughput

0

100

200

300

L
a
te

n
c
y
 (

u
s
)

PL
LAD-0

LAD-1
LAD-2

LAD-3
Auto

(b) Latency

100% Write 50% Write 5% Write

Figure 8: Impact of data placement in SpanDB (S-O steup,
512GB database)

are set to RocksDB default. Additionally, we compare with
two recent key value stores designed for high-performance
SSDs, namely KVell [46] and RocksDB-BlobFS [61].
Workloads and Datasets. We run microbenchmarks and
two popular KV workloads, YCSB [16] and Facebook’s
LinkBench [6]. For most tests with YCSB, we follow com-
mon practice [46, 48, 51] and use 1KB KV item size, loading
a 512GB database with randomly generated keys as the initial
state. The query phase issues 20M requests (preceded by 30%
extra requests for warm-up).

5.2 Microbenchmark Results

Adaptive KV data placement. To assess SpanDB’s auto-
matic LSM-tree level placement, we use 3 YCSB-like work-
loads with different write intensity (Fig 8). We tested a 512GB
database on the S-O device combination. To compare with
SpanDB’s adaptive setting (“Auto”), we configured SpanDB
with different fixed placement options: “PL” (“pure logging”,
where the SD is used solely for WAL writes), and “LAD-n”
(the top n levels of the LSM-tree is placed on the SD). The
left and right charts show request processing throughput and
average latency, respectively.

The results indicate that different workloads see different
configuration sweet points. With a write-only workload, PL
enables the fastest absorption of write bursts, dedicating the
SD to WAL writes. The fixed placement plans (LAD-0 to
LAD-3) deliver lower yet almost uniform performance, due
to that their total data size (27.3GB) is rather small relative
to the total 512GB database. They are slower in writes by

24 19th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/SpanDB/SpanDB

0

500

1000

K
O

P
S

BG-L BG-H Auto

0

200

400

L
a
te

n
c
y
 (

u
s
)

0 20 40 60 80 100 120

Time (s)

0

50

#
 o

f
B

G
 a

c
ti

v
it

ie
s

Phase 1 Phase 2 Phase 3

Figure 9: Impact of SpanDB background I/O configurations
(S-O setup, 512GB database)

0

200

400

600

800

1000

T
h

p
t

(K
O

P
S

)

RocksDB S

RocksDB O

RocksDB SO

RocksDB SPDK_W
AL

SpanDB PL

SpanDB

(a) Throughput

0

200

400

600

L
a

te
n

c
y

 (
u

s
)

RocksDB S

RocksDB O

RocksDB SO

RocksDB SPDK_W
AL

SpanDB PL

SpanDB

(b) Latency

100% Write
50% Write
5% Write

Figure 10: Performance of different RocksDB and SpanDB
configurations (S-O setup, 100GB database)

adding flush/compaction traffic to the SD, while moving one
more or fewer (small) layer here has little impact. Please note
that we cannot evaluate LAD-4 here, as the total database
size (over 300GB), plus the WAL area and the temporary top
tree level growth to accommodate fast writes, would run out
of the usable space of the Optane disk (around 330GB in
our experience). SpanDB’s auto policy here matches the PL
performance by adopting the same placement.

With more read-intensive workloads, using the SD for data
helps by speeding up reads. Again only LAD-3 brings visible
improvement as the previous levels are quite small. SpanDB’s
auto placement, however, roughly doubles throughput and
halves latency from LAD-3. Its dynamic strategy does not
have to migrate an entire tree level: here it ends up moving
about 72% of the L4 data to SD, cutting average read latency
significantly. For the rest of the paper, we evaluate SpanDB
with its auto data placement.
Adaptive background I/O coordination. Here we use a
multi-phase workload to simulate time-varying user behav-
ior common in production environments [32]. It begins with
bursty requests, issuing 1.5M requests at the beginning of
multiple 25-second episodes with 50% writes and 50% reads
(Zipfian key distribution), followed by around 35 seconds of
100% writes, and finally 25 seconds of 95% reads. Fig 9 por-
traits the request throughput, latency, and background activity

level (flush/compaction task counts as reported in RocksDB).
We compare SpanDB’s auto adaptation with two fixed con-

figurations: “BG-L” (RocksDB default, one thread each for
compaction and flush), and “BG-H” (6 compaction and 2
flush threads). During phase 1 (bursty), BG-H performs the
worst, with 2⇥ higher average latency and 39% lower aver-
age throughput than BG-L during each burst. After an initial
period of write accumulation, the foreground tasks become
severely interfered by its aggressive compaction. “Auto” be-
haves quite similarly to BG-L during the write request bursts,
prioritizing foreground tasks. Unlike with the fixed thread
allocation in RocksDB, its background I/O is not constrained
to a few threads. So after the burst passes, SpanDB Auto
loses no time in catching up with background tasks, resulting
in “background compaction bursts” (red peaks in the bottom
figure) much more intense than both BG-L and BG-H. Over-
all, this leads to faster completion of backlogged compaction
tasks, and better preparation for future write bursts.

In the second phase (all-write), BG-L regularly stalls fore-
ground processing, producing dramatic latency/throughput
fluctuations, which does not happen with the more
compaction-conscious BG-H or Auto. With higher back-
ground resource allocation, BG-H still performs worse than
Auto (due to its less pro-active compaction), obtaining slightly
lower throughput and having one write stall. For the last phase
(read-intensive), with light flush/compaction load, BG-L and
Auto achieve nearly identical performance, while BG-H lags
behind in throughput, due to wasting thread allocation (as
required by SPDK to be bound to a core) to background tasks.

This confirms that SpanDB’s asynchronous workflow, de-
signed mainly to reduce software overhead with polling I/O,
also enables adaptive background task scheduling.
Breakdown analysis. Fig 10 breaks down SpanDB’s im-
provement by incrementally enabling its individual tech-
niques, again with workloads at different write intensity. The
first 4 bar groups show variants of RocksDB, while the last 2
of SpanDB. To enable RocksDBO, RocksDB’s execution on a
single fast disk (Optane), we use a smaller database (100GB).
With RocksDBSO, RocksDB uses the SD (O) for WAL and
CD (S) for all data. RocksDBSPDK_WAL uses the same setting,
only with WAL writes via SPDK instead of ext4. SpanDBPL
adds asynchronous processing and parallel WAL writes, while
SpanDB enables auto-placement of data.

From the all-write results, one sees clearly how little
the hardware upgrade matters with RocksDB (RocksDBS
to RocksDBO). Separating logging with data I/O helps
(RocksDBSO), and adopting SPDK further doubles write
throughput. Still, RocksDBSPDK_WAL only unlocks a small
fraction of the Optane disk’s concurrent small write perfor-
mance, as demonstrated by SpanDB (both PL and Auto), who
achieves a 4.5⇥ throughput.

When the workload becomes balanced (50% read), the per-
formance growth becomes less dramatic, though still very sig-
nificant. Here RocksDBS and RocksDBO have almost identical

USENIX Association 19th USENIX Conference on File and Storage Technologies 25

S-N2 S-O N1-O

0

200

400

600

800

T
h

p
t

(K
O

P
S

)

RocksDB SpanDB

S-N2 S-O N1-O

0

200

400

600

S-N2 S-O N1-O

0

50

100

150

200

S-N2 S-O N1-O

0

200

400

600

S-N2 S-O N1-O

0

50

100

S-N2 S-O N1-O

0

100

200

300

S-N2 S-O N1-O

0

100

200

300

400

L
a

te
n

c
y

 (
u

s
)

S-N2 S-O N1-O

0

100

200

300

S-N2 S-O N1-O

0

200

400

600

S-N2 S-O N1-O

0

50

100

S-N2 S-O N1-O

0

200

400

600

800

S-N2 S-O N1-O

0

100

200

300

400

(a) 100% write (b) YCSB-A, zipfian (c) YCSB-A, uniform (d) YCSB-B (e) YCSB-E (f) YCSB-F

Figure 11: Throughput and latency of various YCSB workloads, 20M requests on 512GB database. (YCSB-A: 50% update and
50% read, YCSB-B: 5% update and 95% read, YCSB-E: 95% scan and 5% insert, YCSB-F: 50% read and 50% read-modify-write)

performance, as adding a CD helps offloading write traffic,
but lowers read speed. SpanDB’s auto version beats the best
RocksDB variant by 2.74⇥, and nearly doubles the through-
put of its PL version, as the fast SD accelerates reads. With
95%-read (blue bar), RocksDBO stands out among RocksDB
variants, showing that with reads, the vanilla RocksDB on
ext4 actually quite efficiently utilizes the Optane disk (con-
sistent with benchmarking results in Fig 2). SpanDB’s auto
version, in this case, also chooses to place its data on the SD
and matches the RocksDBO performance.

5.3 Overall Performance

We use YCSB and LinkBench to evaluate SpanDB’s overall
performance against RocksDB, on three CD-SD hardware
pairs: S-N2, S-O, and N1-O. Note that RocksDB allows easy
assignment of logging destination, therefore we set it to also
writes WAL to the SD (its LSM-tree levels, however, cannot
be relocated without substantial code change). Hence the
RocksDB baseline evaluated does use both disks in the CD-
SD pair, though via the file system.
YCSB write-intensive tests. As SpanDB primarily targets
write optimization, we start with write-intensive workloads.

With all-write (Fig 11(a)), issuing 20M write requests (Zip-
fian key distribution), RocksDB delivers uniformly low perfor-
mance across all three device pairs. This reveals how existing
systems, logging sequentially via a file system, fail to utilize
high-end SSDs well. From this baseline, SpanDB dramatically
improves both throughput and latency, bringing a throughput
increase of 7.6-8.8⇥ across different CD-SD combinations,
while reducing average latency by 1.5-2⇥. This higher im-
provement on throughput than on latency is attributed to our
parallel batch logging (both in QProLog and QLog). For exam-
ple, on S-O, the RocksDB log batch size averages around 20.
SpanDB has an average batch size of around 7, but may have
multiple threads process batches in parallel.

Fig 11(b) and Fig 11(c) give results for YCSB-A (50%
reads and 50% updates), with Zipfian and uniform key dis-

tribution, respectively. Having 50% reads, on such a large
database, actually slows down overall request processing, as
reads cannot be batched. Here SpanDB’s improvement over
RocksDB remains significant: improving throughput by 2.6-
4.0⇥ while reducing latency by 2.2-3.0⇥ (Zipfian distribu-
tion). With more reads, both systems are more sensitive to
the underlying storage hardware, and the N1-O combination
excels due to N1’s lower read latency than S. Meanwhile,
compared with RocksDB, SpanDB harvests much more per-
formance gain from this device pair.

With uniform distribution, SpanDB’s edge over RocksDB
is weakened by having more memory cache read misses. Most
data reside on the CD, where SpanDB’s reads work similarly
as the baseline. Still, SpanDB outperforms RocksDB by 1.7-
2.4⇥ in throughput and by 1.9-2.4⇥ in latency.
Other standard YCSB tests. Next, we run the other 3 YCSB
workloads: B, E and F. Due to space limit we give Zipfian
results only, and omit C (no writes) and D (similar to B).

With the 95%-read YCSB-B and YCSB-E (Fig 11(d) and
Fig 11(e)), SpanDB still delivers moderate enhancement:
throughput growth by 1.03⇥-1.66⇥, and latency cut by 9.5%-
42%. Between them, it has a smaller gain with YCSB-E, dom-
inated by scan operations and with a higher memory hit ratio
(from reading a random number of consecutive keys). YCSB-
F (Fig 11(f)) contains 50% reads and 50% read-modify-writes.
Though its read ratio (75%) is between YCSB-A and YCSB-
B, it behaves more like YCSB-A (with read-modify-write
dominated by write cost): SpanDB outperforms RocksDB
significantly in both throughput and latency.

Among all tests in Fig 11, except for the most read-intensive
ones (B and E), SpanDB on the lowest device setting (S-N2)
significantly outperforms RocksDB on the highest one (N1-
O), demonstrating its cost-effectiveness. The two 95%-read
workloads highlight the benefit of a low-latency CD, while
SpanDB further boosts performance across all device pairs.

Finally, we report SpanDB’s impact on tail latency. Due to
space limit, here we focus on the read-intensive tests (B, E,

26 19th USENIX Conference on File and Storage Technologies USENIX Association

Table 2: Tail latency in YCSB read-intensive tests (S-O)

YCSB-B (Zipf) YCSB-E (Zipf) YCSB-F (Zipf)
RocksDB SpanDB RocksDB SpanDB RocksDB SpanDB

P90 (us) 471.5 277.1 2844.0 1404.1 685.4 261.2
P99 (us) 803.4 507.6 6016.6 4241.6 2801.7 1848.2

S-N2 S-O N1-O

(a) Throughput

0

50

100

150

200

T
h

p
t

(K
T

P
S

)

RocksDB SpanDB

S-N2 S-O N1-O

(b) Latency

0

100

200

300

L
a
te

n
c
y

 (
u

s
)

Figure 12: Performance of LinkBench

and F), on S-O, listing the P90 and P99 request latency in Ta-
ble 2. Though the write-oriented SpanDB produces moderate
overall performance improvement for read-intensive work-
loads as shown earlier, it reduces the P90 and P99 tail by up to
1.40⇥ and 2.62⇥, respectively. A closer examination reveals
that for mixed workloads (F), SpanDB reduces the impact
of compaction on tail reads; for read-intensive (B and E), it
helps by faster writes.
LinkBench transactional workload. We assess SpanDB’s
asynchronous transaction processing with Facebook’s
LinkBench [6] (Fig 12). Our test uses a 206GB database
containing 600M vertices and 2622M links, performing 20M
requests with LinkBench’s default configuration: 56% scan,
11% write, 13% read, and 20% read-modify-write opera-
tions. Again, for this overall read-intensive workload (around
70%-read), SpanDB fares well against RocksDB, increasing
throughput by up to 50.3% and cuts latency by up to 41%. The
results demonstrate SpanDB’s effectiveness in handling graph
OLTP workloads, where WAL writes cannot be forgone.
Comparison w. NVMe SSD-based systems. Finally, Fig 13
compares SpanDB against two recent systems leveraging fast
NVMe SSDs: KVell [46] and RocksDB-BlobFS [61]. Here
we test with larger datasets, using a 2TB database (except for
RocksDB-BlobFS, which failed to run with larger sizes and
we included its 250GB test results for reference.) We assess 4
YCSB workloads: all-write, A, B, and E.2

First, RocksDB-BlobFS, accessing a single Optane via
BlobFS, delivers worse performance than RocksDB in most
cases, even with a much smaller database. Then, we compare
with KVell, which benefits from a shared-nothing design that
partitions data across multiple disks, aggressive request batch-
ing, and elimination of sorting/compaction. Meanwhile, such
a shared-nothing design with no logging creates challenges in
handling transactions (which is not supported by the current
KVell). As the 2TB database runs beyond the O-O capacity,

2KVell’s code base does not include YCSB-F, whose implementation was
identical to YCSB-A according to the authors.

100% Write A B E

(a) Throughput

0

200

400

600

800

T
h

p
t

(K
O

P
S

)

RocksDB
N2-O

 RocksDB
BlobFS-O

 KVell
N1-N1 (B=1)

KVell
N1-N1 (match)

 SpanDB
S-O

 SpanDB
N1-O

4823 3618

100% Write A B E

(b) Latency

0

500

1000

1500

L
a
te

n
c
y
 (

u
s
)

Figure 13: Additional system comparison, 2TB database
(RocksDB-BlobFS w. 250GB only)

here it runs on N1-N1. We test KVell with two batch size
settings: “B=1” (lowest latency and throughput) and “match”
(the smallest batch size that surpasses SpanDB’s throughput).

With all-write, KVell cannot match SpanDB’s throughput
even at its largest batch size (64), where it suffers huge latency
(average at nearly 5000µs). Batch size 1 delivers a throughput
at 15.2% of SpanDB’s S-O level, and an average latency at
2.17⇥. YCSB-A sees a similar contrast, though to a lesser
degree. With the read-intensive YCSB-B, KVell slightly out-
performs SpanDB N2-O in throughput with batch size at 3,
but reports latency 4.17⇥ higher, while batch size 1 loses
in both throughput and latency. SpanDB also wins in scans
(YCSB-E), producing a 1.4⇥ throughput and 57% latency
reduction compared against KVell at batch size 64.
CPU utilization. With the 50%-write YCSB workload,
SpanDB’s CPU utilization is 94.5%, while RocksDB’s CPU
utilization is only 63.7%. This is a direct consequence of spin-
ning threads on cores, as required by SpanDB’s polling-based
I/O and asynchronous request processing: All workers are
busy with the request processing and never sleep. Overall
the system spends more time doing useful work: SpanDB
delivers a 3⇥ throughput improvement RocksDB in this ex-
periment. Meanwhile, under light loads SpanDB can easily
enable queue wait monitoring, with its head-server thread
directing other internal threads to sleep when necessary.

5.4 Recovery

We also tested SpanDB’s recovery by inserting system crashes
at random time points in our experiments. Specifically, we
verified that updates in a MemTable, which were persisted
to WAL on SD before a crash, could be correctly recovered
upon rebooting. Results show that SpanDB was successfully
recovered in all cases. Regarding performance, both SpanDB
and RocksDB achieve almost the same recovery speed, e.g.,
10.25s and 10.27s to recover a 4GB database, respectively.
It is reasonable as our earlier results show SPDK and ext4
deliver similar performance for large, sequential reads.

6 Related Work
Tiered storage. Multiple systems leverage tiering techniques
on heterogeneous devices, mainly developing general-purpose

USENIX Association 19th USENIX Conference on File and Storage Technologies 27

file systems, such as NVMFS [55], Strata [43], and Ziggu-
rat [75], transparently operating across NVRAM, SSD, and
HDD layers. SpanDB is similar in exploiting the low latency
of fast devices and the high bandwidth/capacity of slower
ones. Its major novelty, meanwhile, lies in its KV-specific
optimizations, many above the block storage layer. Also, its
design addresses performance constraints brought by high-
end commodity SSDs (as well as the new SPDK interface),
rather than NVRAM units often emulated in evaluation.

HiLSM [47] and MatrixKV [70] use hybrid storage devices
for KV. However, they both only intend to use a small portion
of a fast and expensive NVM device. In addition, they target
byte-addressable NVM as the fast device, while SpanDB
focuses on the efficient utilization of NVMe SSDs, which
currently offer much wider commodity hardware choices and
significantly lower cost.

Existing work has deployed LSM-tree based KV stores
across multiple devices. For example, Mutant [71] ranks SST
files by popularity and places them on different cloud storage
devices. PrismDB [56] makes LSM-trees “read-aware” by
pinning hot objects to fast devices. SpanDB is similar in
placing the top-level SST files to fast devices, but significantly
differs from them by focusing more on write processing (often
harder to scale [13, 32]). To this end, it encompasses many
new, NVMe-oriented optimizations such as leveraging SPDK,
parallel logging, and adaptive flush/compaction.
KV stores optimizations for fast, homogeneous storage.
Many recent KV systems target low-latency, non-volatile
storage, mostly by designing novel data structures, such as
UniKV [73], LSM-trie [67], SlimDB [58], FloDB [10], Peb-
blesDB [57], KVell [46], and SplinterDB [15]. As WAL cre-
ates a major performance bottleneck, many of them turned
off WAL in evaluation, while KVell completely removed the
commit log. This may lead to data inconsistency and a lack
of transaction support. SpanDB instead retains the data struc-
ture and semantics of the mainstream LSM-tree based design.
Moreover, the above systems assume homogeneous deploy-
ment, while SpanDB promotes heterogeneous storage that
supplements older, slower devices with small, high-end ones.

Several systems deploy hardware solutions. X-Engine [32,
74] leverages hardware acceleration such as FPGA-
accelerated compaction. KVSSD [40] and PinK [35] further
offload KV management to specialized hardware, which are
not commercially available yet. SpanDB, on the other hand,
does not require special hardware support.

Another group of work optimizes KV stores on persis-
tent memory, including HiKV [68], NoveLSM [41], NVM-
Rocks [38], Bullet [34], SLM-DB [39], and FlatStore [14]. All
use emulators in implementation/evaluation except FlatStore,
which uses Intel Optane DCPMM. While KV stores directly
running on persistent memory have undeniable performance
advantages, hardware cost and capacity limit remain practi-
cal issues. The 256GB Optane DCPMM cost 3.12⇥ higher
(per GB) than the O disk used in our tests, and 40.5⇥ higher

than N1. Also, they require more expensive processors. These
systems, therefore, fit better read-intensive workloads with
moderate dataset sizes. Our work targets large databases with
substantial write traffic, and aims to deliver high performance
while keeping the overall hardware cost low.

Also, FlashStore [19] uses flash as a cache for KV
stores. MyNVM [21] reduces DRAM cache demand in My-
Rocks [24], building a second-layer cache on Optane SSD.
SpanDB’s SD, instead, is not designed to be a cache.
Logging optimizations. Wang et al. utilized NVM for
enhanced scalability via distributed logging [64]. NV-
Logging [33] proposes per-transaction logging to enable con-
current logging for multiple transactions. NVWAL [42] ex-
ploits NVM to speed up WAL writes in SQLite. Again the
above studies adopt emulation, and though now commod-
ity NVM products are available their cost remains high, as
discussed earlier. SpanDB, instead, improves WAL write per-
formance on widely adopted NVMe block devices.
Other related work. The Staged Event-Driven Architecture
(SEDA) decomposes request processing into a sequence of
stages and use queues to pipeline, parallelize, and coordinate
their execution [65]. Similar ideas have been used in many
systems, including DeepFlash [72] and ours.

There are many studies optimizing LSM-tree based KV
stores, such as SILK [9] (I/O scheduling to reduce the inter-
ference between client and background tasks), Monkey [17]
and ElasticBF [48] (adopting dynamic bloom filter sizes to
minimize lookup cost), TRIAD [8] (exploring workload skew-
ness to reduce flush/compaction overhead), WiscKey [51]
(separating keys and values to speedup sequential/random
accesses), and HashKV [13] (WiscKey optimization target-
ing update-intensive workloads). Our work is orthogonal and
complementary to the above techniques.

7 Conclusion
In this work, we explored a “poor man’s design" that deploys
a small and expensive high-speed SSD at the most-needed
locations of a KV store, while leaving the majority of data
on larger, cheaper, and slower devices. Our results reveal that
the mainstream LSM-tree based design can be significantly
improved to take advantage of such partial hardware upgrade
(while retaining the major data structures and algorithms, as
well as many orthogonal optimizations).

Acknowledgment
We sincerely thank all anonymous reviewers for their insight-
ful feedback and especially thank our shepherd Angelos Bilas
for his guidance in our camera-ready preparation. We thank
Sam H. Noh for helpful discussions during his visit to QCRI.
We also thank Sen Zheng of Zhongjia IT, for his valuable
technical support during the COVID-19 lockdown. This work
was supported in part by National Nature Science Founda-
tion of China through grant No. 61832011, 61772486, and
61802358.

28 19th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] A Persistent Key-Value Store for Fast Storage Envi-

ronments. https://rocksdb.org/. "[accessed-Sept-
2020]".

[2] Benchmarking Apache Samza. https:

//engineering.linkedin.com/performance/b
enchmarking-apache-samza-12-million-messa

ges-second-single-node. "[accessed-Sept-2020]".

[3] Group Commit for the Binary Log. https:

//mariadb.com/kb/en/group-commit-for-the
-binary-log/. "[accessed-Sept-2020]".

[4] MySQL Reference Manual. https://dev.mysql.c
om/doc/refman/5.7/en/replication-options-b
inary-log.html#sysvar_binlog_order_commits.
"[accessed-Sept-2020]".

[5] RocksDB on Steroids. https://www.i-programmer.i
nfo/news/84-database/8542-rocksdb-on-stero

ids.html. "[accessed-Sept-2020]".

[6] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. LinkBench: a Database
Benchmark Based on the Facebook Social Graph. In
Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, 2013.

[7] Andrew Audibert. Scalable Metadata Service
in Alluxio: Storing Billions of Files. https:

//www.alluxio.io/blog/scalable-metadata-ser
vice-in-alluxio-storing-billions-of-files/.
"[accessed-Sept-2020]".

[8] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: Creating Synergies
Between Memory, Disk and Log in Log Structured Key-
Value Stores. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), 2017.

[9] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. SILK: Preventing Latency Spikes in Log-
Structured Merge Key-Value Stores. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), 2019.

[10] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis,
and Igor Zablotchi. FloDB: Unlocking Memory in Per-
sistent Key-Value Stores. In Proceedings of the Twelfth
European Conference on Computer Systems, 2017.

[11] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat

Venkataramani. TAO: Facebook’s Distributed Data
Store for the Social Graph. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13), June 2013.

[12] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, Modeling, and Benchmarking
RocksDB Key-Value Workloads at Facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), 2020.

[13] Helen HW Chan, Chieh-Jan Mike Liang, Yongkun Li,
Wenjia He, Patrick PC Lee, Lianjie Zhu, Yaozu Dong,
Yinlong Xu, Yu Xu, Jin Jiang, et al. HashKV: Enabling
Efficient Updates in KV Storage via Hashing. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), 2018.

[14] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. FlatStore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 20),
2020.

[15] Alexander Conway, Abhishek Gupta, Vijay Chi-
dambaram, Martin Farach-Colton, Richard Spillane,
Amy Tai, and Rob Johnson. SplinterDB: Closing the
Bandwidth Gap for NVMe Key-Value Stores. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), 2020.

[16] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, 2010.

[17] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal Navigable Key-Value Store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, 2017.

[18] Jeff Dean. Designs, Lessons and Advice from Building
Large Distributed Systems. Keynote from LADIS, 2009.

[19] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flash-
Store: High Throughput Persistent Key-Value Store.
Proc. VLDB Endow., September 2010.

[20] Catello Di Martino, Zbigniew Kalbarczyk, Ravis-
hankar K Iyer, Fabio Baccanico, Joseph Fullop, and
William Kramer. Lessons Learned from the Analysis of
System Failures at Petascale: The Case of Blue Waters.
In 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2014.

USENIX Association 19th USENIX Conference on File and Storage Technologies 29

https://rocksdb.org/
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://mariadb.com/kb/en/group-commit-for-the-binary-log/
https://mariadb.com/kb/en/group-commit-for-the-binary-log/
https://mariadb.com/kb/en/group-commit-for-the-binary-log/
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html%23sysvar_binlog_order_commits
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html%23sysvar_binlog_order_commits
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html%23sysvar_binlog_order_commits
https://www.i-programmer.info/news/84-database/8542-rocksdb-on-steroids.html
https://www.i-programmer.info/news/84-database/8542-rocksdb-on-steroids.html
https://www.i-programmer.info/news/84-database/8542-rocksdb-on-steroids.html
https://www.alluxio.io/blog/scalable-metadata-service-in-alluxio-storing-billions-of-files/
https://www.alluxio.io/blog/scalable-metadata-service-in-alluxio-storing-billions-of-files/
https://www.alluxio.io/blog/scalable-metadata-service-in-alluxio-storing-billions-of-files/

[21] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing DRAM
Footprint with NVM in Facebook. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, 2018.

[22] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. I/O
Is Faster Than the CPU: Let’s Partition Resources and
Eliminate (Most) OS Abstractions. In Proceedings of
the Workshop on Hot Topics in Operating Systems, Ho-
tOS ’19, 2019.

[23] Facebook. Cassandra on RocksDB at Instagram.
https://developers.facebook.com/videos/
f8-2018/cassandra-on-rocksdb-at-instagram.
"[accessed-Sept-2020]".

[24] Facebook. MyRocks. http://myrocks.io/.
"[accessed-Sept-2020]".

[25] Facebook. Under the Hood: Building and Open-
sourcing RocksDB. https://www.facebook.com
/notes/facebook-engineering/under-the-h

ood-building-and-open-sourcing-rocksdb

/10151822347683920/. "[accessed-Sept-2020]".

[26] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong
Wang, Jun Wei, Ruirui Huang, Li Zhou, and Yongming
Wu. An Empirical Study on Crash Recovery Bugs in
Large-Scale Distributed Systems. In Proceedings of
the 2018 26th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018.

[27] Dieter Gawlick and David Kinkade. Varieties of Con-
currency Control in IMS/VS Fast Path. IEEE Database
Eng. Bull., 1985.

[28] Sanjay Ghemawat and Jeff Dean. LevelDB, A
Fast and Lightweight Key/Value Database Library
by Google. https://github.com/google/leveldb,
2014. "[accessed-Sept-2020]".

[29] Shashank Gugnani, Xiaoyi Lu, and Dhabaleswar K
Panda. Analyzing, Modeling, and Provisioning QoS for
NVMe SSDs. In 2018 IEEE/ACM 11th International
Conference on Utility and Cloud Computing (UCC).
IEEE, 2018.

[30] Robert Hagmann. Reimplementing the Cedar File Sys-
tem Using Logging and Group Commit. In Proceedings
of the eleventh ACM Symposium on Operating systems
principles, 1987.

[31] Kyuhwa Han, Hyukjoong Kim, and Dongkun Shin.
WAL-SSD: Address Remapping-Based Write-Ahead-
Logging Solid-State Disks. IEEE Transactions on Com-
puters, 2019.

[32] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang,
Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang,
Wei Cao, and Qiang Li. X-Engine: An Optimized Stor-
age Engine for Large-Scale E-Commerce Transaction
Processing. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19,
2019.

[33] Jian Huang, Karsten Schwan, and Moinuddin K Qureshi.
NVRAM-aware Logging in Transaction Systems. Pro-
ceedings of the VLDB Endowment, 2014.

[34] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo
Seltzer, Tim Harris, and Steve Byan. Closing the Perfor-
mance Gap Between Volatile and Persistent Key-Value
Stores Using Cross-Referencing Logs. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), 2018.

[35] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and
Sungjin Lee. PinK: High-speed In-storage Key-value
Store with Bounded Tails. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), July 2020.

[36] Intel. Breakthrough Performance for Demanding
Storage Workloads. https://www.intel.com/con
tent/dam/www/public/us/en/documents/produc

t-briefs/optane-ssd-905p-product-brief.pdf.
"[accessed-Sept-2020]".

[37] Intel. SPDK: Storage Performance Development Kit.
https://spdk.io/. "[accessed-Sept-2020]".

[38] Andrew Pavlo Jianhong Li and Siying Dong. NVM-
Rocks: RocksDB on Non-Volatile Memory Systems.
http://istc-bigdata.org/index.php/nvmrock
s-rocksdb-on-non-volatile-memory-systems/,
2017. "[accessed-Sept-2020]".

[39] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H Noh, and Young-Ri Choi. SLM-DB: Single-
Level Key-Value Store with Persistent Memory. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), 2019.

[40] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,
Yang-suk Kee, Francisco Londono, Sangyoon Oh,
Jongyeol Lee, and Daniel DG Lee. Towards Building
a High-Performance, Scale-In Key-Value Storage Sys-
tem. In Proceedings of the 12th ACM International
Conference on Systems and Storage, 2019.

[41] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for Nonvolatile Memory with Nov-
eLSM. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), July 2018.

30 19th USENIX Conference on File and Storage Technologies USENIX Association

https://developers.facebook.com/videos/f8-2018/cassandra-on-rocksdb-at-instagram
https://developers.facebook.com/videos/f8-2018/cassandra-on-rocksdb-at-instagram
http://myrocks.io/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/
https://github.com/google/leveldb
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://spdk.io/
http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/

[42] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beom-
seok Nam, and Youjip Won. NVWAL: Exploiting
NVRAM in Write-ahead Logging. ACM SIGOPS Oper-
ating Systems Review, 2016.

[43] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
2017.

[44] Avinash Lakshman and Prashant Malik. Cassandra:
A Decentralized Structured Storage System. ACM
SIGOPS Operating Systems Review, 2010.

[45] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W Lee, and Jinkyu Jeong. Asynchronous I/O Stack:
A Low-latency Kernel I/O Stack for Ultra-Low Latency
SSDs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 2019.

[46] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. KVell: the Design and Implementation of
a Fast Persistent Key-Value Store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
2019.

[47] Wenjie Li, Dejun Jiang, Jin Xiong, and Yungang Bao.
HiLSM: an LSM-based Key-Value Store for Hybrid
NVM-SSD Storage Systems. In Proceedings of the 17th
ACM International Conference on Computing Frontiers,
pages 208–216, 2020.

[48] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and
Yinlong Xu. ElasticBF: Elastic Bloom Filter with Hot-
ness Awareness for Boosting Read Performance in Large
Key-Value Stores. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019.

[49] Hyeontaek Lim, David G Andersen, and Michael Kamin-
sky. Towards Accurate and Fast Evaluation of Multi-
stage Log-structured Designs. In 14th USENIX Con-
ference on File and Storage Technologies (FAST 16),
2016.

[50] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. DistCache: Provable Load Balancing for Large-
Scale Storage Systems with Distributed Caching. In
17th USENIX Conference on File and Storage Technolo-
gies (FAST 19), February 2019.

[51] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. WiscKey: Separating Keys
from Values in SSD-conscious Storage. ACM Transac-
tions on Storage (TOS), 2017.

[52] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh,
and Peter Schwarz. ARIES: A Transaction Recovery
Method Supporting Fine-granularity Locking and Partial
Rollbacks Using Write-ahead Logging. ACM Transac-
tions on Database Systems (TODS), 1992.

[53] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Presented as part of the
10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), 2013.

[54] Steven Pelley, Thomas F Wenisch, Brian T Gold, and
Bill Bridge. Storage Management in the NVRAM Era.
Proceedings of the VLDB Endowment, 2013.

[55] S. Qiu and A. L. Narasimha Reddy. NVMFS: A Hybrid
File System for Improving Random Write in NAND-
flash SSD. In 2013 IEEE 29th Symposium on Mass
Storage Systems and Technologies (MSST), 2013.

[56] Ashwini Raina, Asaf Cidon, Kyle Jamieson, and
Michael J. Freedman. PrismDB: Read-aware Log-
structured Merge Trees for Heterogeneous Storage.
https://arxiv.org/abs/2008.02352, 2020. arXiv.

[57] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building Key-Value
Stores using Fragmented Log-Structured Merge Trees.
In Proceedings of the 26th Symposium on Operating
Systems Principles, 2017.

[58] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson.
SlimDB: A Space-Efficient Key-Value Storage Engine
for Semi-Sorted Data. Proceedings of the VLDB Endow-
ment, 2017.

[59] Samsung. Ultra-Low Latency with Samsung Z-NAND
SSD . https://www.samsung.com/us/labs/pdfs/
collateral/Samsung_Z-NAND_Technology_Brief

_v5.pdf. "[accessed-Sept-2020]".

[60] Dong Siying. Workload Diversity with RocksDB.
http://www.hpts.ws/papers/2017/hpts2017_roc
ksdb.pdf, 2017. "[accessed-Sept-2020]".

[61] SPDK. BlobFS (Blobstore Filesystem) - BlobFS Getting
Started Guide - RocksDB Integration. https://spdk
.io/doc/blobfs.html. "[accessed-Sept-2020]".

[62] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard,
Kurt B Ferreira, Jon Stearley, John Shalf, and Sudhanva
Gurumurthi. Memory Errors in Modern Systems: The
Good, the Bad, and the Ugly. ACM SIGARCH Computer
Architecture News, 2015.

USENIX Association 19th USENIX Conference on File and Storage Technologies 31

https://arxiv.org/abs/2008.02352
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
http://www.hpts.ws/papers/2017/hpts2017_rocksdb.pdf
http://www.hpts.ws/papers/2017/hpts2017_rocksdb.pdf
https://spdk.io/doc/blobfs.html
https://spdk.io/doc/blobfs.html

[63] Toshiba. Toshiba Memory Introduces XL-
FLASH Storage Class Memory Solution.
https://business.kioxia.com/en-us/news/2019/
memory-20190805-1.html. "[accessed-Sept-2020]".

[64] Tianzheng Wang and Ryan Johnson. Scalable Logging
through Emerging Non-Volatile Memory. Proceedings
of the VLDB Endowment, 2014.

[65] Matt Welsh, David Culler, and Eric Brewer. SEDA:
An Architecture for Well-Conditioned, Scalable Inter-
net Services. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, SOSP ’01,
2001.

[66] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. Towards an Unwritten Contract of Intel Op-
tane SSD. In 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 19), July 2019.

[67] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. LSM-
trie: An LSM-tree-based Ultra-Large Key-Value Store
for Small Data Items. In 2015 USENIX Annual Techni-
cal Conference (USENIX ATC 15), 2015.

[68] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: A Hybrid Index Key-Value Store for DRAM-
NVM Memory Systems. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17), 2017.

[69] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. SPDK:
A Development Kit to Build High Performance Storage
Applications. In 2017 IEEE International Conference
on Cloud Computing Technology and Science (Cloud-
Com). IEEE, 2017.

[70] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu
Tang, Hong Jiang, Changsheng Xie, and Xubin He. Ma-
trixKV: Reducing Write Stalls and Write Amplification
in LSM-tree Based KV Stores with Matrix Container in
NVM. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 17–31, 2020.

[71] Hobin Yoon, Juncheng Yang, Sveinn Fannar Kristjans-
son, Steinn E. Sigurdarson, Ymir Vigfusson, and Ada
Gavrilovska. Mutant: Balancing Storage Cost and La-
tency in LSM-Tree Data Stores. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’18, 2018.

[72] Jie Zhang, Miryeong Kwon, Michael Swift, and My-
oungsoo Jung. Scalable Parallel Flash Firmware for
Many-core Architectures. In 18th USENIX Conference
on File and Storage Technologies (FAST 20), February
2020.

[73] Qiang Zhang, Yongkun Li, Patrick P. C. Lee, Yinlong
Xu, Qiu Cui, and Liu Tang. UniKV: Toward High-
Performance and Scalable KV Storage in Mixed Work-
loads via Unified Indexing. In Proceedings of the 36th
IEEE International Conference on Data Engineering
(ICDE 2020), 2020.

[74] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng
He, Feifei Li, Wei Cao, et al. FPGA-Accelerated Com-
pactions for LSM-based Key-Value Store. In 18th
USENIX Conference on File and Storage Technologies
FAST 20), 2020.

[75] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: A Tiered File System for Non-
Volatile Main Memories and Disks. In 17th USENIX
Conference on File and Storage Technologies (FAST 19),
February 2019.

[76] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara
Liskov. Fast Databases with Fast Durability and Recov-
ery Through Multicore Parallelism. In 11th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), 2014.

32 19th USENIX Conference on File and Storage Technologies USENIX Association

https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html
https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html

Evolution of Development Priorities in Key-value Stores Serving
Large-scale Applications: The RocksDB Experience

Siying Dong†, Andrew Kryczka†, Yanqin Jin† and Michael Stumm‡

†Facebook Inc., 1 Hacker Way, Menlo Park, CA, U.S.A
‡University of Toronto, Toronto, Canada

Abstract
RocksDB is a key-value store targeting large-scale distributed
systems and optimized for Solid State Drives (SSDs). This pa-
per describes how our priorities in developing RocksDB have
evolved over the last eight years. The evolution is the result
both of hardware trends and of extensive experience running
RocksDB at scale in production at a number of organizations.
We describe how and why RocksDB’s resource optimization
target migrated from write amplification, to space amplifica-
tion, to CPU utilization. Lessons from running large-scale
applications taught us that resource allocation needs to be
managed across different RocksDB instances, that data for-
mat needs to remain backward and forward compatible to
allow incremental software rollout, and that appropriate sup-
port for database replication and backups are needed. Lessons
from failure handling taught us that data corruption errors
needed to be detected earlier and at every layer of the system.

1 Introduction

RocksDB [19, 54] is a high-performance persistent key-
value storage engine created in 2012 by Facebook, based
on Google’s LevelDB code base [22]. It is optimized for the
specific characteristics of Solid State Drives (SSDs), targets
large-scale (distributed) applications, and is designed as a
library component that is embedded in higher-level appli-
cations. As such, each RocksDB instance manages data on
storage devices of just a single server node; it does not handle
any inter-host operations, such as replication and load balanc-
ing, and it does not perform high-level operations, such as
checkpoints — it leaves the implementation of these opera-
tions to the application, but provides appropriate support so
they can do it effectively.

RocksDB and its various components are highly customiz-
able, allowing the storage engine to be tailored to a wide
spectrum of requirements and workloads; customizations can
include the write-ahead log (WAL) treatment, the compres-
sion strategy, and the compaction strategy (a process that

removes dead data and optimizes LSM-trees as described in
§2). RocksDB may be tuned for high write throughput or high
read throughput, for space efficiency, or something in between.
Due to its configurability, RocksDB is used by many appli-
cations, representing a wide range of use cases. At Facebook
alone, RocksDB is used by over 30 different applications, in
aggregate storing many hundreds of petabytes of production
data. Besides being used as a storage engine for databases
(e.g., MySQL [37], Rocksandra [6], CockroachDB [64], Mon-
goDB [40], and TiDB [27]), RocksDB is also used for the
following types of services with highly disparate characteris-
tics (summarized in Table 1):
• Stream processing: RocksDB is used to store stag-

ing data in Apache Flink [12], Kafka Stream [31],
Samza [43], and Facebook’s Stylus [15].
• Logging/queuing services: RocksDB is used by Face-

book’s LogDevice [5] (that uses both SSDs and HDDs),
Uber’s Cherami [8], and Iron.io [29].
• Index services: RocksDB is used by Facebook’s

Dragon [59] and Rockset [58].
• Caching on SSD: In-memory caching services, such as

Netflix’s EVCache [7], Qihoo’s Pika [51] and Redis [46],
store data evicted from DRAM on SSDs using RocksDB.

A prior paper presented an analysis of several database ap-
plications using RocksDB [11]. Table 2 summarizes some of
the key system metrics obtained from production workloads.

Having a storage engine that can support many different
use cases offers the advantage that the same storage engine
can be used across different applications. Indeed, having each
application build its own storage subsystem is problematic,
as doing so is challenging. Even simple applications need
to protect against media corruption using checksums, guar-
antee data consistency after crashes, issue the right system
calls in the correct order to guarantee durability of writes, and
handle errors returned from the file system in a correct man-
ner. A well-established common storage engine can deliver
sophistication in all those domains.

Additional benefits are achieved from having a common
storage engine when the client applications run within a com-

USENIX Association 19th USENIX Conference on File and Storage Technologies 33

Read/Write Read Types Special
Characteristics

Databases Mixed Get + Iterator Transactions
and backups

Stream Processing Write-Heavy Get or Iterator Time window
and checkpoints

Logging / Queues Write-Heavy Iterator Support HDD too

Index Services Read-Heavy Iterator Bulk loading

Cache Write-Heavy Get Can drop data

Table 1: RocksDB use cases and their workload characteristics

CPU Space Util Flash
Endurance

Read
Bandwidth

Stream Processing 11% 48% 16% 1.6%

Logging / Queues 46% 45% 7% 1.0%

Index Services 47% 61% 5% 10.0%

Cache 3% 78% 74% 3.5%

Table 2: System metrics for a typical use case from each
application category.

mon infrastructure: the monitoring framework, performance
profiling facilities, and debugging tools can all be shared. For
example, different application owners within a company can
take advantage of the same internal framework that reports
statistics to the same dashboard, monitor the system using the
same tools, and manage RocksDB using the same embedded
admin service. This consolidation not only allows expertise to
be easily reused among different teams, but also allows infor-
mation to be aggregated to common portals and encourages
developing tools to manage them.

Given the diverse set of applications that have adopted
RocksDB, it is natural that priorities for its development have
evolved. This paper describes how our priorities evolved over
the last eight years as we learned practical lessons from real-
world applications (both within Facebook and other organiza-
tions) and observed changes in hardware trends, causing us to
revisit some of our early assumptions. We also describe our
RocksDB development priorities for the near future.

§2 provides background on SSDs and Log-Structured
Merge (LSM) trees [45]. From the beginning, RocksDB chose
the LSM tree as its primary data structure to address the
asymmetry in read/write performance and the limited en-
durance of flash-based SSDs. We believe LSM-trees have
served RocksDB well and argue they will remain a good fit
even with upcoming hardware trends (§3). The LSM-tree data
structure is one of the reasons RocksDB can accommodate
different types applications with disparate requirements.

§3 describes how our primary optimization target shifted
from minimizing write amplification to minimizing space
amplification, and from optimizing performance to optimizing
efficiency.

§4 describes lessons we learned serving large-scale dis-
tributed systems; for example: (i) resource allocation must

be managed across multiple RocksDB instances, since a sin-
gle server may host multiple instances; (ii) data format must
be backward and forward compatible, since RocksDB soft-
ware updates are deployed/rolled-back incrementally; and
(iii) proper support for database replication and backups are
important.

§5 describes our experiences on failure handling. Large-
scale distributed systems typically use replication for fault
tolerance and high availability. However, single node failures
must be properly handled to achieve that goal. We have found
that simply identifying and propagating file system and check-
sum errors is not sufficient. Rather, faults (such as bitflips) at
every layer must be identified as early as possible and appli-
cations should be able to specify policies for handling them
in an automated way when possible.

§6 presents our thoughts on improving the key-value inter-
face. While the core interface is simple and powerful given
its flexibility, it limits the performance for some critical use
cases. We describe our support for user-defined timestamps
separate from the key and value.

§8 lists several areas where RockDB would benefit from
future research.

2 Background

The characteristics of flash have profoundly impacted the de-
sign of RocksDB. The asymmetry in read/write performance
and limited endurance pose challenges and opportunities in
the design of data structures and system architectures. As
such, RocksDB employs flash-friendly data structures and
optimizes for modern hardware.

2.1 Embedded storage on flash based SSDs

Over the last decade, we have witnessed the proliferation of
flash-based SSD for serving online data. The low latency
and high throughput device not only challenged software to
take advantage of its full capabilities, but also transformed
how many stateful services are implemented. An SSD offers
hundreds of thousands of Input/Output Operations per Second
(IOPS) for both of read and write, which is thousands of times
faster than a spinning hard drive. It can also support hundreds
of MBs of bandwidth. Yet high write bandwidth cannot be
sustained due to a limited number of program/erase cycles.
These factors provide an opportunity to rethink the storage
engine’s data structures to optimize for this hardware.

The high performance of the SSD, in many cases, also
shifted the performance bottleneck from device I/O to the
network for both of latency and throughput. It became more
attractive for applications to design their architecture to store
data on local SSDs rather than use a remote data storage ser-
vice. This increased the demand for a key-value store engines
that are embedded in applications.

34 19th USENIX Conference on File and Storage Technologies USENIX Association

L5_1 L4_2

L1_1 L1_2

L4_3 L4_4

L2_1 L2_2 L2_3 L2_4

L4_5 L4_6

L3_1 L3_2 L3_3 L3_4 L3_5 L3_6

L4_7 L4_8

L0_1 MemTableLevel 0

Level 1

Level 2

Level 3

Level 4

Figure 1: RocksDB LSM-tree using leveled compaction. Each
white box is an SSTable.

RocksDB was created to address these requirements. We
wanted to create a flexible key-value store to serve a wide
range of applications using local SSD drives while optimizing
for the characteristics of SSDs. LSM trees played a key role
in achieving these goals.

2.2 RocksDB architecture

RocksDB uses Log-Structured Merge (LSM) trees [45] as its
primary data structure to store data.

Writes. Whenever data is written to RocksDB, it is added
to an in-memory write buffer called MemTable, as well as an
on-disk Write Ahead Log (WAL). Memtable is implemented
as a skiplist so keep the data ordered with O(log n) insert and
search overhead. The WAL is used for recovery after a failure,
but is not mandatory. Once the size of the MemTable reaches
a configured size, then (i) the MemTable and WAL become
immutable, (ii) a new MemTable and WAL are allocated for
subsequent writes, (iii) the contents of the MemTable are
flushed to a “Sorted String Table” (SSTable) data file on disk,
and (iv) the flushed MemTable and associated WAL are dis-
carded. Each SSTable stores data in sorted order, divided into
uniformly-sized blocks. Each SSTable also has an index block
with one index entry per SSTable block for binary search.

Compaction. The LSM tree has multiple levels of SSTa-
bles, as shown in Fig. 1. The newest SSTables are created
by MemTable flushes and placed in Level-0. Levels higher
than Level-0 are created by a process called compaction. The
size of SSTables on a given level are limited by configura-
tion parameters. When level-L’s size target is exceeded, some
SSTables in level-L are selected and merged with the over-
lapping SSTables in level-(L+1). In doing so, deleted and
overwritten data is removed, and the table is optimized for
read performance and space efficiency. This process grad-
ually migrates written data from Level-0 to the last level.
Compaction I/O is efficient as it can be parallelized and only
involves bulk reads and writes of entire files.

Level-0 SSTables have overlapping key ranges, as each
SSTable covers a full sorted run. Later levels each contain
only one sorted run so the SSTables in these levels contain a
partition of their level’s sorted run.

Reads. In the read path, a key lookup occurs at each suc-
cessive level until the key is found or it is determined that the

Compaction W
ri

te
A

m
pl

ifi
ca

tio
n

M
ax

Sp
ac

e
O

ve
rh

ea
d

A
vg

Sp
ac

e
O

ve
rh

ea
d

#I
/O

pe
r

G
et

()
w

ith
bl

oo
m

fil
te

r

#
I/

O
pe

r
G

et
()

w
ith

ou
tfi

lte
r

#
I/

O
pe

r
ite

ra
to

rs
ee

k

Leveled 16.07 9.8% 9.5% 0.99 1.7 1.84
Tiered 4.8 94.4% 45.5% 1.03 3.39 4.80
FIFO 2.14 N/A N/A 1.16 528 967

Table 3: Write amplification, overhead and read I/O for three
major compaction types under RocksDB 5.9. Number of
sorted runs is set to 12 for Tiered Compaction, and 20 bloom
filter bits per key are used for FIFO Compaction. Direct I/O is
used and block cache size is set to be 10% of fully compacted
DB size. Write amplification is calculated as total SSTable file
writes vs number of Mem-Table bytes flushed. WAL writes
are not included.

key is not present in the last level. It begins by searching all
MemTables, followed by all Level-0 SSTables, and then the
SSTables in successively higher levels. At each of these levels,
binary search is used. Bloom filters are used to eliminate an
unnecessary search within an SSTable file. Scans require that
all levels be searched.

RocksDB supports multiple different types of compaction.
Leveled Compaction was adapted from LevelDB and then
improved [19]. In this compaction style, levels are assigned
exponentially increasing size targets as exemplified by the
dashed boxes in Fig. 1. Tiered Compaction (called Univer-
sal Compaction in RocksDB) is similar to what is used by
Apache Cassandra or HBase. Multiple sorted runs are lazily
compacted together, either when there are too many sorted
runs, or the ratio between total DB size over the size of the
largest sorted run exceeds a configurable threshold. Finally,
FIFO Compaction simply discards old files once the DB hits
a size limit and only performs lightweight compactions. It
targets in-memory caching applications.

Being able to configure the type of compaction allows
RocksDB to serve a wide range of use cases. By using differ-
ent compaction styles, RocksDB can be configured as read
friendly, write friendly, or very write friendly for special cache
workloads. However, application owners will need to consider
trade-offs among the different metrics for their specific use
case [2]. A lazier compaction algorithm improves write am-
plification and write throughput, but read performance suffers,
while a more aggressive compaction sacrifices write perfor-
mance but allows for faster reads. Services like logging or
stream processing can use a write heavy setup while database
services need a balanced approach. Table 3 depicts this flexi-
bility by way of micro-benchmark results.

USENIX Association 19th USENIX Conference on File and Storage Technologies 35

0.01

0.1

1

10

100

0 5 10 15 20 25

W
rit

es
 p

er
 1

TB
 d

at
a

M
B/

s

Write Amplification

Tiered compaction Leveled compaction

Figure 2: Survey of write amplification and write rate across
42 randomly sampled ZippyDB and MyRocks applications.

3 Evolution of resource optimization targets

Here we describe how our resource optimization target
evolved over time: from write amplification to space am-
plification to CPU utilization.

Write amplification
When we started developing RocksDB, we initially focused
on saving flash erase cycles and thus write amplification,
following the general view of the community at the time
(e.g., [34]). This was rightly an important target for many ap-
plications, in particular for those with write-heavy workloads
(Table 1) where it continues to be an issue.

Write amplification emerges at two levels. SSDs them-
selves introduce write amplification: by our observations be-
tween 1.1 and 3. Storage and database software also generate
write amplification; this can sometimes be as high as 100
(e.g., when an entire 4KB/8KB/16KB page is written out for
changes of less than 100 bytes).

Leveled Compaction in RocksDB usually exhibits write
amplification between 10 and 30, which is several times better
than when using B-trees in many cases. For example, when
running LinkBench on MySQL, RocksDB issues only 5% as
many writes per transaction as InnoDB, a B-tree based storage
engine [37]. Still, write amplification in the 10–30 range is too
high for write-heavy applications. For this reason we added
Tiered Compaction, which brings write amplification down
to the 4–10 range, although with lower read performance; see
Table 3. Figure 2 depicts RocksDB’s write amplification under
different data ingestion rates. RocksDB application owners
often pick a compaction method to reduce write amplification
when the write rate is high, and compact more aggressively
when the write rate is low to achieve space efficiency and read
performance goals.

Space amplification
After several years of development, we observed that for most
applications, space utilization was far more important than
write amplification, given that neither flash write cycles nor
write overhead were constraining. In fact the number of IOPS
utilized in practice was low compared to what the SSD could

Dynamic Leveled LevelDB-style
Compaction Compaction

#
ke

ys
(m

ill
io

ns
)

Fu
lly

co
m

pa
c-

te
d

si
ze

(G
B

)

St
ea

dy
D

B
si

ze
(G

B
)

Sp
ac

e
ov

er
-

he
ad

(%
)

Fu
lly

co
m

pa
c-

te
d

si
ze

(G
B

)

St
ea

dy
D

B
si

ze
(G

B
)

Sp
ac

e
ov

er
-

he
ad

(%
)

200 12.0 13.5 12.4 12.0 15.1 25.6
400 24.0 26.9 11.8 24.0 26.9 12.2
600 36.0 40.4 12.2 36.4 42.5 16.9
800 48.0 54.2 12.7 48.3 57.9 19.7

1,000 60.1 67.5 12.4 60.3 73.8 22.4

Table 4: RocksDB space efficiency measured in a micro-
benchmark: data is prepopulated and each write is to a key
chosen randomly from the pre-populated key space. RocksDB
5.9 with all default options. Constant 2MB/s write rate.

provide (yet still high enough to make HDDs unattractive,
even when ignoring maintenance overhead). As a result, we
shifted our resource optimization target to disk space.

Fortunately, LSM-trees also work well when optimizing for
disk space due to their non-fragmented data layout. However,
we saw an opportunity to improve Leveled Compaction by re-
ducing the amount of dead data (i.e., deleted and overwritten
data) in the LSM tree. We developed Dynamic Leveled Com-
paction, where the size of each level in the tree is automati-
cally adjusted based on the actual size of the last level (instead
of setting the size of each level statically) [19]. This method
achieves better and more stable space efficiency than Leveled
Compaction. Table 3 shows space efficiency measured in a
random write benchmark: Dynamic Leveled Compaction lim-
its space overhead to 13%, while Leveled Compaction can
add more than 25% . Moreover, space overhead in the worst
case under Leveled Compaction can be as high as 90%, while
it is stable for dynamic leveling. In fact, for UDB, one of
Facebooks main databases, the space footprint was reduced
to 50% when InnoDB was replaced by RocksDB [36].

CPU utilization
An issue of concern sometimes raised is that SSDs have be-
come so fast that software is no longer able to take advantage
of their full potential. That is, with SSDs, the bottleneck has
shifted from the storage device to the CPU, so fundamental
improvements to the software are necessary. We do not share
this concern based on our experience, and we do not expect
it to become an issue with future NAND flash based SSDs
for two reasons. First, only a few applications are limited by
the IOPS provided by the SSDs; as discussed in §4.2, most
applications are limited by space.

Second, we find that any server with a high-end CPU has
more than enough compute power to saturate one high-end
SSD. RocksDB has never had an issue making full use of
SSD performance in our environment. Of course, it is possi-
ble to configure a system that results in the CPU becoming a

36 19th USENIX Conference on File and Storage Technologies USENIX Association

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Flash endurance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Read bandwidth

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Space

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU

Figure 3: Resource utilization across four metrics. Each line
represents a different deployment with a different workload.
Measurements were taken over the course of one month. All
numbers are the average across all hosts in the deployment.
CPU and read bandwidth are for the highest hour during the
month. Flash endurance and space utilization are average
across the entire month.

bottleneck; e.g., a system with one CPU and multiple SSDs.
However, effective systems are typically those configured to
be well-balanced, which today’s technology allows. Inten-
sive write-dominated workloads may also cause the CPU to
become a bottleneck. For some, this can be mitigated by con-
figuring RocksDB to use a more lightweight compression
option. For the other cases, the workload may simply not
be suitable for SSDs since it would exceed the typical flash
endurance budget that allows the SSD to last 2-5 years.

To confirm our view, we surveyed 42 different deployments
of ZippyDB [65] and MyRocks in production, each serving
a different application. Fig. 3 shows the result. Most of the
workloads are space constrained. Some are indeed CPU heavy,
but hosts are generally not fully utilized to leave headroom
for growth and handling data center or region-level failures
(or because of misconfigurations). Most of these deployments
include hundreds of hosts, so averages give an idea of the
resource needs for these use cases, considering that workloads
can be freely (re-)balanced among those hosts (§4).

Nevertheless, reducing CPU overheads has become an im-
portant optimization target, given that the low hanging fruit
of reducing space amplification has been harvested. Reduc-
ing CPU overheads improves the performance of the few
applications where the CPU is indeed constraining. More
importantly, optimizations that reduce CPU overheads allow
for hardware configurations that are more cost-effective —

until several years ago, the price of CPUs and memory was
reasonably low relative to SSDs, but CPU and memory prices
have increased substantially, so decreasing CPU overhead
and memory usage has increased in importance. Early efforts
to lower CPU overhead included the introduction of prefix
bloom filters, applying the bloom filter before index lookups,
and other bloom filter improvements. There remains room for
further improvement.

Adapting to newer technologies
New architectural improvements related to SSDs could eas-
ily disrupt RocksDB’s relevancy. For example, open-channel
SSDs [50, 66], multi-stream SSD [68] and ZNS [4] promise
to improve query latency and save flash erase cycles. How-
ever, these new technologies would benefit only a minority of
the applications using RocksDB, given that most applications
are space constrained, not erase cycle or latency constrained.
Further, having RocksDB accommodate these technologies
directly would challenge the unified RocksDB experience.
One possible path worth exploring would be to delegate the
accommodation of these technologies to the underlying file
system, perhaps with RocksDB providing additional hints.

In-storage computing potentially might offer significant
gains, but it is unclear how many RocksDB applications would
actually benefit from this. We suspect it would be challenging
for RocksDB to adapt to in-storage computing, likely requir-
ing API changes to the entire software stack to fully exploit.
We look forward to future research on how best to do this.

Disaggregated (remote) storage appears to be a much more
interesting optimization target and is a current priority. So
far, our optimizations have assumed the flash was locally at-
tached, as our system infrastructure is primarily configured
this way.However, faster networks currently allow many more
I/Os to be served remotely, so the performance of running
RocksDB with remote storage has become viable for an in-
creasing number of applications. With remote storage, it is
easier to make full use of both CPU and SSD resources at
the same time, because they can be separately provisioned
on demand (something much more difficult to achieve with
locally attached SSDs). As a result, optimizing RocksDB for
remote flash storage has become a priority. We are currently
addressing the challenge of long I/O latency by trying to con-
solidate and parallelize I/Os. We have adapted RocksDB to
handle transient failures, pass QoS requirements to underly-
ing systems, and report profiling information. However, more
work is needed.

Storage Class Memory (SCM) is a promising technology.
We are investigating how best to take advantage of it. Several
possibilities are worth considering: 1. use SCM as an exten-
sion of DRAM — this raises the questions of how best to
implement key data structures (e.g., block cache or memtable)
with mixed DRAM and SCM, and what overheads are intro-
duced when trying to exploit the offered persistency; 2. use
SCM as the main storage of the database, but we note that
RocksDB tends to be bottlenecked by space or CPU, rather

USENIX Association 19th USENIX Conference on File and Storage Technologies 37

than I/O; and 3. use SCM for the WALs, but this raises the
question of whether this use case alone justifies the costs
of SCM, considering that we only need a small staging area
before it is moved to SSD.

Main Data Structure Revisited
We continuously revisit the question of whether LSM-trees
remain appropriate, but continue to come to the conclusion
that they do. The price of SSDs hasn’t dropped enough to
change the space and flash endurance bottlenecks for most
use cases and the alternative of trading SSD usage with CPU
or DRAM only makes sense for a few applications. While the
main conclusion remains the same, we frequently hear users’
demands for write amplification lower than what RocksDB
can provide. Nevertheless, we noted that when object sizes
are large, write amplification can be reduced by separating
key and value (e.g. WiscKey [35] and ForrestDB [1]), so we
are adding this to RocksDB (called BlobDB).

4 Lessons on serving large-scale systems

RocksDB is a building block for a wide variety of large-scale
distributed systems with disparate requirements. Over time,
we learned that improvements were needed with respect to
resource management, WAL treatment, batched file deletions,
data format compatibility, and configuration management.

Resource management
Large-scale distributed data services typically partition the
data into shards that are distributed across multiple server
nodes for storage. The size of shards is limited, because a
shard is the unit for load balancing and replication, and be-
cause shards are copied between nodes atomically for this
purpose. As a result, each server node will typically host tens
or hundreds of shards. In our context, a separate RocksDB
instance is used to service each shard, which means that a
storage host will have many RocksDB instances running on it.
These instances can either all run in one single address space,
or each in its own address space.

The fact that a host may run many RocksDB instances
has implications on resource management. Given that the
instances share the host’s resources, the resources need to be
managed both globally (per host) and locally (per instance)
to ensure they are used fairly and efficiently. When running
in single process mode, having global resource limits is im-
portant, including for (1) memory for write buffer and block
cache, (2) compaction I/O bandwidth, (3) compaction threads,
(4) total disk usage and (5) file deletion rate (described below),
and such limits are potentially needed on a per-I/O device
basis. Local resource limits are also needed, for example to en-
sure that a single instance cannot utilize an excessive amount
of any resource. RocksDB allows applications to create one
or more resource controllers (implemented as C++ objects
passed to different DB objects) for each type of resource and
also do so on a per instance basis. Finally, it is important to

support prioritization among RocksDB instances to make sure
a resource is prioritized for the instances that need it most.

Another lesson learned when running multiple instances
in one process: liberally spawning unpooled threads can be
problematic, especially if the threads are long-lived. Having
too many threads increases the probability of CPU, causes
excessive context switching overhead, and makes debugging
extremely difficult, and I/O spikes. If a RocksDB instance
needs to perform some work using a thread that may go to
sleep or wait on a condition, then it is better to use a thread
pool where size and resource usage can be easily capped.

Global (per host) resource management is more challenging
when the RocksDB instances run in separate processes, given
that each shard only has local information. Two strategies can
be applied. First, each instance is configured to use resources
conservatively, as opposed to greedily. With compaction, for
example, each instance can initiate fewer compactions than
“normal,” ramping up only when compactions are behind. The
downside of this strategy is that the global resources may
not be fully exploited, leading to sub-optimal resource usage.
The second, operationally more challenging strategy is for
the instances to share resource usage information amongst
themselves and to adapt accordingly in an attempt to optimize
resource usage more globally. More work will be needed to
improve host-wide resource management in RocksDB.

WAL treatment
Traditional databases tend to force a write-ahead-log (WAL)
write upon every write operation to ensure durability. In con-
trast, large-scale distributed storage systems typically repli-
cate data for performance and availability, and they do so with
various consistency guarantees. For example, if copies of the
same data exist in multiple replicas, and one replica becomes
corrupted or inaccessible, then the storage system uses valid
replica(s) from other unaffected hosts to rebuild the replica of
the failed host. For such systems, RocksDB WAL writes are
less critical. Further, distributed systems often have their own
replication logs (e.g., Paxos logs), in which case RocksDB
WAL are not needed at all.

We learned it is helpful to provide options for tuning WAL
sync behavior to meet the needs of different applications.
Specifically, we introduced differentiated WAL operating
modes: (i) synchronous WAL writes, (i) buffered WAL writes,
and (i) no WAL writes at all. For buffered WAL treatment,
WAL is periodically written out to disk in the background at
low priority so as not to impact RocksDB’s traffic latencies.

Rate-limited file deletions
RocksDB typically interacts with the underlying storage de-
vice via a file system. These file systems are flash-SSD-aware;
e.g., XFS, with realtime discard, may issue a TRIM com-
mand [28] to the SSD whenever a file is deleted. TRIM com-
mands are commonly believed to improve performance and
flash endurance [21], as validated by our production experi-
ence. However, it may also cause performance issues. TRIM

38 19th USENIX Conference on File and Storage Technologies USENIX Association

is more disruptive than we originally thought: in addition
to updating the address mapping (most often in the SSD’s
internal memory), the SSD firmware also needs to write these
changes to FTL’s1 journal in flash, which in turn may trigger
SSD’s internal garbage collection, causing considerable data
movement with an attendant negative impact on foreground
IO latencies. To avoid TRIM activity spikes and associated
increases in I/O latency, we introduced rate limiting for file
deletion to prevent multiple files from being deleted simulta-
neously (which happens after compactions).

Data format compatibility
Large scale distributed applications run their services on many
hosts, and they expect zero downtime. As a result, software
upgrades are incrementally rolled out across the hosts; and
when issues arise, the updates are rolled back. In light of
continuous deployment [56], these software upgrades occur
frequently; RocksDB issues a new release once a month.For
this reason, it is important that the data on disk remain both
backward and forward compatible across the different soft-
ware versions. A newly upgraded (or rolled back) RocksDB
instance must be able to make sense of the data stored on disk
by the previous instance. Further, RocksDB data files may
need to be copied between distributed instances for replica
building or load balancing, and these instances may be run-
ning different versions. A lack of a forward compatibility
guarantee caused operational difficulties in some RocksDB
deployments, which led us to add the guarantee.

RocksDB goes to great lengths to ensure data remains both
forward and backward compatible (except for new features).
This is challenging both technically and process-wise, but we
have found the effort pays off. For backwards compatibility,
RocksDB must be able to understand all formats previously
written to disk; this adds software and maintenance complex-
ities. For forward compatibility, future data formats need to
be understood, and we aim to maintain forward compatibility
for at least one year. This can be achieved in part, by using
generic techniques, such as those used by Protocol Buffer [63]
or Thrift [62]. For configuration file entries, RocksDB needs
to be able to identify new fields and use best-effort guesses on
how to apply the configuration or when to discard. We con-
tinuously test different versions of RocksDB with different
versions of its data.

Managing configurations
RocksDB is highly configurable so that applications can op-
timize for their workload. However, we have found config-
uration management to be a challenge. Initially, RocksDB
inherited LevelDB’s method of configuring parameters where
the parameter options were directly embedded in the code.
This caused two problems. First, parameter options were often
tied to the data stored on disk, causing potential compatibility
issues when data files created using one option could not be
opened by a RocksDB instance newly configured with another

1FTL: Flash Translation Layer.

Compac- Compre- SSTable Plug-in
Config Area: tion I/O ssion file fcts

Configurations: 14 4 2 7 6

Table 5: The number of distinct configurations used across 39
ZippyDB deployments

option. Second, configuration options not explicitly specified
by the code were automatically set to RocksDB’s default val-
ues. When a RocksDB software update included changes to
the default configuration parameters (e.g., to increase memory
usage or compaction parallelism), applications would some-
times experience unexpected consequences.

To address these issues, RocksDB first introduced the abil-
ity for a RocksDB instance to open a database with a string
parameter that included configuration options. Later RocksDB
introduced support for optionally storing an options file along
with the database. We also introduced two tools: (i) a vali-
dation tool that validates whether the options for opening a
database was compatible with the target database; and (ii) a
migration tool rewrites a database to be compatible with the
desired options (although this tool is limited).

A more serious problem with RocksDB configuration man-
agement is the large number of configuration options. In the
early years of RocksDB, we made the design choice of sup-
porting a high degree of customization: we introduced many
new knobs, and introduced the support of pluggable compo-
nents, all to allow applications to realize their performance
potential. This proved to be a successful strategy for gaining
initial traction early on. However, a common complaint now
is that there are far too many options and that it is too difficult
to understand their effects; i.e., it has become very difficult to
specify an “optimal” configuration.

More daunting beyond having many configuration parame-
ters to tune is the fact that the optimal configuration depends
not just on the system that has RocksDB embedded, but also
on the workload generated by the applications above them.
Consider, for example, ZippyDB [65], an in-house developed,
large-scale distributed key-value store that uses RocksDB
on its nodes. ZippyDB serves numerous different applica-
tions, sometimes individually, sometimes in a multi-tenant
setup. Although significant efforts go into using uniform con-
figurations across all ZippyDB use cases wherever possible,
the workloads are so different for the different use cases, a
uniform configuration is not practically feasible when perfor-
mance is important. Table 5 shows that across the 39 ZippyDB
deployments we sampled, over 25 distinct configurations.

Tuning configuration parameters is also particularly chal-
lenging for systems with embedded RocksDB that are shipped
to third parties. Consider a third party using a database such
as MySQL or ZippyDB within one of their applications. The
third party will typically know very little about RocksDB
and how it is best tuned. And the database owners have little
appetite for tuning the systems of their clients.

USENIX Association 19th USENIX Conference on File and Storage Technologies 39

These real-world lessons triggered changes in our configu-
ration support strategy. We have spent considerable effort on
improving out-of-box performance and simplifying configura-
tions. Our current focus is on providing automatic adaptivity,
while continuing to support extensive explicit configuration,
given that RocksDB continues to server specialized applica-
tions. We note that pursuing adaptivity while retaining explicit
configurability creates significant code maintenance overhead,
we believe the benefits of having a consolidated storage en-
gine outweighs the code complexity.

Replication and backup support
RocksDB is a single node library. The applications that
use RocksDB are responsible for replication and backups
if needed. Each application implements these functions in
its own way (for legitimate reasons), so it is important that
RocksDB offer appropriate support these functions.

Bootstrapping a new replica by copying all the data from
an existing one can be done in two ways. First, all the keys
can be read from a source replica and then written to the desti-
nation replica (logical copying). On the source side, RocksDB
supports data scanning operations by offering the ability to
minimize the impact on concurrent online queries; e.g., by
providing the option to not cache the result of these operations
and thus prevent cache trashing. On the destination side, bulk
loading is supported and also optimized for this scenario.

Second, bootstrapping a new replica can be done by copy-
ing SSTables and other files directly (physical copying).
RocksDB assists physical copying by identifying existing
database files at a current point in time, and preventing them
from being deleted or mutated. Supporting physical copying
is an important reason RocksDB stores data on an underlying
file system, as it allows each application to use its own tools.
We believe the potential performance gains of RocksDB di-
rectly using a block device interface or heavily integrating
with FTL does not outweigh the aforementioned benefit.

Backup is an important feature for most databases and other
applications. For backups, applications have the same logi-
cal vs. physical choice as with replication. One difference
between backups and replication is that applications often
need to manage multiple backups. While most applications
implement their own backups (to accommodate their own
requirements), RocksDB provides a backup engine for appli-
cations to use if their backup requirements are simple.

We see two areas for further improvement in this area, but
both require changes to the key-value API; they are discussed
in §6. The first involves applying updates in a consistent
order on different replicas, which introduces performance
challenges. The second involves performance issues surround-
ing write requests that are issued one at a time and the fact
that replicas can fall behind and applications may wish these
replicas to catch up faster. Various solutions have been im-
plemented by different applications to address these issues,
but they all have limitations [20]. The challenge is that ap-
plications cannot issue writes out of order and do snapshot

reads with their own sequence numbers because RocksDB
does not currently support multi-versioning with user defined
timestamps.

5 Lessons on failure handling

Through production experience, we have learned three major
lessons about failure handling. First, data corruption needs to
be detected early to minimize the risk of data unavailability
or loss, and in doing so to pinpoint where the error originated.
Second, integrity protection must cover the entire system to
prevent silent corruptions from being exposed to RocksDB
clients or spreading to other replicas (see Fig. 4). Third, errors
need to be treated in a differentiated manner.

Frequency of silent corruptions
RocksDB users do not usually use data protection by SSD
(e.g. DIF/DIX) for performance reason, and storage media cor-
ruptions are detected by RocksDB block checksums, which
is a routine feature for all mature databases so we skip the
analysis here. CPU/memory corruption does happen rarely
and it is difficult to accurately quantify. Applications that use
RocksDB often run data consistency checks that compare
replicas for integrity. This catches errors, but those could have
been introduced either by RocksDB or by the client applica-
tion (e.g., when replicating, backing up, or restoring data).

We found that the frequency of corruptions introduced at
the RocksDB level can be estimated by comparing primary
and secondary indexes in MyRocks database tables that have
both; any inconsistencies whould have been introduced at
the RocksDB level, including CPU or memory corruptions.
Based on our measurements, corruptions are introduced at
the RocksDB level roughly once every three months for each
100PB of data. Worse, in 40% of those cases, the corruption
had already propagated to other replicas.

Data corruptions also occur when transferring data, often
because of software bugs. For example, a bug in the underly-
ing storage system when handling network failures, caused
us to see, over a period of time, roughly 17 checksum mis-
matches for every petabyte of physical data transferred.

Multi-layer protection
Data corruption needs to be detected as early as possible to
minimize downtime and data loss. Most RocksDB applica-
tions have their data replicated on multiple hosts; when a
checksum mismatch is detected, the corrupt replica is dis-
carded and replaced with a correct one. However, this is a
viable option only as long as a correct replica still exists.

Today, RocksDB checksums file data at multiple levels to
identify corruption in the layers beneath it. These, as well as
the planned application layer checksum, are shown in Fig. 4.
Multiple levels of checksums are important, primarily because
they help detect corruptions early and because they protect
against different types of threats. Block checksums, inherited

40 19th USENIX Conference on File and Storage Technologies USENIX Association

from LevelDB, prevent data corrupted at or below the file sys-
tem from being exposed to the client. File checksums, added
in 2020, protect against corruption caused by the underlying
storage system from being propagated to other replicas and
against corruption caused when transferring SSTable files
over the wire. For WAL files, handoff checksums enable effi-
cient early detection of corruptions at write time.

Block integrity. Each SSTable block or WAL fragment has
a checksum attached to it, generated when the data is created.
Unlike the file checksum that is verified only when the file is
moved, this checksum is verified every time the data is read,
due to its smaller scope. Doing so prevents data corrupted by
the storage layer from being exposed to RocksDB clients.

File integrity. File contents are particularly at risk of be-
ing corrupted during transfer operations; e.g., for backups or
when distributing SSTable files. To address this, SSTables are
protected by their own checksum, generated when the table
is created. An SSTable’s checksum is recorded in the meta-
data’s SSTable file entry, and is validated with the SSTable
file wherever it is transferred. However, we note that other
files, such as WAL files, are still not protected this way.

Handoff integrity. An established technique for detecting
write corruptions early is to generate a handoff checksum
on the data to be written to the underlying file system, and
pass it down along with the data, where it is verified by the
lower layers [48, 70]. We wish to protect WAL writes using
such a write API, since unlike SSTables, WALs benefit from
incremental validation on each append. Unfortunately, local
file systems rarely support this — some, specialized stacks,
such as Oracle ASM [49] do, however.

On the other hand, when running on remote storage, the
write API can be changed to accept a checksum, hooking into
the storage service’s internal ECC. RocksDB can use check-
sum combining techniques on the existing WAL fragment
checksums to efficiently compute a write handoff checksum.
Since our storage service performs write-time verification, we
expect it to be extremely infrequent for corruption detection
to be delayed until read time.

End-to-end protection
While the layers of protection described above prevent clients
from being exposed to corrupt data in many cases, they are not
comprehensive. One deficiency of the protections mentioned
so far is that data is unprotected above the file I/O layer; e.g.,
data in MemTable and the block cache. Data corrupted at this
level will be undetectable and thus will eventually be exposed
to the user. Further, flush or compaction operations can persist
corrupted data, making the corruption permanent.

Key-value integrity. To address this problem, we are cur-
rently implementing per-key-value checksums to detect cor-
ruptions that occur above the file I/O layer. This checksum
will be transferred along with the key/value wherever it is
copied, although we will elide it from file data where alterna-
tive integrity protection already exists.

Underlying
Storage

Memtables

Per K/V
checksums

SSTable

Block
checksums

SSTable

Block
checksums

DB Metadata

File
checksums

Another Replica

[Replica File Copy]
Check file checksums

Backup
Storage

[Backup/Restore]
Check file checksums

[Compaction]
check block and
K/V cksums

[Memtable
Flush]
Check K/V
checksums

Client

[Write]
Pass in K/V
Checksums

FS Handoff
Checksums

[Read]
Check block and
KV Checksums

Figure 4: Four Types of Checksums

Severity-based error handling
Most of the faults RocksDB encounters are errors returned by
the underlying storage system. These errors can stem from
a multitude of issues, from severe problems like a read-only
file system, to transient problems like a full disk or a network
error accessing remote storage. Early on, RocksDB reacted to
such issues either by simply returning error messages to the
client or by permanently halting all write operations.

Today, we aim to interrupt RocksDB operations only if the
error is not locally recoverable; e.g., transient network errors
should not require user intervention to restart the RocksDB
instance. To implement this, we improved RocksDB to peri-
odically retry resume operations after encountering an error
classified as transient. As a result, we obtain operational ben-
efits as clients do not need to manually mitigate RocksDB for
a significant portion of faults that occur.

6 Lessons on the key-value interface

The core key-value (KV) interface is surprisingly versatile.
Almost all storage workloads can be served by a datastore
with a KV API; we have rarely seen an application not able to
implement functionality using this interface. That is perhaps
why KV-stores are so popular. The KV interface is generic.
Both keys and values are variable-length byte arrays. Appli-
cations have great flexibility in determining what information
to pack into each key and value, and they can freely choose
from a rich set of encoding schemes. Consequently, it is the
application that is responsible for parsing and interpreting the
keys and values. Another benefit of the KV interface is its
portability. It is relatively easy to migrate from one key-value
system to another. However, while many use cases achieve op-
timal performance with this simple interface, we have noticed

USENIX Association 19th USENIX Conference on File and Storage Technologies 41

that it can limit performance for some applications.
For example, building concurrency control outside of

RocksDB is possible but hard to make efficient, especially if
two-phase-commit needs to be supported where some data
persistency is needed before committing the transaction. We
added transaction support for this reason, which is used by
MyRocks (MySQL+RocksDB). We continue to add features;
e.g., gap/next key locking and large transactions support.

In other cases, the limitation is caused by the key-value
interface itself. Accordingly, we have started to investigate
possible extensions to the basic key-value interface. One such
extension is support for user-defined timestamps.

Versions and timestamps
Over the last few years, we have come to understand the im-
portance of data versioning. We have concluded that version
information should become a first-class citizen in RocksDB,
in order to properly support features, such as multi-version
concurrency control (MVCC) and point-in-time reads. To
achieve this, RocksDB needs to be capable of accessing dif-
ferent versions efficiently.

So far, RocksDB has internally been using 56-bit sequence
numbers to identify different versions of KV-pairs. The se-
quence number is generated by RocksDB and incremented
on every client write (hence, all data is logically arranged
in sorted order). The client application cannot affect the se-
quence number. However RocksDB allows the application to
take a Snapshot of the DB, after which RocksDB guarantees
that all KV pairs that existed at the time of the snapshot will
persist until the snapshot is explicitly released by application.
As a result, multiple KV-pairs with the same key may co-exist,
differentiated by their sequence numbers.

This approach to versioning is inadequate as it does not
satisfy the requirements of many applications. To read from
a past state, a snapshot must have already been taken at the
previous point in time. RocksDB does not support taking
a snapshot of the past, since there is no API to specify a
time-point. Moreover, it is inefficient to support point-in-time
reads. Finally, each RocksDB instance assigns its own se-
quence numbers and snapshots can be obtained only on a per
instance basis. This complicates versioning for applications
with multiple, (possibly replicated) shards, each of which is a
RocksDB instance. In summary, it is essentially impossible to
create versions of data that offer cross-shard consistent reads.

Applications can work around these limitations by encod-
ing timestamps within the key or within the value. However,
they will experience performance degradations in either case.
Encoding within the key sacrifices performance for point-
lookups, while encoding within the value sacrifices perfor-
mance for out-of-order writes to the same key and complicates
the reading of old versions of keys. We believe application-
specified timestamps would better address these limitations,
where the application can tag its data with timestamps that
can be understood globally, and do so outside the key or value.

We have added basic support for application-specified

workload throughput gain

fill_seq + read_random 1.2
fill_seq + read_while_writing 1.9
fill_random + read_random 1.9
fill_random +read_while_writing 2.0

Table 6: DB_bench microbenchmark using the timestamp
API sees ≥ 1.2X throughput improvement.

timestamp and evaluated this approach with DB-Bench. The
results are shown in Table 6. Each workload has two steps:
the first step populates the database, and we measure perfor-
mance during the second step. For example, in “fill_seq +
read_random”, we populate the initial database by writing
a number of keys in ascending order, and in step 2 perform
random read operations. Relative to the baseline, where the
application encodes a timestamp as part of the key (transpar-
ent to RocksDB), the application-specified timestamp API can
lead to a 1.2X or better throughput gain. The improvements
arise from treating the timestamp as metadata separate from
the user key, because then point lookups can be used instead
of iterators to get the newest value for a key, and Bloom filters
may identify SSTables not containing that key. Additionally,
the timestamp range covered by an SSTable can be stored in
its properties, which can be leveraged to exclude SSTables
that could only contain stale values.

We hope this feature will make it easier for users to imple-
ment multi-versioning in their systems for single node MVCC,
distributed transactions, or resolving conflicts in multi-master
replication. The more complicated API, however, is less
straightforward to use and perhaps prone to misuse. Further,
the database would consume more disk space than storing no
timestamp, and would be less portable to other systems.

7 Related Work

Our work on RocksDB has benefited from a broad range of
research in a number of areas.

Storage Engine Libraries
Many storage engine have been built as a library to be embed-
ded in applications. RocksDB’s KV interface is more prim-
itive than, for example, BerkeleyDB [44], SQLite [47] and
Hekaton [18]. Further, RocksDB differs from these systems
by focusing on the performance of modern server workloads,
which require high throughput and low latency, and typically
run on high end SSDs and multicore CPUs. This differs from
systems with more general targets, or built for faster storage
media [18, 30].

Key-value stores for SSDs
Over the years, much effort has gone into optimizing key-
value stores, especially for SSDs. As early as 2011, SILT [34]
proposed a key-value store that balanced between memory
efficiency, CPU, and performance. ForestDB[45] uses HB+

42 19th USENIX Conference on File and Storage Technologies USENIX Association

trees to index on top of logs. TokuDB [32] and other databases
use FractalTree/Bε trees. LOCS [67], NoFTL-KV [66] and
FlashKV [69] target Open-Channel SSDs for improved per-
formance. While RocksDB benefited from these efforts, our
position and strategy for improving performance is different
and we continue to depend on LSM trees. Several studies have
compared the performance of RocksDB with other databases
such as InnoDB [41], TokuDB [19] [37], and WiredTiger [10].

LSM-tree improvements
Several systems also use LSM trees and improved their perfor-
mance. Write amplifications is often the primary optimization
goal; e.g., WiscKey [35], PebblesDB [52], IAM-tree [25] and
TRIAD [3]. These systems go further in optimizing for write
amplification than RocksDB which focuses more on trade-
offs among different metrics. SlimDB [53] optimized LSM
trees for space efficiency; RocksDB also focuses on deleting
dead data. Monkey [17] attempts to balance between DRAM
and IOPs. bLSM [57], VT-tree [60] and cLSM [24] optimize
for the general performance of LSM trees.

Large-scale storage systems
There are numerous distributed storage systems [13, 14, 16,
26,38,64]. They usually have complex architectures spanning
multiple processes, hosts and data centers. They are not di-
rectly comparable to RocksDB, a storage engine library on
a single node. Other systems (e.g.,MongoDB, MySQL [42],
Microsoft SQL Server [38]) can use modular storage engines;
they have addressed similar challenges to what RocksDB
faces, including failure handling and using timestamps.

Failure handling. Checksums are frequently used to detect
data corruption [9, 23, 42]. Our argument that we need both
end-to-end and handoff checksums still mirrors the classic
end-to-end argument [55] and is similar to the strategy used
by others: [61], ZFS [71], Linux [48] and [70]. Our argument
for earlier corruption detection is similar to [33] which argues
that domain-specific checking is inadequate.

Timestamp support. Several storage systems provide times-
tamp support: HBase [26], WiredTiger [39] and BigTable [14];
Cassandra [13] supports a timestamp as an ordinary column.
In these systems, timestamps are a count of the number of mil-
liseconds since the UNIX epoch. Hekaton [18] uses a mono-
tonically increasing counter to assign timestamps, which is
similar to the RocksDB sequence number. RocksDB’s on-
going work on a user timestamp can be complementary to
the aforementioned efforts. We hope key-value APIs with a
user-defined timestamp extension can make it easier for upper-
level systems to support features related to data versioning
with low overhead in both performance and efficiency.

8 Future Work and Open Questions

Besides completing the improvements mentioned above, in-
cluding optimizing for dis-aggregated storage, key-value sepa-

ration, multi-level checksums and application-specified times-
tamps, we plan to unify leveled and tiered compaction and
improve adaptivity. However, a number of open questions
could benefit from further research.

1. How can we use SSD/HDD hybrid storage to improve
efficiency?

2. How can we mitigate the performance impact on readers
when there are many consecutive deletion markers?

3. How should we improve our write throttling algorithms?
4. Can we develop an efficient way of comparing two repli-

cas to ensure they contain the same data?
5. How can we best exploit SCM? Should we still use LSM

tree and how to organize storage hierarchy?
6. Can there be a generic integrity API to handle data hand-

off between RocksDB and the file system layer?

9 Conclusions

RocksDB has grown from a key-value store serving niche ap-
plications to its current position of widespread adoption across
numerous industrial large-scale distributed applications. The
LSM tree as the main data structure has served RocksDB
well, as it exhibits good write and space amplification. Our
view on performance has, however, evolved over time. While
write and space amplification remain the primary concern,
additional focus has shifted to CPU and DRAM efficiency, as
well as remote storage.

Lessons from running large-scale applications taught us
that resource allocation needs to be managed across different
RocksDB instances, that the data format needs to remain back-
ward and forward compatible to allow incremental software
deployments, that appropriate support for database replica-
tion and backups are needed, and that configuration manage-
ment needs to be straightforward and preferably automated.
Lessons from failure handling taught us that data corruption
errors need to be detected earlier and at every layer of the
system. The key-value interface enjoys great popularity for
its simplicity with some limitations in performance. Some
simple revisions to the interface might yield a better balance.

Acknowledgments

We attribute the success of RocksDB to all current and
past RocksDB team members at Facebook, all those who
made contributions in the open-source community, as well
as RocksDB users. We especially thank Mark Callaghan, the
mentor to the project for years, as well as Dhruba Borthakur,
the lead founding member of RocksDB. We also appreciate
comments to the paper by Jason Flinn and Mahesh Balakr-
ishnan. Finally, we thank our shepherd, Ethan Miller, and the
anonymous reviewers for their valuable feedback.

USENIX Association 19th USENIX Conference on File and Storage Technologies 43

A RocksDB Feature Timeline

 Performance Configurability Features
20

12

• Multi-threaded compactions
• Compaction filters
• Locking SSTables from

deletion

21
03

 • Tiered compaction
• Prefix Bloom filter
• Bloom Filter for MemTables
• Separate thread pool for

MemTable flush

 • Pluggable MemTable
• Pluggable file format

 • Merge Operator

20
14

 • FIFO compaction
• Compaction rate limiter
• Cache-friendly Bloom filters

• String-based config

options
• Dynamic config changes

• Backup engine
• Support for multiple key

spaces ("column family")
• Physical checkpoints

20
15

 • Dynamic leveled compaction
• File deletion rate limiting
• Parallel Level 0 and 1

compaction

• Separate config file
• Config compatibility

checker

• Bulk loading for SSTable
file integration

• Optimistic and
pessimistic transactions

20
16

 • Different compression for
last level

• Parallel MemTable inserts

• MemTable total size caps
across instances

• Compaction migration
tools

 • DeleteRange()

20
17

 • Separate thread pool for
bottom-most compactions

• Two-level file indices
• Level 0 to level 0

compactions

• Single memory limit for
both block cache and
MemTable

20
18

• Dictionary compression
• Hash index into data blocks

• Automatic recovery from
out-of-space errors

• Query trace and replay
tools

20
19

• Batched MultiGet() with
parallel I/O • Configure plug-in function

using object registry • Secondary instance

20
20

• Multithreaded single file
compression

• Entire file checksum
• Automatically recover

from retriable errors
• Partial support for user-

defined timestamps

44 19th USENIX Conference on File and Storage Technologies USENIX Association

B Recap of lessons learned

Some of the lessons we learned include:

1. It’s important that a storage engine can be tuned to fit different performance characteristics. (§1)

2. Space efficiency is the bottleneck for most applications using SSDs. (§3, Space amplification)

3. CPU overhead is becoming more important to allow systems to run more efficiently. (§3, CPU utilization)

4. Global, per host, resource management is necessary when many RocksDB instances run on the same host. (§4, Resource
management)

5. Having WAL treatment be configurable (synchronous WAL writes, buffered WAL writes or disabled WAL) offers applica-
tions performance advantages. (§4, WAL treatment)

6. The SSD TRIM operation is good for performance but file deletions need to be rate limited to prevent occasional performance
issues. (§4, Rate-limited file deletions)

7. RocksDB needs to provide both of backward and “forward” compatibility. (§4, Data format compatibility)

8. Automatic configuration adaptivity is helpful in simplifying configuration management. (§4, Managing configurations)

9. Data replication and backups need to be properly supported. (§4, Replication and backup support)

10. It is beneficial to detect data corruptions earlier, rather than eventually. (§5)

11. CPU/memory corruption does happen, though very rarely, and sometimes cannot be handled by data replication. (§5)

12. Integrity protection must cover the entire system in order to prevent corrupted data (e.g., caused by bitflips in CPU/memory)
from being exposed to clients or other replicas; detecting corruption only when the data is at rest or being sent over the wire
is insufficient. (§5)

13. Users often demand RocksDB to automatically recover from transient I/O errors, e.g. out-of-space or caused by network
problems. (§5)

14. Error handling needs to be treated in a differentiated manner, depending on their causes and consequences. (§5)

15. The key/value interface is versatile, but there are some performance limitation; adding a timestamp to key/value can offer a
good balance between performance and simplicity. (§6)

C Recap of design choices revisited

Some notable design choices revisited include:

1. Customizability is always good to users. (§4, Managing configurations)

2. RocksDB can be blind to CPU bit flips. (§5)

3. It’s OK to panic when seeing any I/O error. (§5)

USENIX Association 19th USENIX Conference on File and Storage Technologies 45

References

[1] Jung-Sang Ahn, Chiyoung Seo, Ravi Mayuram, Rahim
Yaseen, Jin-Soo Kim, and Seungryoul Maeng. ForestDB:
A fast key-value storage system for variable-length
string keys. IEEE Trans. on Computers, 65(3):902–915,
2015.

[2] Manos Athanassoulis, Michael S Kester, Lukas M Maas,
Radu Stoica, Stratos Idreos, Anastasia Ailamaki, and
Mark Callaghan. Designing access methods: The
RUM conjecture. In Proc. Intl. Conf on Extending
Database Technology (EDBT), volume 2016, pages 461–
466, 2016.

[3] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: Creating synergies
between memory, disk and log in log-structured key-
value stores. In Proc. USENIX Annual Technical Con-
ference (USENIX-ATC’17), pages 363–375, 2017.

[4] Matias Bjørling. Zone Append: A new way of writing
to zoned storage. In Proc. Usenix Linux Storage and
Filesystems Conference (VAULT’20), 2020.

[5] Facebook Engineering Blog. LogDevice: A distributed
data store for logs. https://engineering.fb.com/c
ore-data/logdevice-a-distributed-data-stor
e-for-logs/. [Online; retrieved September 2020].

[6] Instagram Engineering Blog. Open-sourcing a 10x
reduction in Apache Cassandra tail latency. https:
//instagram-engineering.com/open-sourcing-
a-10x-reduction-in-apache-cassandra-tail-l
atency-d64f86b43589. [Online; retrieved September
2020].

[7] Netflix Technology Blog. Application data caching
using SSDs: The Moneta project: Next generation EV-
Cache for better cost optimization. https://netf
lixtechblog.com/application-data-caching
-\protect\discretionary{\char\hyphenchar\f
ont}{}{}using-ssds-5bf25df851ef. [Online; re-
trieved September 2020].

[8] Uber Engineering Blog. Cherami: Uber Engineering’s
durable and scalable task queue in Go. https://en
g.uber.com/cherami-message-queue-system/.
[Online; retrieved September 2020].

[9] Dhruba Borthakur. HDFS architecture guide. Hadoop
Apache Project, 53(1-13):2, 2008.

[10] Mark Callaghan. MongoRocks and WiredTiger versus
LinkBench on a small server. http://smalldatum.b
logspot.com/2016/10/mongorocks-and-wiredti
ger-versus.html. [Online; retrieved Jan 2021].

[11] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, modeling, and bench-
marking RocksDB key-value workloads at Facebook. In
18th USENIX Conf. on File and Storage Technologies
(FAST’20), pages 209–223, February 2020.

[12] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
Flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Com-
mittee on Data Engineering, 36(4), 2015.

[13] Apache Cassandra. https://cassandra.apache.o
rg/. [Online; retrieved September 2020].

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM
Trans. on Computer Systems (TOCS), 26(2):1–26, 2008.

[15] Guoqiang Jerry Chen, Janet L Wiener, Shridhar Iyer, An-
shul Jaiswal, Ran Lei, Nikhil Simha, Wei Wang, Kevin
Wilfong, Tim Williamson, and Serhat Yilmaz. Realtime
data processing at Facebook. In Proc. Intl. Conf. on
Management of Data, pages 1087–1098, 2016.

[16] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s globally dis-
tributed database. ACM Trans. on Computer Systems
(TOCS), 31(3):1–22, 2013.

[17] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Proc.
Intl. Conf. on Management of Data (SIGMOD’17),
pages 79–94, 2017.

[18] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake
Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma,
and Mike Zwilling. Hekaton: SQL server’s memory-
optimized OLTP engine. In Proc. ACM SIGMOD Intl.
Conf. on Management of Data (SIGMOD’13), pages
1243–1254, 2013.

[19] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, Tony Savor, and Michael Stumm.
Optimizing space amplification in RocksDB. In Proc.
Conf. on Innovative Data Systems Research (CIDR’17),
2017.

[20] Jose Faleiro. The dangers of logical replication and a
practical solution. In Proc. 18th Intl. Workshop on High
Performance Transaction Systems (HPTS’19), 2019.

46 19th USENIX Conference on File and Storage Technologies USENIX Association

https://engineering.fb.com/core-data/logdevice-a-distributed-data-store-for-logs/
https://engineering.fb.com/core-data/logdevice-a-distributed-data-store-for-logs/
https://engineering.fb.com/core-data/logdevice-a-distributed-data-store-for-logs/
https://instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589
https://instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589
https://instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589
https://instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589
https://netflixtechblog.com/application-data-caching-\protect \discretionary {\char \hyphenchar \font }{}{}using-ssds-5bf25df851ef
https://netflixtechblog.com/application-data-caching-\protect \discretionary {\char \hyphenchar \font }{}{}using-ssds-5bf25df851ef
https://netflixtechblog.com/application-data-caching-\protect \discretionary {\char \hyphenchar \font }{}{}using-ssds-5bf25df851ef
https://netflixtechblog.com/application-data-caching-\protect \discretionary {\char \hyphenchar \font }{}{}using-ssds-5bf25df851ef
https://eng.uber.com/cherami-message-queue-system/
https://eng.uber.com/cherami-message-queue-system/
http://smalldatum.blogspot.com/2016/10/mongorocks-and-wiredtiger-versus.html
http://smalldatum.blogspot.com/2016/10/mongorocks-and-wiredtiger-versus.html
http://smalldatum.blogspot.com/2016/10/mongorocks-and-wiredtiger-versus.html
https://cassandra.apache.org/
https://cassandra.apache.org/

[21] Tasha Frankie, Gordon Hughes, and Ken Kreutz-
Delgado. A mathematical model of the trim command
in NAND-flash SSDs. In Proc. 50th Annual Southeast
Regional Conference (ACM-SE’12), pages 59–64, 2012.

[22] S. Ghemawat and J. Dean. LevelDB. https://github
.com/google/leveldb, 2011.

[23] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In Proc. 19th ACM Symp.
on Operating systems principles (SOSP’13), pages 29–
43, 2003.

[24] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and
Idit Keidar. Scaling concurrent log-structured data
stores. In Proc. European Conf. on Computer Systems
(EUROSYS’15), pages 1–14, 2015.

[25] Caixin Gong, Shuibing He, Yili Gong, and Yingchun Lei.
On integration of appends and merges in log-structured
merge trees. In Proc. 48th Intl. Conf. on Parallel Pro-
cessing (ICPP’19), pages 1–10, 2019.

[26] Apache HBase. https://hbase.apache.org/. [On-
line; retrieved September 2020].

[27] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu
Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Meng-
long Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun
Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng
Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin
Tang. TiDB: A Raft-based HTAP database. Proc. VLDB
Endow., 13(12):3072–3084, August 2020.

[28] Intel. Trim overview. https://www.intel.com/co
ntent/www/us/en/support/articles/000016148
/memory-and-storage.html. [Online; retrieved Jan
2021].

[29] Iron.io. Confluent https://www.iron.io. [Online;
retrieved September 2020].

[30] Hideaki Kimura. FOEDUS: OLTP engine for a thousand
cores and NVRAM. In Proc. SIGMOD Intl. Conf. on
Management of Data (SIGMOD’15), pages 691–706,
2015.

[31] Jay Kreps. Introducing Kafka Streams: Stream process-
ing made simple. Confluent https://www.conflu
ent.io/blog/introducing-kafka-streams-stre
am-processing-made-simple/. [Online; retrieved
September 2020].

[32] B Kuszmaul. How TokuDB fractal tree indexes work.
Technical report, Technical report, TokuTek, 2010.

[33] Chuck Lever. End-to-end data integrity requirements for
NFS. Oracle Corp. https://datatracker.ietf.o

rg/meeting/83/materials/slides-83-nfsv4-2.
[Online; retrieved September 2020].

[34] Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. SILT: A memory-efficient, high-
performance key-value store. In Proc. 23rd ACM Symp.
on Operating Systems Principles (SOSP’11), pages 1–
13, 2011.

[35] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Wisckey: Separating keys
from values in SSD-conscious storage. ACM Trans. on
Storage (TOS), 13(1):1–28, 2017.

[36] Yoshinori Matsunobu. Migrating a database from Inn-
oDB to MyRock. Facebook Engineering Blog https:
//engineering.fb.com/core-data/migrating
-a-database-from-innodb-to-myrocks/, 2017.
[Online; retrieved September 2020].

[37] Yoshinori Matsunobu, Siying Dong, and Herman Lee.
MyRocks: LSM-tree database storage engine serving
Facebook’s Social Graph. Proc. VLDB Endowment,
13(12):3217–3230, August 2020.

[38] Microsoft. Microsoft SQL Server. https://www.micr
osoft.com/en-us/sql-server/. [Online; retrieved
September 2020].

[39] MongoDB. WiredTiger Storage Engine. https://
docs.mongodb.com/manual/core/wiredtiger/.
[Online; retrieved September 2020].

[40] MongoRocks. RocksDB storage engine module for
MongoDB. https://github.com/mongodb-par
tners/mongo-rocks. [Online; retrieved September
2020].

[41] MySQL. Introduction to InnodeDB. https://dev.my
sql.com/doc/refman/5.6/en/innodb-introduct
ion.html. [Online; retrieved September 2020].

[42] MySQL. MySQL. https://www.mysql.com/. [On-
line; retrieved September 2020].

[43] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina
Ramesh, Jon Bringhurst, Indranil Gupta, and Roy H
Campbell. Samza: Stateful scalable stream processing at
LinkedIn. Proc. of the VLDB Endowment, 10(12):1634–
1645, 2017.

[44] Michael A Olson, Keith Bostic, and Margo I Seltzer.
Berkeley DB. In USENIX Annual Technical Conference,
FREENIX Track, pages 183–191, 1999.

[45] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (LSM-tree).
Acta Informatica, 33(4):351–385, 1996.

USENIX Association 19th USENIX Conference on File and Storage Technologies 47

https://github.com/google/leveldb
https://github.com/google/leveldb
https://hbase.apache.org/
https://www.intel.com/content/www/us/en/support/articles/000016148/memory-and-storage.html
https://www.intel.com/content/www/us/en/support/articles/000016148/memory-and-storage.html
https://www.intel.com/content/www/us/en/support/articles/000016148/memory-and-storage.html
https://www.iron.io
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://datatracker.ietf.org/meeting/83/materials/slides-83-nfsv4-2
https://datatracker.ietf.org/meeting/83/materials/slides-83-nfsv4-2
 https://engineering.fb.com/core-data/migrating-a-database-from-innodb-to-myrocks/
 https://engineering.fb.com/core-data/migrating-a-database-from-innodb-to-myrocks/
 https://engineering.fb.com/core-data/migrating-a-database-from-innodb-to-myrocks/
https://www.microsoft.com/en-us/sql-server/
https://www.microsoft.com/en-us/sql-server/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://github.com/mongodb-partners/mongo-rocks
https://github.com/mongodb-partners/mongo-rocks
https://dev.mysql.com/doc/refman/5.6/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-introduction.html
https://www.mysql.com/

[46] Keren Ouaknine, Oran Agra, and Zvika Guz. Optimiza-
tion of RocksDB for Redis on flash. In Proc. Intl. Conf.
on Compute and Data Analysis, pages 155–161, 2017.

[47] Mike Owens. The definitive guide to SQLite. Apress,
2006.

[48] Martin K Petersen. Linux data integrity extensions. In
Linux Symposium, volume 4, page 5, 2008.

[49] Martin K. Petersen and Sergio Leunissen. Eliminating
silent data corruption with Oracle Linux. Oracle Corp.
https://oss.oracle.com/~mkp/docs/data-inte
grity-webcast.pdf. [Online; retrieved September
2020].

[50] Ivan Luiz Picoli, Niclas Hedam, Philippe Bonnet, and
Pinar Tözün. Open-channel SSD (What is it good for).
In Proc. Conf. on Innovative Data Systems Research
(CIDR’20), 2020.

[51] Qihoo. Confluent https://github.com/Qihoo360/
pika. [Online; retrieved September 2020].

[52] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building key-value
stores using fragmented log-structured merge trees. In
Proc. 26th Symp. on Operating Systems Principles
(SOSP’17), pages 497–514, 2017.

[53] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson.
SlimDB: A space-efficient key-value storage engine
for semi-sorted data. Proc. of the VLDB Endowment
(VLDB’17), 10(13):2037–2048, 2017.

[54] RocksDB.org. A persistent key-value store for fast stor-
age environments. https://rocksdb.org. [Online;
retrieved September 2020].

[55] Jerome H Saltzer, David P Reed, and David D Clark.
End-to-end arguments in system design. ACM Trans. on
Computer Systems (TOCS), 2(4):277–288, 1984.

[56] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie
Williams, Kent Beck, and Michael Stumm. Continu-
ous deployment at Facebook and OANDA. In 2016
IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C), pages 21–30. IEEE,
2016.

[57] Russell Sears and Raghu Ramakrishnan. bLSM: a gen-
eral purpose log-structured merge tree. In Proc. Intl.
Conf. on Management of Data (SIGMOD’12), pages
217–228, 2012.

[58] Arun Sharma. How we use RocksDB at Rockset. Rock-
set Blog https://rockset.com/blog/how-we-use-
rocksdb-at-rockset/. [Online; retrieved September
2020].

[59] Arun Sharma. LogDevice: A distributed data store for
logs. Facebook Engineering Blog https://engine
ering.fb.com/data-infrastructure/dragon-
a-distributed-graph-query-engine/. [Online;
retrieved September 2020].

[60] Pradeep J Shetty, Richard P Spillane, Ravikant R Mal-
pani, Binesh Andrews, Justin Seyster, and Erez Zadok.
Building workload-independent storage with VT-trees.
In Proc. 11th USENIX Conf. on File and Storage Tech-
nologies (FAST’13), pages 17–30, 2013.

[61] Gopalan Sivathanu, Charles P Wright, and Erez Zadok.
Enhancing file system integrity through checksums.
Technical report, Citeseer, 2004.

[62] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski.
Thrift: Scalable cross-language services implementation.
Facebook White Paper, 5(8), 2007.

[63] Google Open Source. Protobuf. https://opensour
ce.google/projects/protobuf. [Online; retrieved
September 2020].

[64] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaf-
fray, Lucy Zhang, and Peter Mattis. CockroachDB: The
resilient geo-distributed SQL database. In Proc. ACM
SIGMOD Intl. Conf. on Management of Data (SIG-
MOD’20), page 1493–1509, 2020.

[65] Amy Tai, Andrew Kryczka, Shobhit O. Kanaujia,
Kyle Jamieson, Michael J. Freedman, and Asaf Cidon.
Who’s afraid of uncorrectable bit errors? Online re-
covery of flash errors with distributed redundancy. In
2019 USENIX Annual Technical Conference (USENIX
ATC’19), pages 977–992, Renton, WA, July 2019.

[66] Tobias Vinçon, Sergej Hardock, Christian Riegger, Ju-
lian Oppermann, Andreas Koch, and Ilia Petrov. NoFTL-
KV: Tackling write-amplification on KV-stores with
native storage management. In Proc. 21st Intl. Conf.
on Extending Database Technology (EDBT’18), pages
457–460, 2018.

[67] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An efficient
design and implementation of LSM-tree based key-value
store on open-channel SSD. In Proc. 9th European Conf.
on Computer Systems (EUROSYS’14, pages 1–14, 2014.

[68] Fei Yang, K Dou, S Chen, JU Kang, and S Cho. Multi-
streaming RocksDB. In Proc. Non-Volatile Memories
Workshop, 2015.

48 19th USENIX Conference on File and Storage Technologies USENIX Association

https://oss.oracle.com/~mkp/docs/data-integrity-webcast.pdf
https://oss.oracle.com/~mkp/docs/data-integrity-webcast.pdf
https://github.com/Qihoo360/pika
https://github.com/Qihoo360/pika
https://rocksdb.org
https://rockset.com/blog/how-we-use-rocksdb-at-rockset/
https://rockset.com/blog/how-we-use-rocksdb-at-rockset/
https://engineering.fb.com/data-infrastructure/dragon-a-distributed-graph-query-engine/
https://engineering.fb.com/data-infrastructure/dragon-a-distributed-graph-query-engine/
https://engineering.fb.com/data-infrastructure/dragon-a-distributed-graph-query-engine/
https://opensource.google/projects/protobuf
https://opensource.google/projects/protobuf

[69] Jiacheng Zhang, Youyou Lu, Jiwu Shu, and Xiongjun
Qin. FlashKV: Accelerating KV performance with open-
channel SSDs. ACM Trans on Embedded Computing
Systems (TECS), 16(5s):1–19, 2017.

[70] Yupu Zhang, Daniel S Myers, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. Zettabyte reli-
ability with flexible end-to-end data integrity. In Proc.
29th IEEE Symp. on Mass Storage Systems and Tech-
nologies (MSST’13), pages 1–14, 2013.

[71] Yupu Zhang, Abhishek Rajimwale, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. End-to-end
data integrity for file systems: A ZFS case study. In Proc.
8th USENIX Conf. on File and Storage Technologies
(FAST’10), pages 29–42, 2010.

USENIX Association 19th USENIX Conference on File and Storage Technologies 49

REMIX: Efficient Range Query for LSM-trees

Wenshao Zhong? Chen Chen? Xingbo Wu? Song Jiang†

?University of Illinois at Chicago †University of Texas at Arlington

Abstract
LSM-tree based key-value (KV) stores organize data in a
multi-level structure for high-speed writes. Range queries on
traditional LSM-trees must seek and sort-merge data from
multiple table files on the fly, which is expensive and often
leads to mediocre read performance. To improve range query
efficiency on LSM-trees, we introduce a space-efficient KV
index data structure, named REMIX, that records a globally
sorted view of KV data spanning multiple table files. A range
query on multiple REMIX-indexed data files can quickly
locate the target key using a binary search, and retrieve
subsequent keys in sorted order without key comparisons. We
build RemixDB, an LSM-tree based KV-store that adopts a
write-efficient compaction strategy and employs REMIXes for
fast point and range queries. Experimental results show that
REMIXes can substantially improve range query performance
in a write-optimized LSM-tree based KV-store.

1 Introduction

Key-value stores (KV-stores) are the backbone of many
cloud and datacenter services, including social media [1,
2, 8], real-time analytics [7, 10, 25], e-commerce [18], and
cryptocurrency [41]. The log-structured merge-tree (LSM-
tree) [38] is the core data structure of many KV-stores [9, 18,
20, 26, 34, 42]. In contrast to traditional storage structures
(e.g., B+-tree) that require in-place updates on disk, LSM-
trees follow an out-of-place update scheme which enables
high-speed sequential write I/O. They buffer updates in
memory and periodically flush them to persistent storage
to generate immutable table files. However, this comes with
penalties on search efficiency as keys in a range may reside in
different tables, potentially slowing down queries because of
high computation and I/O costs. The LSM-tree based designs
represent a trade-off between update cost and search cost [17],
maintaining a lower update cost but a much higher search cost
compared with a B+-tree.

Much effort has been made to improve query performance.
To speed up point queries, every table is usually associated
with memory-resident Bloom filters [4] so that a query can
skip the tables that do not contain the target key. However,

Bloom filters cannot handle range queries. Range filters such
as SuRF [49] and Rosetta [37] were proposed to accelerate
range queries by filtering out tables not containing any keys in
the requested range. However, when the keys in the requested
range reside in most of the candidate tables, the filtering
approach can hardly improve query performance, especially
for large range queries. Furthermore, the computation cost
of accessing filters can lead to mediocre performance when
queries can be answered by cache, which is often the case in
real-world workloads [2, 8, 13].

To bound the number of tables that a search request
has to access, LSM-trees keep a background compaction
thread to constantly sort-merge tables. The table selection is
determined by a compaction strategy. The leveled compaction
strategy has been adopted by a number of KV-stores, including
LevelDB [26] and RocksDB [20]. Leveled compaction sort-
merges smaller sorted runs into larger ones to keep the number
of overlapping tables under a threshold. In practice, leveled
compaction provides the best read efficiency but has a high
write amplification (WA) due to its aggressive sort-merging
policy. Alternatively, the tiered compaction strategy waits
for multiple sorted runs of a similar size and merges them
into a larger run. Tiered compaction provides lower WA and
higher update throughput. It has been adopted by many KV-
stores, such as Cassandra [34] and ScyllaDB [42]. Since tiered
compaction cannot effectively limit the number of overlapping
tables, it leads to much higher search cost compared with
leveled compaction. Other compaction strategies can better
balance the read and write efficiency [16, 17], but none of
them can achieve the best read and write efficiency at the
same time.

The problem lies in the fact that, to limit the number of
sorted runs, a store has to sort-merge and rewrite existing data.
Today’s storage technologies have shown much improved
random access efficiency. For example, random reads on
commodity Flash SSDs can exceed 50% of sequential read
throughput. New technologies such as 3D-XPoint (e.g., Intel’s
Optane SSD) offer near-equal performance for random and
sequential I/O [45]. As a result, KV-pairs do not have to be
physically sorted for fast access. Instead, a KV-store could
keep its data logically sorted for efficient point and range
queries while avoiding excessive rewrites.

USENIX Association 19th USENIX Conference on File and Storage Technologies 51

To this end, we design REMIX, short for Range-query-
Efficient Multi-table IndeX. Unlike existing solutions to
improve range queries that struggle between physically
rewriting data and performing expensive sort-merging on
the fly, a REMIX employs a space-efficient data structure to
record a globally sorted view of KV data spanning multiple
table files. With REMIXes, an LSM-tree based KV-store
can take advantage of a write-efficient compaction strategy
without sacrificing search performance.

We build RemixDB, a REMIX-indexed LSM-tree based
KV-store. Integrated with the write-efficient tiered com-
paction strategy and a partitioned LSM-tree layout, RemixDB
achieves low WA and fast searches at the same time.
Experimental results show that REMIXes can effectively
improve range query performance when searching on multiple
overlapping tables. Performance evaluation demonstrates that
RemixDB outperforms the state-of-the-art LSM-tree based
KV-stores on both read and write operations simultaneously.

2 Background

The LSM-tree is designed for high write efficiency on
persistent storage devices. It achieves high-speed writes by
buffering all updates in an in-memory structure, called a
MemTable. When the MemTable fills up, the buffered keys
will be sorted and flushed to persistent storage as a sorted
run by a process called minor compaction. Minor compaction
is write-efficient because updates are written sequentially in
batches without merging with existing data in the store. Since
the sorted runs may have overlapping key ranges, a point
query has to check all the possible runs, leading to a high
search cost. To limit the number of overlapping runs, an LSM-
tree uses a major compaction process to sort-merge several
overlapping runs into fewer ones.

A compaction strategy determines how tables are selected
for major compaction. The two most commonly used strate-
gies are leveled compaction and tiered compaction. A store
using leveled compaction has a multi-level structure where
each level maintains a sorted run consisting of one or more
tables. The capacity of a level (Ln) is a multiple (usually
10 [20]) of the previous one (Ln−1), which allows a huge
KV-store to be organized within a few levels (usually 5 to 7).
Leveled compaction makes reads relatively efficient, but it
leads to inferior write efficiency. Leveled compaction selects
overlapping tables from adjacent levels (Ln and Ln+1) for sort-
merging and generates new tables in the larger level (Ln+1).
Because of the exponentially increasing capacity, a table’s
key range often overlaps several tables in the next level. As a
result, the majority of the writes are for rewriting existing data
in Ln+1, leading to high WA ratios1 of up to 40 in practice [40].
Figure 1 shows an example of leveled compaction where

1WA ratio refers to write amplification ratio, or ratio of the amount of
actual data written on the disk to the amount of user-requested data written.

7 86 90L0

4 21 38 66 89 L1

6 26 31 40 46 76 88 9755 67L2

Seek 67:

67 76 88
89

86

Figure 1: An LSM-tree using leveled compaction

4 91
2 79 93

64 95

11 22 26 60 61 67 71 81 92

L0

L1

L2

56 94

37 43

3 38 45

57 68

7 24

6 16 23 79 88 98

Seek 67: 9179 94 956867

Figure 2: An LSM-tree using tiered compaction

each table contains two or three keys. If the first table in L1
(containing keys (4, 21, 38)) is selected for sort-merging
with the first two tables in L2 ((6,26) and (31,40,46)), five
keys in L2 will be rewritten.

With tiered compaction, multiple overlapping sorted runs
can be buffered in a level, as shown in Figure 2. The number of
runs in a level is bounded by a threshold denoted by T , where
T > 1. When the number of sorted runs in a level (Ln) reaches
the threshold, all sorted runs in Ln will be sort-merged into
a new sorted run in the next level (Ln+1), without rewriting
any existing data in Ln+1. Accordingly, an LSM-tree’s WA
ratio is O(L) using tiered compaction [15], where L is the
number of levels. With a relatively large T , tiered compaction
provides much lower WA than leveled compaction does with
a similar L. However, since there can be multiple overlapping
sorted runs in each level, a point query will need to check up
to T ×L tables, leading to a much slower search.

Range query in LevelDB/RocksDB is realized by using an
iterator structure to navigate across multiple tables as if all
the keys are in one sorted run. A range query first initializes
an iterator using a seek operation with a seek key, the lower
boundary of the target key range. The seek operation positions
the iterator so that it points to the smallest key in the store that
is equal to or greater than the seek key (in lexical order for
string keys), which is denoted as the target key of the range
query. The next operation advances the iterator such that it
points to the next key in the sorted order. A sequence of next
operations can be used to retrieve the subsequent keys in the
target range until a certain condition is met (e.g., number of
keys or end of a range). Since the sorted runs are generated
chronologically, a target key can reside in any of the runs.
Accordingly, an iterator must keep track of all the sorted runs.

Figure 1 shows an example of seek on an LSM-tree using
leveled compaction. To seek key 67, a binary search is used
on each run to identify the smallest key satisfying key ≥
seek_key. Each identified key is marked by a cursor. Then
these keys are sort-merged using a min-heap structure [23],
and thus the key 67 in L2 is selected. Subsequently, each next

52 19th USENIX Conference on File and Storage Technologies USENIX Association

operation will compare the keys under the cursors, return
the smallest one, and advance the corresponding cursor. This
process presents a globally sorted view of the keys, as shown
in the upper right corner of Figure 1. In this example, all
three levels must be accessed for the sort-merging. Figure 2
shows a similar example with tiered compaction. Having six
overlapping sorted runs, a seek operation is more expensive
than the previous example. In practice, the threshold T in
tiered compaction is often set to a small value, such as T = 4 in
ScyllaDB [42], to avoid having too many overlapping sorted
runs in a store.

3 REMIX

A range query operation on multiple sorted runs constructs
a sorted view of the underlying tables on the fly so that
the keys can be retrieved in sorted order. In fact, a sorted
view inherits the immutability of the table files and remains
valid until any of the tables are deleted or replaced. However,
existing LSM-tree based KV-stores have not been able to take
advantage of this inherited immutability. Instead, sorted views
are repeatedly reconstructed at search time and immediately
discarded afterward, which leads to poor search performance
due to excessive computation and I/O. The motivation of
REMIX is to exploit the immutability of table files by
retaining the sorted view of the underlying tables and reusing
them for future searches.

For I/O efficiency, the LSM-tree based KV-stores employ
memory-efficient metadata formats, including sparse indexes
and Bloom filters [4]. If we record every key and its location
to retain the sorted views in a store, the store’s metadata could
be significantly inflated, leading to compromised performance
for both reads and writes. To avoid this issue, the REMIX data
structure must be space-efficient.

3.1 The REMIX Data Structure

The top of Figure 3 shows an example of a sorted view
containing three sorted runs, R0, R1, and R2. The sorted
view of the three runs is illustrated by the arrows, forming a
sequence of 15 keys. To construct a REMIX, we first divide
the keys of a sorted view into segments, each containing
a fixed number of keys. Each segment is attached with an
anchor key, a set of cursor offsets, and a set of run selectors.
An anchor key represents the smallest key in the segment. All
the anchor keys collectively form a sparse index on the sorted
view. Each cursor offset corresponds to a run and records the
position of the smallest key in the run that is equal to or greater
than the segment’s anchor key. Each key in a segment has a
corresponding run selector, which indicates the run where the
key resides. The run selectors encode the sequential access
path of the keys on the sorted view, starting from the anchor
key of the segment.

6 7 17 29 73

4 31 43 52 67

2 11 23 71 91R0

R2

R1

2 (4 6 7)

R0: 0
R1: 0
R2: 0

11(17 23 29)

R0: 1
R1: 2
R2: 1

31(43 52 67)

R0: 3
R1: 4
R2: 1

71(73 91)

R0: 3
R1: 4
R2: 5

Anchor keys:

Cursor
offsets:

0, 2, 1, 1,Run Selectors: 0, 1, 0, 1, 2, 2, 2, 2, 0, 1, 0
Figure 3: A sorted view of three sorted runs with REMIX

An iterator for a REMIX does not use a min-heap. Instead,
an iterator contains a set of cursors and a current pointer. Each
cursor corresponds to a run and points to the location of a
key in the run. The current pointer points to a run selector,
which selects a run, and the cursor of the run determines the
key currently being reached.

It takes three steps to seek a key using an iterator on a
REMIX. First, a binary search is performed on the anchor
keys to find the target segment whose range covers the seek
key, satisfying anchor_key≤ seek_key. Second, the iterator is
initialized to point to the anchor key. Specifically, the cursors
are positioned using the cursor offsets of the segment, and
the current pointer is set to point to the first run selector of
the segment. Finally, the target key can be found by scanning
linearly on the sorted view. To advance the iterator, the cursor
of the current key is advanced to skip the key. Meanwhile,
the current pointer is also advanced to point to the next run
selector. After a seek operation, the subsequent keys on the
sorted view (within and beyond the target segment) can be
retrieved by advancing the iterator in the same manner.

Here is an example of a seek operation. As shown in
Figure 3, the four boxes on the bottom represent the REMIX
metadata that encodes the sorted view. Note that the keys
in parentheses are not part of the metadata. To seek key 17,
the second segment, which covers keys (11,17,23,29), is
selected with a binary search. Then the cursors are placed on
keys 11, 17, and 31 in R0, R1, and R2, respectively, according
to the segment’s cursor offsets ((1,2,1)). Meanwhile, the
current pointer is set to point to the first run selector of the
segment (0, the fifth selector in the figure), indicating that
the current key (11) is under the cursor of R0. Since 11 < 17,
the iterator needs to be advanced to find the smallest key k
satisfying k ≥ 17. To advance the iterator, the cursor on R0
is first advanced so that it skips key 11 and is now on key
23. The cursor offsets of the iterator now become 2, 2, and
1. Then, the current pointer is advanced to the second run
selector of the segment (1, the sixth selector in the figure).
The advanced iterator selects R1, and the current key 17 under
the cursor of R1 is the target key. This concludes the seek
operation. The subsequent keys (23, 29, 31, . . .) on the sorted
view can be retrieved by repeatedly advancing the iterator.

USENIX Association 19th USENIX Conference on File and Storage Technologies 53

3.2 Efficient Search in a Segment

A seek operation initializes the iterator with a binary search on
the anchor keys to find the target segment and scans forward
on the sorted view to look for the target key. Increasing
the segment size can reduce the number of anchor keys and
speed up the binary search. However, it can slow down seek
operations because scanning in a large target segment needs
to access more keys on average. To address the potential
performance issue, we also use binary search within a target
segment to minimize the search cost.

Binary Search To perform binary search in a segment, we
must be able to randomly access every key in the segment.
A key in a segment belongs to a run, as indicated by the
corresponding run selector. To access a key, we need to place
the cursor of the run in the correct position. This can be
done by counting the number of occurrences of the same
run selector in the segment prior to the key and advancing
the corresponding cursor the same number of times. The
number of occurrences can be quickly calculated on the fly
using SIMD instructions on modern CPUs. The search range
can be quickly reduced with a few random accesses in the
segment until the target key is identified. To conclude the seek
operation, we initialize all the cursors using the occurrences
of each run selector prior to the target key.

Figure 4 shows an example of a segment having 16
run selectors. The number shown below each run selector
represents the number of occurrences of the same run selector
prior to its position. For example, 41 is the third key in R3
in this segment, so the corresponding number of occurrences
is 2 (under the third “3”). To access key 41, we initialize the
cursor of R3 and advance it twice to skip 5 and 23.

To seek key 41 in the segment in Figure 4, keys 43, 17, 31,
and 41 will be accessed successively during the binary search,
as shown by the arrows and the circled numbers. Key 43 is
the eighth key in the segment and the fourth key of R3 in the
segment. To access key 43, we initialize the cursor of R3 and
advance it three times to skip keys 5, 23, and 41. Then, key 17
can be accessed by reading the first key on R2 in this segment.
Similarly, 31 and 41 are the second and third keys on R1 and
R3, respectively. In the end, all the cursors of the iterator are
initialized to point to the correct keys. In this example, the
cursors will finally be at keys 61, 53, 89, and 41, where 41 is
the current key.

①②

3 0 1 2 3 1 3 3 1 0 0 1 0 3 2 3
0 0 0 0 1 1 2 3 2 1 2 3 3 4 1 5

Run Selectors:
Occurrences:

R0:
R1:
R2:
R3:

7 6171 79
13 31 53 73

17 89
5 23 4143 83 97

③④Access order:

Figure 4: An example of binary search in a segment. The
circled numbers indicate the access order of the keys.

I/O Optimization Performing binary search in a segment
can minimize the number of key comparisons. However, the
keys on the search path may reside in different runs and must
be retrieved with separate I/O requests if the respective data
blocks are not cached. For example, the search in Figure 4
only needs four key comparisons but has to access three runs.
In fact, it is likely that keys 41, 43, and a few other keys of
R3 belong to the same data block. Accordingly, after a key
comparison, the search can leverage the remaining keys in
the same data block to further reduce the search range before
it has to access a different run. In this way, each of the six
keys in R3 can be found without accessing any other runs.
When searching for key 79, for example, accessing R3 can
narrow down the search to the range between key 43 and key
83, where key 79 can be found in R0 after a key comparison
with key 71.

3.3 Search Efficiency

REMIXes improve range queries in three aspects.

REMIXes find the target key using one binary search.
A REMIX provides a sorted view of multiple sorted runs.
Only one binary search on a REMIX is required to position
the cursors on the target keys in multiple runs. Whereas
in a traditional LSM-tree based KV-store, a seek operation
requires a number of binary searches on each individual
run. For example, suppose a store with four equally-sized
runs has N keys in each run. A seek operation without a
REMIX requires 4× log2 N key comparisons, while it only
takes log2 4N, or 2+ log2 N key comparisons with a REMIX.

REMIXes move the iterator without key comparisons.
An iterator on a REMIX directly switches to the next (or
the previous) KV-pair by using the prerecorded run selectors
to update the cursors and the current pointer. This process
does not require any key comparisons. Reading a KV-pair can
also be avoided if the iterator skips the key. In contrast, an
iterator in a traditional LSM-tree based KV-store maintains a
min-heap to sort-merge the keys from multiple overlapping
sorted runs. In this scenario, a next operation requires reading
keys from multiple runs for comparisons.

REMIXes skip runs that are not on the search path. A
seek operation with a REMIX requires a binary search in the
target segment. Only those sorted runs containing the keys
on the search path will be accessed at search time. In the best
scenario, if a range of target keys reside in one run, such as
the segment (31,43,52,67) in Figure 3, only one run (R2 in
the example) will be accessed. However, a merging iterator
must access every run in a seek operation.

Furthermore, the substantially reduced seek cost allows
for efficient point queries (e.g., GET) on multiple sorted
runs indexed by a REMIX without using Bloom filters. We
extensively evaluate the point query efficiency in §5.1.

54 19th USENIX Conference on File and Storage Technologies USENIX Association

3.4 REMIX Storage Cost

REMIX metadata consists of three components: anchor keys,
cursor offsets, and run selectors. We define D to be the
maximum number of keys in a segment. A REMIX stores one
anchor key for every D keys, requiring 1/D of the total key
size in a level on average. Assuming the size of a cursor offset
is S bytes, a REMIX requires S×H bytes to store the cursor
offsets for every D keys, where H denotes the number of runs
indexed by a REMIX. A run selector requires dlog2(H)e bits.
Adding all the three parts together, a REMIX is expected to
store ((L̄+SH)/D+ dlog2(H)e/8) bytes/key, where L̄ is the
average anchor key size.

We estimate the storage cost of a REMIX using the average
KV sizes publicly reported in Facebook’s production KV
workloads [2, 8]. In practice, S is implementation-defined,
and H depends on the number of tables being indexed. In the
estimation, we use cursor offsets of 4 bytes (S = 4) so that
a cursor offset can address 4 GB space for each sorted run.
We set the number of sorted runs to 8 (H = 8). With these
practical configurations, a REMIX stores ((L̄+32)/D+3/8)
bytes/key.

Table 1 shows the REMIX storage costs for each workload
with different D (D =16, 32, and 64). For comparison, it also
shows the storage cost of the block index (BI) and Bloom filter
(BF) of the SSTable format in LevelDB and RocksDB. Note
that table files indexed by REMIXes do not use block indexes
or Bloom filters. An SSTable stores a key and a block handle
for each 4 KB data block. The block index storage cost is
estimated by dividing the sum of the average KV size and an
approximate block handle size (4 B) by the estimated number
of KV-pairs in a 4 KB block. Bloom filters are estimated as
10 bits/key. The REMIX storage costs vary from 1.0 to 5.4
bytes/key for different D and L̄ values. For every key size,
increasing D can substantially reduce the REMIX storage cost.
The last column

(REMIX
data

)
shows the size ratio of a REMIX to

its indexed KV data. In the worst case (the USR store), the
REMIX’s size is still less than 10% of the KV data’s size.

Table 1: REMIX storage cost with real-world KV sizes. BI
stands for Block Index. BF stands for Bloom Filter. The last
column shows the size ratio of REMIX to the KV data.

Work-
load
[2, 8]

Avg.
Key
Size

Avg.
Value
Size

Bytes/Key REMIX
dataSSTable REMIX (H=8)

BI BI+BF D=16 32 64 (D=32)
UDB 27.1 126.7 1.2 2.4 4.1 2.2 1.3 1.44%
Zippy 47.9 42.9 1.2 2.4 5.4 2.9 1.6 3.16%
UP2X 10.45 46.8 0.2 1.5 3.0 1.7 1.0 2.97%
USR 19 2 0.1 1.4 3.6 2.0 1.2 9.38%
APP 38 245 2.9 4.2 4.8 2.6 1.5 0.91%
ETC 41 358 4.4 5.6 4.9 2.7 1.5 0.67%
VAR 35 115 1.4 2.7 4.6 2.5 1.4 1.65%
SYS 28 396 3.3 4.6 4.1 2.3 1.3 0.53%

4 RemixDB

To evaluate the REMIX performance, we implement an LSM-
tree based KV-store named RemixDB. RemixDB employs
the tiered compaction strategy to achieve the best write
efficiency [16]. Real-world workloads often exhibit high
spatial locality [2, 8, 47]. Recent studies have shown that a
partitioned store layout can effectively reduce the compaction
cost under real-world workloads [24, 31]. RemixDB adopts
this approach by dividing the key space into partitions of non-
overlapping key ranges. The table files in each partition are
indexed by a REMIX, providing a sorted view of the partition.
In this way, RemixDB is essentially a single-level LSM-tree
using tiered compaction. RemixDB not only inherits the write
efficiency of tiered compaction but also achieves efficient
reads with the help of REMIXes. The point query operation
(GET) of RemixDB performs a seek operation and returns the
key under the iterator if it matches the target key. RemixDB
does not use Bloom filters.

Figure 5 shows the system components of RemixDB. Sim-
ilarly to LevelDB and RocksDB, RemixDB buffers updates
in a MemTable. Meanwhile, the updates are also appended
to a write-ahead log (WAL) for persistence. When the size
of the buffered updates reaches a threshold, the MemTable is
converted into an immutable MemTable for compaction, and a
new MemTable is created to receive updates. A compaction in
a partition creates a new version of the partition that includes
a mix of new and old table files and a new REMIX file. The
old version is garbage-collected after the compaction.

In a multi-level LSM-tree design, the size of a MemTable
is often only tens of MBs, close to the default SSTable size. In
a partitioned store layout, larger MemTables can accumulate
more updates before triggering a compaction [3, 24], which
helps to reduce WA. The MemTables and WAL have near-
constant space cost, which is modest given the large memory
and storage capacity in today’s datacenters. In RemixDB, the
maximum MemTable size is set to 4 GB. In the following, we
introduce the file structures (§4.1), the compaction process
(§4.2), and the cost and trade-offs of using REMIXes (§4.3).

REMIX

Table file
Table file
Table file
Table file

REMIX

Table file
Table file

REMIX

Table file
Table file
Table file

Write-ahead Log
MemTable

Immutable
MemTable

Compaction

Figure 5: Overview of RemixDB

USENIX Association 19th USENIX Conference on File and Storage Technologies 55

4.1 The Structures of RemixDB Files
Table Files Figure 6 shows the table file format in
RemixDB. A data block is 4 KB by default. A large KV-pair
that does not fit in a 4 KB block exclusively occupies a jumbo
block that is a multiple of 4 KB. Each data block contains a
small array of its KV-pairs’ block offsets at the beginning of
the block for randomly accessing individual KV-pairs.

The metadata block is an array of 8-bit values, each
recording the number of keys in a 4 KB block. Accordingly, a
block can contain up to 255 KV-pairs. In a jumbo block,
except for the first 4 KB, the remaining ones have their
corresponding numbers set to 0 so that a non-zero number
always corresponds to a block’s head. With the offset arrays
and the metadata block, a search can quickly reach any
adjacent block and skip an arbitrary number of keys without
accessing the data blocks. Since the KV-pairs are indexed by
a REMIX, table files do not contain indexes or filters.

Table file

#keys #keys

block metadatablock block

#keys #keys
4 82 KV KV

Figure 6: Structure of a table file in RemixDB

REMIX Files Figure 7 shows the REMIX file format
in RemixDB. The anchor keys in a REMIX are orga-
nized in an immutable B+-tree-like index (similar to Lev-
elDB/RocksDB’s block index) that facilitates binary searches
on the anchor keys. Each anchor key is associated with a
segment ID that identifies the cursor offsets and run selectors
of a segment. A cursor offset consists of a 16-bit block index
and an 8-bit key index, shown as blk-id and key-id in
Figure 7. The block index can address up to 65,536 4-KB
blocks (256 MB). Each block can contain up to 256 KV-pairs
with the 8-bit key index.

Multiple versions of a key could exist in different table
files of a partition. A range query operation must skip the old
versions and return the newest version of each key. To this
end, in a REMIX, multiple versions of a key are ordered from
the newest to the oldest on the sorted view, and the highest
bit of each run selector is reserved to distinguish between
old and new versions. A forward scan operation will always
encounter the newest version of a key first, and then the old
versions can be skipped by checking the reserved bit of each
run selector without comparing any keys.

REMIX file

Cursor Offsets:

Run Selectors:

Sparse Index: (Anchor keys to Segment IDs)

0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1

blk-id key-id blk-id key-id blk-id key-id blk-id key-id

(Segment 1) (Segment 2)

(Segment 3)In this example: H=2, D=8

Figure 7: Structure of a REMIX file in RemixDB

If a key has multiple versions, these versions can span two
segments. A search may have to check both the segments to
retrieve the newest version of the key. To simplify searches
in this scenario, we move all the versions of the key forward
to the second segment by inserting special run selectors as
placeholders in the first segment when constructing a REMIX.
We also make sure that the maximum number of keys in a
segment is equal to or greater than the number of runs indexed
by a REMIX (D≥ H) so that every segment is large enough
to hold all the versions of a key.

To accommodate the special values mentioned above, each
run selector in RemixDB occupies a byte. The eighth and
seventh bits (0x80 and 0x40) of a run selector indicate an
old version and a deleted key (a tombstone), respectively. A
special value 63 (0x3f) represents a placeholder. In this way,
RemixDB can manage up to 63 sorted runs (0 to 62) in each
partition, which is sufficient in practice.

4.2 Compaction

In each partition, the compaction process estimates the
compaction cost based on the size of new data entering
the partition and the layout of existing tables. Based on the
estimation, one of the following procedures is executed:

• Abort: cancel the partition’s compaction and keep the new
data in the MemTables and the WAL.

• Minor Compaction: write the new data to one or multiple
new tables without rewriting existing tables.

• Major Compaction: merge the new data with some or all
of the existing tables.

• Split Compaction: merge the new data with all the existing
data and split the partition into a few new partitions.

Abort After a compaction, a partition that sees any new
table file will have its REMIX rebuilt. When a small table file
is created in a partition after a minor compaction, rebuilding
the REMIX can lead to high I/O cost. For example, the USR
workload in Table 1 has the highest size ratio of REMIX to
KV data (9.38%). Writing 100 MB of new data to a partition
with 1 GB of old table files will create a REMIX that is about
100 MB. To minimize the I/O cost, RemixDB can abort a
partition’s compaction if the estimated I/O cost is above a
threshold. In this scenario, the new KV data should stay in
the MemTables and the WAL until the next compaction.

However, in an extreme case, such as having a workload
with a uniform access pattern, the compaction process cannot
effectively move data into the partitions when most of the
partitions have their compactions aborted. To avoid this
problem, we further limit the size of new data that can stay
in the MemTables and WAL to be no more than 15% of the
maximum MemTable size. The compaction process can abort
the compactions that have the highest I/O cost until the size
limit has been reached.

56 19th USENIX Conference on File and Storage Technologies USENIX Association

New Data

New Table
Old Table
Old Table

Old Table
Old Table

REMIX

Minor
Compaction

Figure 8: Minor compaction

Major
Compaction

New Table

New Data

Old Table
Old Table

Old Table
Old Table

O. T.
O. T.
O. T.

Figure 9: Major compaction

Split
Compaction

New partitions

New TableNew Table
New Table New Table

New Data

Old Table
Old Table
Old Table
Old Table
Old Table

Figure 10: Split compaction

Minor Compaction A minor compaction writes new KV
data from the immutable MemTable into a partition without
rewriting existing table files and rebuilds the REMIX of
the partition. Depending on the new data’s size, a minor
compaction creates one or a few new table files. Minor
compaction is used when the expected number of table files
after the compaction (number of existing table files plus the
estimated number of new table files) is below a threshold T ,
which is 10 in our implementation. Figure 8 shows a minor
compaction example that creates one new table file.
Major Compaction A major (or split) compaction is
required when the expected number of table files in a partition
exceeds the threshold T . A major compaction sort-merges
existing table files into fewer ones. With a reduced number
of table files, minor compactions can be performed in the
future. The efficiency of a major compaction can be estimated
by the ratio of the number of input table files to the number
of output table files. Figure 9 shows a major compaction
example. In this example, the new data is merged with three
small table files, and only one new table file is created after the
compaction (ratio=3/1). If the entire partition is sort-merged,
the compaction needs to rewrite more data but still produces
three tables (ratio=5/3) because of the table file’s size limit.
Accordingly, major compaction chooses the number of input
files that can produce the highest ratio.
Split Compaction Major compaction may not effectively
reduce the number of tables in a partition filled with large
tables, which can be predicted by a low estimated input/output
ratio, such as 10/9. In this case, the partition should be
split into multiple partitions so that the number of tables in
each partition can be substantially reduced. Split compaction
sort-merges new data with all the existing table files in the
partition and produces new table files to form several new
partitions. Figure 10 shows a split compaction example. To

avoid creating many small partitions in a split compaction,
the compaction process creates M (M = 2 by default) new
table files in a partition before switching to the next partition.
In this way, a split compaction creates dE/Me new partitions,
where E is the number of new table files.

4.3 Rebuilding REMIXes

A partitioned store layout can effectively minimize the
compaction cost under real-world workloads with high spatial
locality [24, 31]. Specifically, RemixDB can absorb most of
the updates in a few partitions, and the compactions in the
partitions that receive fewer updates can be avoided (See §4.2).
However, if the workload lacks spatial locality, it is inevitable
that many partitions have to perform compactions with small
amounts of updates. Tiered compaction can minimize writes
in these partitions, but rebuilding the REMIX in a partition
still needs to read the existing tables. In our implementation,
RemixDB leverages the existing REMIX in the partition and
employs an efficient merging algorithm to minimize the I/O
cost of the rebuilding process.

When rebuilding the REMIX in a partition, the existing
tables are already indexed by the REMIX, and those tables
can be viewed as one sorted run. Accordingly, the rebuilding
process is equivalent to sort-merging two sorted runs, one
from the existing data and the other from the new data. When
the existing sorted run is significantly larger than the new
one, the generalized binary merging algorithm proposed by
Hwang et al. [30, 33] requires much fewer key comparisons
than sort-merging with a min-heap. The algorithm estimates
the location of each next merge point based on the size ratio
between the two sorted runs and search in the neighboring
range. In RemixDB, we approximate the algorithm by using
the anchor keys to locate the target segment containing the
merge point and finally applying a binary search in the
segment. In this process, accessing anchor keys does not
incur any I/O since they are stored in the REMIX. A binary
search in the target segment reads at most log2 D keys to find
the merge point. All the run selectors and cursor offsets for
the existing tables can be derived from the existing REMIX
without any I/O. To create anchor keys for the new segments,
we need to access at most one key per segment on the new
sorted view.

The read I/O of rebuilding a REMIX is bounded by
the size of all the tables in a partition. The rebuilding
process incurs read I/O to the existing tables in exchange
for minimized WA and improved future read performance.
Whether rebuilding a REMIX is cost effective depends on
how much write I/O one wants to save and how much future
read performance one wants to improve. In practice, writes in
SSDs are usually slower than reads and can cause permanent
damage to the devices [5, 27, 28, 45]. As a result, reads
are more economical than writes, especially for systems
having spare I/O bandwidth. In systems that expect intensive

USENIX Association 19th USENIX Conference on File and Storage Technologies 57

writes with weak spatial locality, adopting a multi-level tiered
compaction strategy [40, 46] or delaying rebuilding REMIXes
in individual partitions can reduce the rebuilding cost at the
expense of having more levels of sorted views. Adapting
REMIXes with different store layouts is beyond the scope
of this paper. We empirically evaluate the rebuilding cost in
RemixDB under different workloads in §5.2.

5 Evaluation

In this section, we first evaluate the REMIX performance
characteristics (§5.1), and then benchmark RemixDB with a
set of micro-benchmarks and Yahoo’s YCSB benchmark tool
that emulates real-world workloads [13] (§5.2).

The evaluation system runs 64-bit Linux (v5.8.7) on two
Intel Xeon Silver 4210 CPUs and 64 GB of DRAM. The
experiments run on an Ext4 file system on a 960 GB Intel
905P Optane PCIe SSD.

5.1 Performance of REMIX-indexed Tables
We first evaluate the REMIX performance. We implement a
micro-benchmark framework that compares the performance
of REMIX-indexed tables with SSTables. The SSTables use
Bloom filters to accelerate point queries and employ merging
iterators to perform range queries.

Experimental Setup In each experiment, we first create a
set of H table files (1≤H ≤ 16), which resemble a partition in
a RemixDB or a level in an LSM-tree using tiered compaction.
Each table file contains 64 MB of KV-pairs, where the key
and value sizes are 16 B and 100 B, respectively. When H ≥ 2,
the KV-pairs can be assigned to the tables using two different
patterns:

• Weak locality: each key is assigned to a randomly
selected table, which provides weak access locality since
logically consecutive keys often reside in different tables.

• Strong locality: every 64 logically consecutive keys are
assigned to a randomly selected table, which provides
strong access locality since a range query can retrieve a
number of consecutive keys from few tables.

Each SSTable contains Bloom filters of 10 bits/key. A 64 MB
user-space block cache2 is used for accessing the files.

We measure the single-threaded throughput of three range
and point query operations, namely Seek, Seek+Next50, and
Get, using different sets of tables created with the above
configurations. A Seek+Next50 operation performs a seek and
retrieves the next 50 KV-pairs. In these experiments, the seek
keys are randomly selected following a uniform distribution.
For REMIX, we set the segment size to 32 (D = 32), and
measure the throughput with its in-segment binary search
turned on and off, denoted by full and partial binary search,

2LevelDB’s LRUCache implementation in util/cache.cc.

respectively (see §3.2). For point queries (Get), we measure
the throughput of SSTables with Bloom filters turned on and
off. We run each experiment until the throughput reading is
stable. Figures 11 and 12 show the throughput results for
tables with weak and strong access locality, respectively.
Seek on Tables of Weak Locality Figure 11a shows the
throughput of seek operations using a REMIX and a merging
iterator. We observe that the throughput with the merging
iterator is roughly 20% higher than that of a REMIX with
full binary search when there is only one table file. In this
scenario, both the mechanisms perform the same number of
key comparisons during the binary search. However, when
searching in a segment, the REMIX needs to count the number
of occurrences on the fly and move the iterator from the
beginning of the segment to reach a key for comparison, which
is more expensive than a regular iterator.

The throughput of a merging iterator quickly drops as the
number of table files increases. Specifically, the throughput
of two tables is 50% lower than that of one table; a seek
on eight tables is more than 11× slower than a seek on one
table. The seek time of a merging iterator is approximately
proportional to the number of table files. This is because
the merging iterator requires a full binary search on every
table file. The REMIX’s throughput also decreases with more
tables files. The slowdown is mainly due to the growing
dataset that requires more key comparisons and memory
accesses during a search. However, the REMIX with full
binary search achieves increasingly high speedups compared
with the merging iterator. Specifically, The speedups are 5.1×
and 9.3× with 8 and 16 table files, respectively.

The REMIX throughput decreases by 20% to 33% when
the in-segment binary search is turned off (with partial binary
search). In this scenario, a seek has to linearly scan the target
segment to find the target key. With D = 32, the average
number of key comparisons in a target segment is 5 (log2 D)
with full binary search and 16 (D/2) with partial binary search.
However, the search cost is still substantially lower than that
of a merging iterator. The REMIX with partial binary search
outperforms the merging iterator by 3.5× and 6.1×, with 8
and 16 table files, respectively.
Seek+Next50 Figure 11b shows the throughput of range
queries that seek and copy 50 KV-pairs to a user-provided
buffer. The overall throughput results are much lower than that
in the Seek experiments because the data copying is expensive.
However, the REMIX still outperforms the merging iterator
when there are two or more tables. The speedup is 1.4×,
2.3×, and 3.1× with 2, 8, and 16 table files, respectively. The
suboptimal scan performance of the merging iterator is due
to the expensive next operation that requires multiple key
comparisons to find the next key on the sorted view. For
each KV-pair copied to the buffer, multiple KV-pairs must be
read and compared to find the global minimum. In contrast,
a REMIX does not require any key comparisons in a next
operation.

58 19th USENIX Conference on File and Storage Technologies USENIX Association

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(a) Seek

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(b) Seek+Next50

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) SSTables w/ Bloom Filters

REMIX w/ Full B.Search
SSTables w/o Bloom Filters

(c) Get

Figure 11: Point and range query performance on tables where keys are randomly assigned (weak locality)

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(a) Seek

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(b) Seek+Next50

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) SSTables w/ Bloom Filters

REMIX w/ Full B.Search
SSTables w/o Bloom Filters

(c) Get

Figure 12: Point and range query performance on tables where every 64 keys are assigned to a table (strong locality)

In contrast to the substantial performance gap between
the two REMIX curves in Figure 11a, the two curves in
Figure 11b are very close to each other. This phenomenon is
the result of two effects: (1) the next operations dominate the
execution time and (2) the linear scanning of a seek operation
in a segment warms up the block cache, which makes the
future next operations faster.

Point Query Figure 11c shows the results of the point
query experiments. The REMIX’s curve is slightly lower than
its counterpart in Figure 11a because a get operation needs to
copy the KV-pair after a seek using the REMIX. Searching
on SSTables with Bloom filters outperforms searching on
REMIX-indexed table files when there are fewer than 14
tables. The reasons for the differences are two-fold. First, a
search can be effectively narrowed down to one table file at a
small cost of checking the Bloom filters. Second, searching in
an SSTable is faster than on a REMIX managing many more
keys. In the worst case, the REMIX’s throughput is 20% lower
than that of Bloom filters (with 3 tables). Unsurprisingly,
the searches with more than two SSTables are much slower
without Bloom filters.

Performance with Tables of Strong Locality Figure 12
shows the range and point query performance on tables with
strong access locality. The results in Figures 12a and 12b
follow a similar trend of their counterparts in Figure 11. In
general, the improved locality allows for faster binary searches
since in this scenario the last few key comparisons can often
use keys in the same data block. However, the throughput of
the merging iterator remains low because of the intensive key
comparisons that dominate the search time. The REMIX with
partial binary search improves more than that with full binary
search. This is because improved locality reduces the penalty

on the scanning in a target segment, where fewer cache misses
are incurred in each seek operation.

The REMIX point query performance also improves due
to the strong locality that speeds up the underlying seek
operations, as shown in Figure 12c. Meanwhile, the results
of Bloom filters stay unchanged because the search cost is
mainly determined by the false-positive rate and the search
cost on individual tables. As a result, REMIXes are able to
outperform Bloom filters when there are more than 9 tables.

Segment Size (D) We further evaluate REMIX range query
performance using different segment sizes (D ∈ {16,32,64})
on eight table files. The other configuration parameters are
the same as in the previous experiments. Figure 13 shows the
performance results. The throughput of seek-only operations
exhibits the largest variations with different Ds when the in-
segment binary search is turned off. This is because the linear
scanning in a segment adds a significant cost with a large D.
On the other hand, the differences become much smaller with
full binary search. In the meantime, a larger segment size still
leads to higher overhead because of the slower random access
speed within a segment. In the Seek+Next50 experiments, the
data copying dominates the execution time and there are no
significant differences when using different Ds.

Partial Full
0.00

0.25

0.50

0.75

Th
ro

ug
hp

ut
 (M

OP
S) Seek

Partial Full

Seek+Next50
D=16
D=32
D=64

(a) Tables of weak locality
Partial Full

0.00

0.25

0.50

0.75

Th
ro

ug
hp

ut
 (M

OP
S) Seek

Partial Full

Seek+Next50
D=16
D=32
D=64

(b) Tables of strong locality

Figure 13: REMIX range query performance with 8 runs

USENIX Association 19th USENIX Conference on File and Storage Technologies 59

40 120 400
Value Size

0
1
2
3
4
5

Th
ro

ug
hp

ut
 (M

OP
S) Sequential

40 120 400
Value Size

Zipfian

40 120 400
Value Size

Uniform
RemixDB
LevelDB
RocksDB
PebblesDB

Figure 14: Range query with different value sizes

5.2 Performance of RemixDB

The following evaluates the performance of RemixDB, a
REMIX-indexed KV-store based on an LSM-tree.

Experimental Setup We compare RemixDB with state-of-
the-art LSM-tree based KV-stores, including Google’s Lev-
elDB [26], Facebook’s RocksDB [20], and PebblesDB [40].
LevelDB and RocksDB adopt the leveled compaction strategy
for balanced read and write efficiency. PebblesDB adopts the
tiered compaction strategy with multiple levels for improved
write efficiency at the cost of having more overlapping runs.

LevelDB (v1.22) supports only one compaction thread.
For RocksDB (v6.10.2), we use the configurations suggested
in its official Tuning Guide3 [21]. Specifically, RocksDB
can have at most three MemTables (one more immutable
MemTable than LevelDB). Both RocksDB and RemixDB
are configured with four compaction threads. RemixDB,
LevelDB, and RocksDB are all configured to use 64 MB table
files. For PebblesDB (#703bd01 [43]), we use the default
configurations in its db_bench benchmark program. For fair
comparisons, we disable compression and use a 4 GB block
cache in every KV-store. All the KV-stores are built with
optimizations turned on (release build).

In our experiments, we choose three value sizes—40, 120,
and 400 bytes. They roughly match the small (ZippyDB,
UP2X, USR), medium (UDB, VAR), and large (APP, ETC,
SYS) KV sizes in Facebook’s production systems [2, 8]. We
use 16-byte fixed-length keys, each containing a 64-bit integer
using hexadecimal encoding.

Range Query The first set of experiments focuses on
how different KV sizes and access patterns affect the search
efficiency of the KV-stores. In each experiment, we first
sequentially load 100 million KV-pairs into a store using
one of the three value sizes. After loading, we measure the
throughput of seek operations using four threads with three
access patterns, namely sequential, Zipfian (α = 0.99), and
uniform.

As shown in Figure 14, each set of results shows a similar
trend. While RemixDB exhibits the highest throughput, Lev-
elDB is also at least 2× faster than RocksDB and PebblesDB.
The sequential loading produces non-overlapping table files
in every store, which suggests that a seek operation needs to
access only one table file. However, a merging iterator must

3The configuration for Total ordered database, flash storage.

4 16 64 256
Store Size (GB)

0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
 (M

OP
S) Seek

4 16 64 256
Store Size (GB)

Seek+Next10

4 16 64 256
Store Size (GB)

Seek+Next50
RemixDB
LevelDB
RocksDB
PebblesDB

Figure 15: Range query with different store sizes

check every sorted run in the store even though they are non-
overlapping, which dominates the execution time of a seek
operation if the store has multiple sorted runs. Specifically,
each L0 table in LevelDB and RocksDB is an individual
sorted run, but each Li (i > 0) contains only one sorted run;
PebblesDB allows multiple sorted runs in every level. That
being said, LevelDB outperforms RocksDB by at least 2×
even though they both use leveled compaction. We observe
that RocksDB keeps several tables (eight in total) at L0
without moving them into a deeper level during the sequential
loading. In contrast, LevelDB directly pushes a table to a
deep level (L2 or L3) if it does not overlap with other tables,
which leaves LevelDB’s L0 always empty. Consequently, a
seek operation in RocksDB needs to sort-merge at least 12
sorted runs on the fly, while that number is only 3 or 4 in
LevelDB.

The seek performance is sensitive to access locality. A
weaker access locality leads to increased CPU and I/O cost
on the search path. In each experiment of a particular value
size, the throughput with a uniform access pattern is about
50% lower than that of sequential access. Meanwhile, the
performance with sequential access is less sensitive to value
size because the memory copying cost is insignificant.

The second set of experiments evaluates the range-scan
performance with different store sizes and query lengths. Each
experiment loads a fixed-size KV dataset with 120 B value
size into a store in a random order, then performs range-scans
with four threads using the Zipfian access pattern. As shown
in Figure 15, RemixDB outperforms the other stores in every
experiment. However, the performance differences among the
stores become smaller with longer scans. The reason is that
a long range-scan exhibits sequential access pattern on each
sorted run, where more data have been prefetched during the
scan. In the meantime, the memory-copying adds a constant
overhead to every store.

As the store size increases to 256 GB, the throughput of
LevelDB quickly drops to the same level as RocksDB. Since
the stores in the experiments are configured with a 4 GB block
cache, the cache misses lead to intensive I/Os that dominate
the query time. While RocksDB exhibits high computation
cost for having too many L0 tables with a small store size, the
cost is overshadowed by the excessive I/Os in large stores.
Meanwhile, RemixDB maintains the best access locality
because it incurs a minimal amount of random accesses and
cache misses by searching on a REMIX-indexed sorted run.

60 19th USENIX Conference on File and Storage Technologies USENIX Association

Write Read
0
1
2
3
4
5
6

To
ta

l I
/O

 (T
B)

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

OP
S)

User write
RemixDB
LevelDB
RocksDB
PebblesDB

Figure 16: Loading a 256 GB dataset in random order

Write We first evaluate the write performance of each
store by inserting a 256 GB KV dataset to an empty store in
a random order using one thread. The dataset has 2 billion
KV-pairs, and the value size is 120 B. The workload has a
uniform access pattern, representing the worst-case scenario
of the stores. We measure the throughput and the total I/O on
the SSD.

As shown in Figure 16, Both RemixDB and PebblesDB
show relatively high throughput because they employ the
write-efficient tiered compaction strategy. Their total write
I/O on the SSD are 1.25 TB and 2.37 TB, corresponding
to WA ratios of 4.88 and 9.26, respectively. LevelDB and
RocksDB adopt the leveled compaction strategy, which leads
to high WA ratios of 16.1 and 25.6, respectively. RocksDB
and RemixDB have much more read I/O than LevelDB and
PebblesDB. RocksDB employs four compaction threads to
exploit the SSD’s I/O bandwidth, resulting in more read I/O
than LevelDB due to less efficient block and page cache usage.
LevelDB only supports one compaction thread, and it shows
a much lower throughput than RocksDB. Although RemixDB
has more read I/O than RocksDB, the total I/O of RemixDB
is less than that of RocksDB. All told, RemixDB achieves low
WA and high write throughput at the cost of increased read
I/O.

We further evaluate the write performance of RemixDB
under workloads with varying spatial locality. We use three
access patterns, namely sequential, Zipfian (α = 0.99), and
Zipfian-Composite [24]. The Zipfian-Composite distribution
represents an agglomerate of attributes in real-world stores [1,
6, 8]. With Zipfian-Composite, the prefix of a key (the first
12 bytes) is drawn from the Zipfian distribution, and the
remainder of the key is drawn uniformly at random. For
each access pattern, the experiment starts with a 256 GB store
constructed as in the random write experiment then performs
2 billion updates (with 128 B values) to the store using the
respective access pattern. We measure the throughput and the
total I/O during the update phase.

As Figure 17 shows, the sequential workload exhibits the
highest throughput because each round of the compaction
only affects a few consecutive partitions in the store. The
write I/O mainly includes logging and creating new table
files, which is about 2× of the user writes. The read I/O for
rebuilding REMIXes is about the same as the existing data
(256 GB). Comparatively, with the two skewed workloads,
the repeated overwrites in the MemTable lead to substantially

Write Read
0.0

0.1

0.2

0.3

0.4

0.5

To
ta

l I
/O

 (T
B)

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (M

OP
S)

User write
Sequential
Zipfian
Zipfian-Composite

Figure 17: Sequential and skewed write with RemixDB

A B C D E F
0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut

(n
or

m
al

ize
d)

0.
66

4
(M

OP
S)

1.
15

1

0.
76

4

2.
19

6

0.
18

6

0.
92

5

RemixDB
LevelDB
RocksDB
PebblesDB

Figure 18: YCSB benchmark results

reduced write I/O. However, the skewed workloads create
scattered updates in the key space. This causes slower updates
in the MemTable and more partitions being compacted. The
Zipfian-Composite workload has weaker spatial locality than
Zipfian, resulting in higher compaction I/O cost.

The YCSB Benchmark The Yahoo Cloud Serving
Benchmark (YCSB) [13] is commonly used for evaluating
KV-store performance under realistic workloads. We use the
256 GB stores constructed in the random-write experiments
and run the YCSB workloads from A to F with four threads.
The details of the workloads are described in Table 2. In
workload E, a Scan operation performs a seek and retrieves
the next 50 KV-pairs. As shown in Figure 18, RemixDB
outperforms the other stores except in workload D, where the
read requests (95%) query the most recent updates produced
by the insertions (5%). This access pattern exhibits strong
locality, and most of the requests are directly served from
the MemTable(s) in every store. Meanwhile, LevelDB’s
performance (1.1 MOPS) is hindered by slow insertions
caused by the single-threaded compaction.

Even though REMIXes do not show an advantage over
Bloom filters in the micro-benchmarks (see Figure 11c),
RemixDB outperforms the other stores in workloads B and C,
where point query is the dominant operation. The reason is
that a point query in the multi-level LSM-tree has a high cost
selecting candidate tables on the search path. Specifically,
for each L0 table, about two key comparisons are used to
check if the seek key is covered by the table. If the key is not
found at L0, a binary search is used to select a table at each
deeper level Li (i≥ 1) until the key is found. Furthermore, a
Bloom filter’s size is about 600 KB for a 64 MB table in this
setup. Accessing a Bloom filter performs up to seven random
memory accesses, which leads to excessive cache misses in a
large store [22]. The REMIX-indexed partitions in RemixDB
form a globally sorted view, on which a point query can be
quickly answered with a binary search.

USENIX Association 19th USENIX Conference on File and Storage Technologies 61

Table 2: YCSB Workloads

Workload A B C D E F

Operations
R: 50%
U: 50%

R: 95%
U: 5%

R: 100%
R: 95%
I: 5%

S: 95%
I: 5%

R: 50%
M: 50%

Req. Dist. Zipfian Latest Zipfian
R: Read, U: Update, I: Insert, S:Scan, M: Read-Modify-Write.

6 Related Work

Improving Search with Filters Bloom filters [4] have
been indispensable for LSM-tree based KV-stores in reducing
the computation and I/O costs of point queries on a multi-
leveled store layout [15]. However, range queries cannot
be handled by Bloom filters because the search targets
are implicitly specified by range boundaries. Prefix Bloom
filters [19] can accelerate range queries [20, 26], but they
can only handle closed-range queries on common-prefix keys
(with an upper bound). Succinct Range Filter (SuRF) [49]
supports both open-range and closed-range queries. The
effectiveness of using SuRFs is highly dependent on the
distribution of keys and query patterns. Rosetta [37] uses
multiple layers of Bloom filters to achieve lower false positive
rates than SuRFs. However, it does not support open-range
queries and has prohibitively high CPU and memory costs
with large range queries. A fundamental limitation of the
filtering approach is that it cannot reduce search cost on tables
whose filters produce positive results. When the keys in the
target range are in most of the overlapping tables, range filters
do not speed up queries but cost more CPU cycles in the
search path. In contrast, REMIXes directly attack the problem
of having excessive table accesses and key comparisons
when using merging iterators in range queries. By searching
on a globally sorted view, REMIXes improve range query
performance with low computation and I/O cost.

Improving Search with Efficient Indexing KV-stores
based on B-trees or B+-trees [11, 39] achieve optimal search
efficiency by maintaining a globally sorted view of all the
KV data. These systems require in-place updates on the disk,
which lead to high WA and low write throughput. KVell [35]
achieves very fast reads and writes by employing a volatile
full index to manage unordered KV data on the disk. However,
the performance benefits come at a cost, including high
memory demand and slow recovery. Similarly, SLM-DB [31]
stores a B+-tree [29] in non-volatile memory (NVM) to
index KV data on the disk. This approach does not have
the above limitations, but it requires special hardware support
and increased software complexity. These limitations are also
found in NVM-enabled LSM-trees [32, 48]. Wisckey [36]
stores long values in a separate log to reduce index size
for search efficiency. However, the approach requires an
extra layer of indirection and does not improve performance
with small KV-pairs that are commonly seen in real-world
workloads [8, 47]. Bourbon [14] trains learned models to
accelerate searches on SSTables but does not support string

keys. REMIXes are not subject to these limitations. They
accelerate range queries in write-optimized LSM-tree based
KV stores by creating a space-efficient persistent sorted view
of the KV data.
Read and Write Trade-offs Dostoevsky and Wacky [16,
17] navigate LSM-tree based KV-store designs with different
merging policies to achieve the optimal trade-off between
reads and writes. Tiered compaction has been widely adopted
for minimizing WA in LSM-tree based KV-stores [34, 40,
42]. Other write-optimized indexes, such as Fractal trees and
Bε-trees, are also employed in KV-store designs [12, 44].
The improvements on write performance often come with
mediocre read performance in practice, especially for range
queries [24]. REMIXes address the issue of slow reads in
tiered compaction. They achieve fast range query and low
WA simultaneously.

7 Conclusion

We introduce the REMIX, a compact multi-table index data
structure for fast range queries in LSM-trees. The core idea
is to record a globally sorted view of multiple table files for
efficient search and scan. Based on REMIXes, RemixDB ef-
fectively improves range query performance while preserving
low write amplification using tiered compaction.

Acknowledgements

We are grateful to our shepherd William Jannen, the anony-
mous reviewers, Xingsheng Zhao, and Chun Zhao, for their
valuable feedback. This work was supported in part by the
UIC startup funding and US National Science Foundation
under Grant CCF-1815303.

References

[1] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. “LinkBench: a
database benchmark based on the Facebook social
graph”. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIG-
MOD’13). 2013, pp. 1185–1196.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. “Workload analysis of
a large-scale key-value store”. In: ACM SIGMET-
RICS/PERFORMANCE Joint International Confer-
ence on Measurement and Modeling of Computer
Systems (SIGMATRICS’12). 2012, pp. 53–64.

62 19th USENIX Conference on File and Storage Technologies USENIX Association

[3] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis,
and Igor Zablotchi. “FloDB: Unlocking Memory in
Persistent Key-Value Stores”. In: Proceedings of the
Twelfth European Conference on Computer Systems
(EuroSys’17). 2017, pp. 80–94.

[4] Burton H. Bloom. “Space/Time Trade-offs in Hash
Coding with Allowable Errors”. In: Commun. ACM
13.7 (1970), pp. 422–426.

[5] Simona Boboila and Peter Desnoyers. “Write En-
durance in Flash Drives: Measurements and Analysis”.
In: 8th USENIX Conference on File and Storage
Technologies (FAST’10). 2010, pp. 115–128.

[6] Dhruba Borthakur et al. “Apache hadoop goes realtime
at Facebook”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data
(SIGMOD’11). 2011, pp. 1071–1080.

[7] Lucas Braun et al. “Analytics in Motion: High Perfor-
mance Event-Processing AND Real-Time Analytics in
the Same Database”. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data (SIGMOD’15). 2015, pp. 251–264.

[8] Zhichao Cao, Siying Dong, Sagar Vemuri, and David
H. C. Du. “Characterizing, Modeling, and Benchmark-
ing RocksDB Key-Value Workloads at Facebook”.
In: 18th USENIX Conference on File and Storage
Technologies, (FAST’20). 2020, pp. 209–223.

[9] Fay Chang et al. “Bigtable: A distributed storage
system for structured data”. In: ACM Transactions on
Computer Systems (TOCS) 26.2 (2008), pp. 1–26.

[10] Guoqiang Jerry Chen et al. “Realtime Data Pro-
cessing at Facebook”. In: Proceedings of the 2016
International Conference on Management of Data,
(SIGMOD’16). 2016, pp. 1087–1098.

[11] Howard Chu. LMDB: Lightning Memory-Mapped
Database Manager. URL: http://www.lmdb.tech/
doc/ (visited on 09/01/2020).

[12] Alexander Conway et al. “SplinterDB: Closing the
Bandwidth Gap for NVMe Key-Value Stores”. In:
2020 USENIX Annual Technical Conference (USENIX
ATC 2020). 2020, pp. 49–63.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. “Benchmarking
Cloud Serving Systems with YCSB”. In: Proceedings
of the 1st ACM Symposium on Cloud Computing
(SoCC’10). 2010, pp. 143–154.

[14] Yifan Dai et al. “From WiscKey to Bourbon: A
Learned Index for Log-Structured Merge Trees”. In:
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI’20). 2020, pp. 155–
171.

[15] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
“Monkey: Optimal Navigable Key-Value Store”. In:
Proceedings of the 2017 ACM International Confer-
ence on Management of Data (SIGMOD’17). 2017,
pp. 79–94.

[16] Niv Dayan and Stratos Idreos. “Dostoevsky: Better
Space-Time Trade-Offs for LSM-Tree Based Key-
Value Stores via Adaptive Removal of Superfluous
Merging”. In: Proceedings of the 2018 International
Conference on Management of Data (SIGMOD’18).
2018, pp. 505–520.

[17] Niv Dayan and Stratos Idreos. “The Log-Structured
Merge-Bush & the Wacky Continuum”. In: Proceed-
ings of the 2019 International Conference on Manage-
ment of Data (SIGMOD’19). 2019, pp. 449–466.

[18] Giuseppe DeCandia et al. “Dynamo: amazon’s highly
available key-value store”. In: Proceedings of the 21st
ACM Symposium on Operating Systems Principles
(SOSP’07). 2007, pp. 205–220.

[19] Sarang Dharmapurikar, Praveen Krishnamurthy, and
David E. Taylor. “Longest prefix matching using bloom
filters”. In: Proceedings of the ACM SIGCOMM 2003
Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication
(SIGCOMM’03). 2003, pp. 201–212.

[20] Facebook. RocksDB. URL: https://github.com/
facebook/rocksdb (visited on 06/11/2020).

[21] Facebook. RocksDB Tuning Guide. URL: https://
github.com/facebook/rocksdb/wiki/RocksDB-
Tuning-Guide (visited on 07/12/2020).

[22] Bin Fan, Dave G. Andersen, Michael Kaminsky, and
Michael D. Mitzenmacher. “Cuckoo Filter: Practically
Better Than Bloom”. In: Proceedings of the 10th ACM
International on Conference on Emerging Networking
Experiments and Technologies (CoNEXT’14). 2014,
pp. 75–88.

[23] G. E. Forsythe. “Algorithms”. In: Commun. ACM 7.6
(1964), pp. 347–349.

[24] Eran Gilad et al. “EvenDB: optimizing key-value
storage for spatial locality”. In: Proceedings of the Fif-
teenth EuroSys Conference 2020 (EuroSys’20). 2020,
27:1–27:16.

[25] Anil K. Goel et al. “Towards Scalable Real-Time
Analytics: An Architecture for Scale-out of OLxP
Workloads”. In: Proc. VLDB Endow. 8.12 (2015),
pp. 1716–1727.

[26] Google. LevelDB. URL: https : / / github . com /
google/leveldb (visited on 05/03/2019).

USENIX Association 19th USENIX Conference on File and Storage Technologies 63

http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/google/leveldb
https://github.com/google/leveldb

[27] Laura M. Grupp et al. “Characterizing flash memory:
anomalies, observations, and applications”. In: 42st
Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO 42). 2009, pp. 24–33.

[28] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. “The Unwritten Con-
tract of Solid State Drives”. In: Proceedings of the
Twelfth European Conference on Computer Systems
(EuroSys’17). 2017, pp. 127–144.

[29] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. “Endurable Transient Inconsistency
in Byte-Addressable Persistent B+-Tree”. In: Proceed-
ings of the 16th USENIX Conference on File and
Storage Technologies (FAST’18). 2018, pp. 187–200.

[30] Frank K. Hwang and Shen Lin. “A simple algorithm
for merging two disjoint linearly ordered sets”. In:
SIAM Journal on Computing 1.1 (1972), pp. 31–39.

[31] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young-ri Choi. “SLM-DB: Single-
Level Key-Value Store with Persistent Memory”. In:
17th USENIX Conference on File and Storage Tech-
nologies (FAST’19). 2019, pp. 191–205.

[32] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. “Redesigning LSMs for Nonvolatile Memory
with NoveLSM”. In: 2018 USENIX Annual Technical
Conference (USENIX ATC 2018). 2018, pp. 993–1005.

[33] Donald Ervin Knuth. The Art of Computer Program-
ming, Volume 3: (2nd Ed.) Sorting and Searching.
Addison-Wesley, 1998.

[34] Avinash Lakshman and Prashant Malik. “Cassandra: a
decentralized structured storage system”. In: Operating
Systems Review 44.2 (2010), pp. 35–40.

[35] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. “KVell: the design and implementation
of a fast persistent key-value store”. In: Proceedings
of the 27th ACM Symposium on Operating Systems
Principles (SOSP’19). 2019, pp. 447–461.

[36] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. “WiscKey: Separating Keys from Values in
SSD-conscious Storage”. In: 14th USENIX Conference
on File and Storage Technologies (FAST’16). 2016,
pp. 133–148.

[37] Siqiang Luo et al. “Rosetta: A Robust Space-Time
Optimized Range Filter for Key-Value Stores”. In:
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD’20).
2020, pp. 2071–2086.

[38] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick,
and Elizabeth J. O’Neil. “The Log-Structured Merge-
Tree (LSM-Tree)”. In: Acta Informatica 33.4 (1996),
pp. 351–385.

[39] Michael A. Olson, Keith Bostic, and Margo I. Seltzer.
“Berkeley DB”. In: Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference. 1999,
pp. 183–191.

[40] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. “PebblesDB: Building Key-Value
Stores using Fragmented Log-Structured Merge Trees”.
In: Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP’17). 2017, pp. 497–514.

[41] Pandian Raju et al. “mLSM: Making Authenticated
Storage Faster in Ethereum”. In: 10th USENIX Work-
shop on Hot Topics in Storage and File Systems
(HotStorage’18). 2018.

[42] ScyllaDB. ScyllaDB. URL: https://github.com/
scylladb/scylla (visited on 09/01/2020).

[43] UT Systems and Storage Lab. PebblesDB. URL: https:
//github.com/utsaslab/pebblesdb (visited on
08/03/2019).

[44] Tokutec Inc. TokuDB. URL: http://www.tokutek.
com (visited on 09/01/2020).

[45] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. “Towards an Unwritten Contract of Intel
Optane SSD”. In: 11th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage’19).
2019.

[46] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang.
“LSM-trie: An LSM-tree-based Ultra-Large Key-Value
Store for Small Data”. In: 2015 USENIX Annual
Technical Conference (USENIX ATC 2015). 2015,
pp. 71–82.

[47] Juncheng Yang, Yao Yue, and K. V. Rashmi. “A large
scale analysis of hundreds of in-memory cache clusters
at Twitter”. In: 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’20). 2020,
pp. 191–208.

[48] Ting Yao et al. “MatrixKV: Reducing Write Stalls and
Write Amplification in LSM-tree Based KV Stores
with Matrix Container in NVM”. In: 2020 USENIX
Annual Technical Conference (USENIX ATC 2020).
2020, pp. 17–31.

[49] Huanchen Zhang et al. “SuRF: Practical Range Query
Filtering with Fast Succinct Tries”. In: Proceedings of
the 2018 International Conference on Management of
Data, (SIGMOD’18). 2018, pp. 323–336.

64 19th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/scylladb/scylla
https://github.com/scylladb/scylla
https://github.com/utsaslab/pebblesdb
https://github.com/utsaslab/pebblesdb
http://www.tokutek.com
http://www.tokutek.com

High Velocity Kernel File Systems with Bento
Samantha Miller Kaiyuan Zhang Mengqi Chen Ryan Jennings

Ang Chen‡ Danyang Zhuo† Thomas Anderson

University of Washington †Duke University ‡Rice University

Abstract
High development velocity is critical for modern systems.

This is especially true for Linux file systems which are seeing
increased pressure from new storage devices and new demands
on storage systems. However, high velocity Linux kernel
development is challenging due to the ease of introducing
bugs, the difficulty of testing and debugging, and the lack of
support for redeployment without service disruption. Existing
approaches to high-velocity development of file systems for
Linux have major downsides, such as the high performance
penalty for FUSE file systems, slowing the deployment cycle
for new file system functionality.

We propose Bento, a framework for high velocity devel-
opment of Linux kernel file systems. It enables file systems
written in safe Rust to be installed in the Linux kernel, with
errors largely sandboxed to the file system. Bento file systems
can be replaced with no disruption to running applications,
allowing daily or weekly upgrades in a cloud server setting.
Bento also supports userspace debugging. We implement a sim-
ple file system using Bento and show that it performs similarly
to VFS-native ext4 on a variety of benchmarks and outper-
forms a FUSE version by 7x on ‘git clone’. We also show that
we can dynamically add file provenance tracking to a running
kernel file system with only 15ms of service interruption.

1 INTRODUCTION
Development and deployment velocity is a critical aspect
of modern cloud software development. High velocity
delivers new features to customers more quickly, reduces
integration and debugging costs, and reacts quickly to security
vulnerabilities. However, this push for rapid development has
not fully caught up to operating systems, despite this being
a long-standing goal of OS research [1, 6, 16, 25, 44]. In Linux,
the most widely used cloud operating system, release cycles
are still measured in months and years. Elsewhere in the cloud,
new features are deployed weekly or even daily.

Slow Linux development can be attributed to several factors.
Linux has a large code base with relatively few guardrails,
with complicated internal interfaces that are easily misused.
Combined with the inherent difficulty of programming correct
concurrent code in C, this means that new code is very likely
to have bugs. The lack of isolation between kernel modules
means that these errors often have non-intuitive effects and
are difficult to track down. The difficulty of implementing

kernel-level debuggers and kernel testing frameworks makes
this worse. The restricted and different kernel programming
environment also limits the number of trained developers.
Finally, upgrading a kernel module requires either rebooting
the machine or restarting the relevant module, either way
rendering the machine unavailable during the upgrade. In the
cloud setting, this forces kernel upgrades to be batched to meet
cloud-level availability goals.

Slow development cycles are a particular problem for file
systems. Recent changes in storage hardware (e.g., low latency
SSDs and NVM, but also density-optimized QLC SSD and
shingle disks) have made it increasingly important to have an
agile storage stack. Likewise, application workload diversity
and system management requirements (e.g., the need for
container-level SLAs, or provenance tracking for security
forensics) make feature velocity essential. Indeed, the failure
of file systems to keep pace has led to perennial calls to replace
file systems with blob stores that would likely face many of
the same challenges despite having a simplified interface [2].

Existing alternatives for higher velocity file systems sac-
rifice either performance or generality. FUSE is a widely-used
system for user-space file system development and deploy-
ment [17]. However, FUSE can incur a significant performance
overhead, particularly for metadata-heavy workloads [48].
We show that the same file system runs a factor of 7x slower
on ‘git clone’ via FUSE than as a native kernel file system.
Another option is Linux’s extensibility architecture eBPF.
eBPF is designed for small extensions, such as to implement
a new performance counter, where every operation can be
statically verified to complete in bounded time. Thus, it is a
poor fit for implementing kernel modules like file systems
with complex concurrency and data structure requirements.

Our research hypothesis is that we can enable high-velocity
development of kernel file systems without sacrificing
performance or generality, for existing widely used kernels
like Linux. Our trust model is that of a slightly harried kernel
developer, rather than an untrusted application developer as
with FUSE and eBPF. This means supporting a user-friendly
development environment, safety both within the file system
and across external interfaces, effective testing mechanisms,
fast debugging, incremental live upgrade, high performance,
and generality of file system designs.

To this end, we built Bento, a framework for high-velocity
development of Linux kernel file systems. Bento hooks into

USENIX Association 19th USENIX Conference on File and Storage Technologies 65

Linux as a VFS file system, but allows file systems to be
dynamically loaded and replaced without unmounting or
affecting running applications except for a short performance
lag. As Bento runs in the kernel, it enables file systems to reuse
well-developed Linux features, such as VFS caching, buffer
management, and logging, as well as network communication.
File systems are written in Rust, a type-safe, performant,
non-garbage collected language. Bento interposes thin layers
around the Rust file system to provide safe interfaces for both
calling into the file system and calling out to other kernel
functions. Leveraging the existing Linux FUSE interface, a
Bento file system can be compiled to run in userspace by
changing a build flag. Thus, most testing and debugging
can take place at user-level, with type safety limiting the
frequency and scope of bugs when code is moved into the
kernel. Because of this interface, porting to a new Linux
version requires only changes to Bento and not the file system
itself. Bento additionally supports networked file systems
using the kernel TCP stack. The code for Bento is available
at https://gitlab.cs.washington.edu/sm237/bento.

We are using Bento for our own file system development,
specifically to develop a basic, flexible file system in Rust that
we call Bento-fs. Initially, we attempted to develop an equiv-
alent file system in C for VFS to allow a direct measurement
of Bento overhead. However, the debugging time for the VFS
C version was prohibitive. Instead, we quantitatively compare
Bento-fs with VFS-native ext4 with data journaling, to deter-
mine if Bento adds overhead or restricts certain performance
optimizations. We found no instances where Bento introduced
overhead – Bento-fs performed similarly to ext4 on most
benchmarks we tested and never performs significantly worse
while outperforming a FUSE version of Bento-fs by up to 90x
on Filebench workloads. Bento-fs achieves this performance
without sacrificing safety. We use CrashMonkey [34] to check
the correctness and crash consistency of Bento-fs; it passes
all depth two generated tests. With Bento, our file system
can be upgraded dynamically with only around 15ms of
delay for running applications, as well as run at user-level
for convenient debugging and testing. To demonstrate rapid
feature development within Bento, we add file provenance
tracking [26, 35] to Bento-fs and deploy it to a running system.

Bento’s design imposes some limitations. While Rust’s
compile-time analysis catches many common types of bugs,
it does not prevent deadlocks and or semantic guarantees such
as correct journal usage—those errors must be debugged at
runtime. While correctness testing is possible at user-level,
performance testing generally must be done in the kernel. Also,
like other live upgrade solutions, Bento upgrades also require
backward-compatibility of the new code with the previous
data layout on disk—though the file system itself can perform
disk layout changes. The current implementation of Bento
imposes some usability limitations similar to FUSE, such
as only supporting one mounted file system per inserted file
system module. And while we compare Bento-fs performance

to ext4, we should note that Bento-fs is a prototype and lacks
some of ext4’s more advanced features.

In this paper, we make the following contributions:
• We design and implement Bento, a framework that

enables high-velocity development of safe, performant
file systems in Linux.

• We develop an API that enables kernel file systems
written in a type-safe language with both user and kernel
execution and live upgrade.

• We demonstrate Bento’s benefits by implementing
and evaluating a file system developed atop Bento
with ext4-like performance, and show that we can add
provenance support without rebooting.

2 MOTIVATION
Development velocity is becoming increasingly important for
the Linux kernel to adapt to emerging use cases and address
security vulnerabilities. In this section, we describe several
approaches for extending Linux file systems, and outline the
properties of Bento.

2.1 High Velocity is Hard
Linux needs to adapt to support emerging workloads, address
newfound vulnerabilities, and manage new hardware. On
average 650,000 lines of Linux code are added and 350,000
removed every release cycle, resulting in a growth of roughly
1.5 million lines of code per year. Linux file systems are no
exception in needing to adapt — with rapid change in both
storage technologies and emerging application demands.

As a concrete example, consider what is needed to
add a feature like data provenance to a Linux file system.
Increasingly, enterprise customers want to track the source
data files used in producing each data analysis output file to
perform security forensics. While this might be implemented
with existing tools for system call tracking, that would
be incomplete — the file system has more comprehensive
information (e.g., whether two file paths are hard links to
the same inode); a distributed file system can further enable
cross-network forensics. To implement this as a new feature
in the file system, developers have to modify the file system,
test it, and push this modification to production clusters.

The most widely used approach is to directly modify the
kernel source code. Linux has standard kernel interfaces
for extending its key subsystems — e.g., virtual file systems
(VFS) for file systems, netfilter for networking, and Linux
Security Module (LSM) for security features. Sometimes,
it is also possible to add new features using loadable kernel
modules, which can be integrated at runtime without kernel
recompilation or reboot. Several VFS filesystems, including
ext4, overlayfs, and btrfs, are implemented in the kernel source
and can be inserted as loadable kernel modules.

However, high velocity kernel development (including
kernel file system development) is hard to come by. To start
with, kernel modifications are notoriously difficult to get right.
Kernel code paths are complex and easy to accidentally misuse.

66 19th USENIX Conference on File and Storage Technologies USENIX Association

https://gitlab.cs.washington.edu/sm237/bento

Bug Number Effect on Kernel
Use Before Allocate 6 Likely oops
Double Free 4 Undefined
NULL Dereference 5 oops
Use After Free 3 Likely oops
Over Allocation 1 Overutilization
Out of Bounds 4 Likely oops
Dangling Pointer 1 Likely oops
Missing Free 18 Memory Leak
Reference Count Leak 7 Memory Leak
Other Memory 1 Variable
Deadlock 5 Deadlock
Race Condition 5 Variable
Other Concurrency 1 Variable
Unchecked Error Value 5 Variable
Other Type Error 8 Variable

Table 1: Low-level bugs in released versions of OverlayFS, AppAr-
mor, and Open vSwitch Datapath between 2014-2018, categorized as
memory bugs, concurrency bugs, or type errors, and the likely effect
of each bug on kernel operation.

Worse, debugging kernel source code is much harder than user-
level debugging. This is because a kernel debugger operates
below the kernel, typically remotely, and it cannot leverage
Posix APIs such as ptrace. Upgrading kernel modules is also
an intrusive operation. In the case of file systems, this requires
shutting down applications, unmounting the old file system
and remounting the new, and restarting the application. In a
multi-tenant cloud setting, most cloud services are upgraded
live on a daily or weekly basis. To meet four or five nine ap-
plication uptime service-level objectives [33] within a reboot
model, however, kernel changes need to be batched and applied
en masse every few months. Getting needed functionality
upstreamed into Linux, so that it is compatible with the 1.5M
lines of new code being added each year, takes even longer.

To provide intuition into the difficulty of developing and
deploying new kernel features, Table 1 shows an analysis
we conducted of bug-fix git commits from 2014-2018 for
three modules that modify core Linux functionality used by
Docker containers: OverlayFS, AppArmor, and Open vSwitch
Datapath. We divide bugs in these systems into two types. One
set are semantic bugs in the high-level correctness properties
of each module. These can range from mission critical to
configuration errors, but generally impair just the functionality
of the module. These accounted for 50% of the total bugs fixed
in these modules.

The second set concern low-level bugs that are apply to any
C language module, but when found in the kernel can poten-
tially undermine the correctness or operation of the rest of the
kernel. We categorized these as (1) memory bugs, such as NULL
pointer dereferences, out-of-bounds errors, and memory leaks;
(2) concurrency bugs, such as deadlocks and race conditions;
and (3) type errors, such as incorrect usage of kernel types (e.g.,
interpreting error values as valid data). Of the 50% of fixed
bugs that were low-level bugs, we found that 68% are memory
bugs. Of these, half are a type of memory leak. Many of the

bugs occur in error-handling code, e.g., incorrect checking of
return values, missing cleanup procedures. Such bugs are hard
to uncover by testing but can lead to serious impacts on the
integrity of the kernel. Of all identified low-level bugs, 26%
caused a kernel oops which either kills the offending process
or panics the kernel. An additional 34% of the analyzed bugs
result in a memory leak, potentially causing out-of-memory
problems or even DoS attack vectors. Many of these low-level
bugs, particularly memory and type errors, result from
inherent challenges of C code and could be prevented if the
programming language had more safety checks.

2.2 Existing Alternatives
Besides directly modifying the Linux kernel, there are two
other approaches to adding functionality to Linux, with their
respective pros and cons.

Upcall (FUSE [17]): One common technique, particularly
for file systems and I/O devices, is to implement new
functionality as a userspace server. A stub is left in the kernel
that converts system calls to upcalls into the server. Filesystem
in Userspace (FUSE) does this for file systems. As opposed
to implementing new file system functionality directly in the
kernel, this isolates low-level memory errors such as use-after-
free to the userspace process. (Low-level bugs can still affect
file system functionality, of course.) Development speed is
faster because engineers can use familiar debugging tools
like gdb. All this comes at a performance cost for metadata-
operations [48]. Our evaluation (§5.2) confirms this finding,
revealing even worse performance overheads than previously
reported, particularly for write-heavy workloads. Additionally,
FUSE file systems can’t reuse many existing kernel features,
such as disk accesses through the buffer cache. Userspace file
systems can mitigate the performance overhead by sharing
mapped memory with the kernel, but this neither fully removes
the performance overhead due to the extra kernel crossing nor
allows the file system to access existing kernel functionality.

In-Kernel Interpreter: Using an interpreter inside the
kernel for a dynamically loaded program in a safe language is
another approach to ensure safety of kernel extensions. Linux
supports eBPF (extended Berkeley Packed Filter) [32], an
in-kernel virtual machine that allows code to be dynamically
loaded and executed in the kernel at predefined points defined
by the kernel. eBPF is used heavily for packet filtering, system
call filtering, and kernel tracing. The idea is to allow kernel
customization in a safe manner. The Linux eBPF virtual
machine validates memory safety and execution termination
before it JIT compiles the virtual machine instructions into
native machine code. As such, eBPF can sandbox untrusted
extensions, but the restrictions placed on eBPF make it very
difficult to implement larger or more complex pieces of
functionality. We argue that untrusted eBPF extensions are not
the right model for kernel file system extensibility, as it is par-
ticularly difficult to imagine implementing mutable file system
operations using eBPF and still enforcing crash consistency.

USENIX Association 19th USENIX Conference on File and Storage Technologies 67

VFS

BentoFS

module
manager

install/upgrade
component

FS List
libBentoFS

dispatch

libBentoKS

BlockDevice

TcpStream

...

FS Kernel Services

read

write

update_prepare

socket

block_device

update_transfer

Figure 1: Design of Bento. Shaded components are parts of Bento. BentoFS is in C. The other shaded components are in Rust. Solid black lines repre-
sent the common-case operation pathway,detailed in §3.2 and §3.3. Dashed red lines represent the install/upgrade pathway and are described in §3.4

2.3 Our Approach: Bento

We have designed Bento for high velocity development of
Linux file systems with the following properties:

• Safety: Any bugs in a newly installed file system should
be limited, as much as possible, to applications or
containers that use that file system.

• Performance: Performance should be similar to that of
the same functionality implemented using VFS.

• Generality: There are a large variety of file system
designs that developers might want to implement. Bento
should not limit the types of file systems that can be
developed.

• Compatibility: File systems added to Linux via our
framework should work with existing application
binaries without recompiling or relinking. Further, Bento
should not require substantial changes to Linux’s internal
architecture, to make Bento easier to upstream.

• Live upgrades: The framework should support dynamic
upgrades to running file system code, transparently to
applications, except for a small delay.

• User-level debugging: File system code should be easily
migrated between userspace and the kernel to enable
user-level debugging and correctness testing.

At a high level, Bento achieves the first three goals by
enabling developers to write file systems in Rust, a type-safe,
non-garbage collected, general-purpose language that is
receiving increasing attention for kernel implementations. Of
course, safely using Rust within Linux is a challenge of its own.
The other three goals are achieved via careful architectural
design. To provide compatibility without sacrificing safety,
Bento avoids directly using the Linux VFS interface, because
it requires data structures to be directly passed back and forth
between the file system and the kernel, making it difficult to
provide verifiable data structure ownership safety. Instead,
Bento introduces a message-passing based API for file systems
that enforces ownership safety. Second, Bento introduces a dif-
ferent API to enable safe access to C-language kernel services,
by translating unsafe kernel interfaces into ones that can be
safely used by Rust. For live upgrades, Bento includes a com-
ponent that quiesces the running file system and then transfers
file system-defined state to the new instance, passing owner-
ship of long-lived, in-memory data structures between the file
systems so they can be shared across the upgrade. For user-

level debugging, Bento is designed with the same set of API
calls whether it runs in the kernel or in the userspace. A simple
build flag change is sufficient to choose a different mode.

2.4 Rust Primer
As background, Rust is a strongly-typed, memory safe,
data race free, non-garbage collected language. With these
properties, Rust is able to provide strong safety guarantees
without high performance overhead or the performance
unpredictability caused by garbage collectors. These provide
useful building blocks for Bento.

Rust relies on its type system to enforce memory safety.
The type system restricts how objects can be created and cast,
so if an object exists and is of a certain type, this guarantees
that the memory backing the object is valid and correctly
represents that type. Since raw pointers can be NULL and can
be cast to nonequivalent types, dereferencing pointers and
creating strongly type objects from pointers is unsafe and must
be tagged as unsafe to compile. Calling unsafe functions is
additionally unsafe. Although some systems allow unsafe Rust,
Bento requires that its file systems contain no unsafe code.

Rust prevents most memory leaks by tracking the lifetime
of objects. All objects must be owned by one variable at a time.
When the variable owning an object goes out of scope, the
lifetime of the object is over and the memory backing the object
can be safely reclaimed. References allow other variables to
refer to data without claiming ownership of the memory. Ref-
erences are either immutable or mutable, enabling read-only
or read-write accesses, respectively; references cannot outlive
the owner. Developers can provide custom functionality to be
performed when an object goes out of scope by implementing
the drop method. Leaking memory is not a safety violation
in Rust, so the drop function is not guaranteed to be called,
but memory leaks must be explicit instead of accidental.

Data races are avoided by enforcing that all objects, except
those that can be safely modified concurrently, must only
have one mutable reference at a time. For non-thread safe
objects that must be shared between threads, synchronization
mechanism such as locking must be used to safely obtain
references. Acquiring the lock gives the caller access to the
underlying data. Lock acquisitions methods generally return a
guard that automatically unlocks the lock in drop, preventing
the caller from forgetting to unlock. However, deadlocks, such
as circular waiting for locks, are possible in safe Rust code as
preventing them is beyond the power of the Rust type system.

68 19th USENIX Conference on File and Storage Technologies USENIX Association

These represent about 7% of the low-level bugs found in our
analysis of popular kernel modules.

3 THE BENTO SYSTEM
In this section, we describe the architecture of Bento, explain
how it interfaces with VFS and the rest of the kernel, and detail
how it enables live upgrades and user-level debugging.

3.1 The System Architecture
Figure 1 shows the Bento architecture; the shaded portions
are the Bento framework. Bento is a thin layer that, to the rest
of Linux, operates like a normal VFS file system. The Linux
kernel is unmodified other than the introduction of Bento.
In turn, like VFS, Bento defines a set of function calls that
Bento file systems implement and provides a mechanism for
file systems to register themselves with the framework by
exposing the necessary function pointers. Unlike VFS, Bento
is designed to support file systems written in safe Rust.

Bento consists of three components. First, BentoFS
interposes between VFS and the file system module and acts as
a controller that manages registering and running file systems.
BentoFS is written in C and inserted as a separate kernel
module. The other two components are Rust libraries that are
compiled into the file system module. LibBentoFS translates
unsafe calls from BentoFS into the safe file operations API
that is implemented by the file system. LibBentoKS provides
a safe API for file systems to access kernel services, such as to
perform I/O. The file system itself is written in safe Rust and is
compiled as a Rust static library that includes libBentoFS and
libBentoKS. When a file system module is loaded, it registers it-
self with BentoFS which adds it to the list of active file systems.

3.2 Interacting with VFS
The VFS layer poses a fundamental challenge to memory
safety. For example, VFS file systems allocate a single inode
data structure to hold both VFS and file system-specific data.
When the kernel needs a new inode, it requests one from
the file system which allocates it from its own memory pool.
Both sides access their half of the data structure, and when
done, the kernel releases the inode to the file system so the
memory can be reclaimed. Independent of whether this is a
good design pattern for minimizing kernel memory errors, it
is inconsistent with Rust compile time analysis and therefore
would compromise our ability to prevent memory safety errors
within the file system code itself.

Instead, we define a new interface for safe kernel file
systems. A selection of this API is in Table 2; the rest in the
appendix. The BentoFS module receives all calls from the
VFS layer, determines which mounted file system is the target,
and handles any necessary operations on kernel data structures.
BentoFS then sends requests to the libBentoFS dispatch
function using a similar API to that of the file system, but with
unsafe pointers instead of Rust data structures. LibBentoFS
parses the request, converts pointers to safe data structures,
and calls the correct function in the file system. The key idea is

Bento File Operations API (partial)
bento_init(&mut self, req, devname, fc_info)
bento_destroy(&mut self, req)
bento_read(&self, req, ino, fh, offset, size, reply)
bento_write(&self, req, ino, fh, offset, data, flags, reply)
bento_update_prepare(&mut self) -> Option<TransferOut>
bento_update_transfer(&mut, Option<TransferIn>)

Table 2: A subset of the Bento File Operations API. req includes the
user application’s uid, gid, and pid. reply includes data or error values.
The full API is included in supplementary material.

that the file system’s compiler can statically verify its own data
accesses, including its inode. To create an inode, BentoFS calls
into the file system (via libBentoFS) and gets back an opaque
reference (the inode number). In turn, BentoFS allocates and
returns to VFS a separate kernel inode data structure. BentoFS
never touches the contents of the file system inode.

BentoFS and libBentoFS are responsible for ensuring that
Rust’s safety properties are maintained as memory is passed
across the File Operations API so the assumptions made by the
Rust compiler will be true. When passing references to kernel
memory to the file system, such as data for read and write calls,
BentoFS guarantees that the memory will remain valid until
the call completes and, if a mutable reference is passed, must
ensure that no other thread is modifying the memory. When
passing references to structured data, BentoFS and libBentoFS
also ensure that the memory is correctly structured and never
cast to an incompatible type. Passing ownership across the
File Operations API requires careful handling of the memory
in libBentoFS and is only done during live upgrade (§3.4).

3.3 Interacting with Kernel Services
Bento file systems need access to kernel functionality such as
block I/O for access to underlying storage devices. These ker-
nel interfaces, like those in the VFS layer, are not designed with
type safety in mind and so cannot be directly used by a Bento
file system. Instead, libBentoKS implements safe versions of
kernel data structures and functions needed by file systems.

As an example, we will focus on kernel block I/O. File
systems in Linux access block devices via the buffer cache.
To read from (or write to) a block device, a Linux file system
calls __bread_gfp, passing in a pointer to the block_device
data structure, a block number, the block size, and a page
allocation flag. This function returns a buffer_head data
structure representing the requested block. The block’s data
is represented as a pointer and size in the buffer_head. The
file system can then read and/or write to this memory region.
When the file system is done using the buffer_head, it must
call brelse or buffers can be leaked.

Like many kernel interfaces, kernel block I/O relies heavily
on pointers. However, as described in §2.4, raw pointers
cannot be deferenced in safe Rust, and directly exposing these
pointers to the file system results in safety errors. If the block
I/O functions exposed to the file system accept a pointer, the
block I/O functions cannot be marked safe and the file system

USENIX Association 19th USENIX Conference on File and Storage Technologies 69

as a whole cannot be safe.
Exposing kernel services safely. Bento provides wrapping

abstractions for kernel services so they can be used safely by
the file system. These abstractions can be used like any other
Rust data structures and functions. Several of the provided
abstractions are detailed in Table 3.

To be concrete, we address the example discussed above.
We provide a safe BlockDevice abstraction to represent a
kernel block device. A BlockDevice takes the name of the
block device file and the block size; it contains a pointer to
the kernel block device and the block size as fields. It provides
several methods, including a safe bread method that takes a
block number as an argument, performs safety checks, and
calls __bread_gfp using the correct page allocation flag. The
bread method returns a BufferHead that wraps the kernel
buffer_head. A BufferHead method converts the pointer
and size fields into a sized memory region that can be used
safely. That method must use unsafe code to make the sized
memory region out of the unsized pointer and size fields,
but the file system can call the method safely. To prevent
accidental memory leaks, we call the brelse function in the
drop method of the BufferHead wrapper. With this, buffer
management has the same properties as memory management
in Rust: memory leaks are possible but difficult.

LibBentoKS provides synchronization primitives includ-
ing RwLock<T>, a wrapper around the kernel read-write
semaphore. It has the same interface as the Rust standard
library RwLock<T>, a read-write lock that protects data of
type T. To obtain an immutable reference to the protected
data, the user must acquire the read lock; to obtain a mutable
reference, the user must acquire the write lock. ReadGuard
calls up_read in drop and WriteGuard calls up_write in
drop, preventing the user from forgetting to unlock.

In addition libBentoKS provides an implementation of
the Rust global allocator that uses kmalloc and kfree for
small regions (less than 8 pages) and uses vmalloc and vfree
for larger regions. In this way, file system developers can
use dynamically allocated types such as a growable array
(Rust’s alloc::vec::Vec) and collection types (from Rust’s
alloc::collections). LibBentoKS provides TcpStream
and TcpListener to support networked file systems.

These abstractions can, in some cases, add a small amount
of performance overhead. If a kernel function has requirements
on its arguments, the wrapping method likely will need to
perform a runtime check to ensure that the requirements hold.

3.4 File System Upgrade

To enable online upgrades that are transparent to applications
using the file system, we must first identify when it is safe to up-
grade the file system and how to handle long-lived file system
state. If an upgrade occurs while file system operations are still
pending, there may be race conditions where some operations
are executed on the old file system and others on the new, lead-
ing to correctness problems. In addition, any state that affects

the semantic behavior of the file system, such as in-progress
disk requests, file system journals, and TCP connections for
networked file systems, must be correctly preserved across
the upgrade. State that affects performance but not semantics,
such as clean data in caches, can be optionally preserved.

Bento addresses these challenges by ensuring that the old
file system is in a quiescent state and that semantic state is
transferred to the new file system. Bento quiesces the file
system by pausing new calls into the file system module
during the upgrade and waiting for in progress operations to
complete. To achieve this, Bento uses a read-write lock on the
file system connection. All calls into libBentoFS acquire the
read lock, while upgrades acquire the write lock. Therefore,
file system operations can be executed concurrently in normal
mode but will be blocked during an upgrade; the upgrade will
be blocked until previous operations complete.

Second, a constraint on the old file system is that it must
be able to transfer its semantic state to the new file system.
Of course, the specific content of this state will vary from
file system to file system. Each file system defines two data
structures: one that is returned when the file system is removed
and one that is expected when the file system is replacing a
previous live file system. This design pattern, of needing to
write code to support both past and future versions, is common
in cloud settings. During upgrade, ownership of the data struc-
ture is passed from the old file system to the new one. BentoFS
handles passing the data structure from the old file system to
the new file system. The detailed mechanisms involved for
live upgrades are shown in Figure 1 and described below:

1. A new file system upgrade instance is loaded into the
kernel. At module load, it calls into BentoFS to register
itself and indicate that it is an upgrade.

2. BentoFS identifies the file system that needs to be
unloaded and acquires the lock to pause new operations
and wait for existing operations to complete.

3. BentoFS sends a bento_update_prepare request to
the old file system through libBentoFS.

4. The old file system instance handles the
bento_update_prepare request, performing any neces-
sary cleanup and creating and returning its defined output
state transfer struct to BentoFS through libBentoFS.

5. BentoFS sends a bento_update_transfer request to
the new file system through libBentoFS, passing the state
transfer data structure to the new file system.

6. The new file system instance initializes itself using the
provided state and returns.

7. BentoFS modifies the connection state by replacing
the old file system reference with the new file system
reference and releases the write lock, allowing calls to
proceed to the new instance.

3.5 Userspace Debugging Support
Bento also introduces a feature that enables a new file system
to be seamlessly hoisted to userspace for debugging. This
enables developers to leverage gdb and other familiar utilities

70 19th USENIX Conference on File and Storage Technologies USENIX Association

Object Type Method Kernel Equivalent Description

BlockDevice
bread(&self, ...) -> Result<BufferHead> __bread_gfp(...) Read a block from disk
getblk(&self, ...) -> Result<BufferHead> __getblk_gfp(...) Get access to a block
sync_all(&self) -> Result<i32> blkdev_issue_flush(...) Flush the block device

BufferHead

data(&self) -> &[u8] buffer_head->b_data Get read access to data
data_mut(&mut self) -> &mut [u8] buffer_head->b_data Get write access to data
drop(&mut self) brelse(...) Release the buffer
sync_dirty_buffer(&mut self) -> Result<c_int> sync_dirty_buffer(...) Sync a block

GlobalAllocator
alloc(&self, ...) -> *mut u8 __kmalloc(...)/vmalloc(...) Allocate memory
dealloc(&self, ...) kfree(...)/vfree(...) Free allocated memory

RwLock<T>
new(data:T) -> RwLock<T> init_rwsem(...) Create a RwLock of type T
read(&self) -> LockResult<ReadGuard<’_,T>> down_read(...) Acquire the read lock
write(&self) -> LockResult<WriteGuard<’_,T>> down_write(...) Acquire the write lock

TcpStream

connect(addr: SocketAddr) -> Result<TcpStream>
{

sock_create_kern(...)
kernel_connect(...)

Create and connect

read(&mut self, ...) -> Result<usize> kernel_recvmsg(...) Read a message
write(&mut self, ...) -> Result<usize> kernel_sendmsg(...) Send a message
drop(&mut self) sock_release(...) Cleanup the TcpStream

TcpListener
bind(addr: SocketAddr) -> Result<TcpListener>

sock_create_kern(...)
kernel_bind(...)
kernel_listen(...)

Create, bind, and listen

accept(&self) -> Result<(TcpStream, SocketAddr)> kernel_accept(...) Accept a connection

Table 3: Kernel Services API. These are some of the data structures and methods provided to the file system. Methods that take &mut self can
modify the object. Methods that take &self can access but not modify the object.

for higher velocity development. Debugged code can then be
dropped back into the kernel without any modification. Bento
supports this feature by exposing identical interfaces to both
the kernel version and the userspace version of a developed
file system. Whether the file system runs in the kernel or at
userspace is determined by a compilation configuration flag
which specifies which libraries will be linked and how the file
system should register itself during initialization.

Our solution leverages Linux kernel FUSE support to
forward file operations to userspace. By itself, this is not
sufficient — a FUSE file system is not runnable in the kernel.
At a high level, we design our kernel interfaces to mirror
existing userspace interfaces when possible, and implement
userspace libraries to expose additional abstractions otherwise.

Many kernel interfaces can be designed to expose the same
interfaces as userspace abstractions. For example, kernel
read-write semaphores are used the same way as Rust’s
std::sync::RwLock<T> and the kernel TCP stack provides
similar interfaces to Rust’s std::net::TcpStream and
std::net::TcpListener. In these cases, our kernel services
API provides interfaces that are identical to the analogous
userspace interface.

However, some kernel interfaces do not have obvious
userspace analogues. The File Operations API (Table 2),
for example, adds functions to implement state transfer and
passes immutable references to ensure correct concurrency
behavior. Additionally, operations on the backing storage
device are performed differently from the kernel and userspace.
FUSE file systems typically use file I/O to access the storage
device while kernel file systems directly interface with the
kernel buffer cache. Using a file I/O interface in the kernel

would significantly hinder performance and functionality,
adding extra data copies and preventing certain optimizations.
However, there is no standard userspace abstraction that
closely mirrors the kernel buffer cache.

To address this, we provide two additional libraries The
userspace version of libBentoFS translates calls from FUSE
into the File Operations API. The userspace version of
libBentoKS implements a basic buffer cache that uses file I/O
under the hood, providing the BlockDevice and BufferHead
abstractions to Bento file systems when running at user level.

4 IMPLEMENTATION & EXPERIENCES
We have developed Bento as a Linux kernel module for
BentoFS and a Rust library containing both libBentoKS and
libBentoFS in 5240 lines of C and 5072 lines of Rust. The
userspace versions of libBentoKS and libBentoFS are another
986 lines of Rust. The current implementation targets Linux
kernel version 4.15. The file system is compiled as a Rust a
static library, which can be linked with any required C code to
generate the .ko kernel module. Kernel code in Rust cannot use
standard libraries, but we do enable use of the Rust alloc crate.

4.1 BentoFS

We built BentoFS by modifying the existing Linux FUSE ker-
nel module. In place of upcalls, BentoFS communicates with
libBentoFS using function calls. A file system module registers
itself with BentoFS by providing a pointer to the dispatch
function when it is mounted. Like the VFS layer, BentoFS
maintains a list of active file systems, locking the list and adding
and removing entries when file systems are registered or unreg-
istered. This list is additionally locked during a live upgrade.

USENIX Association 19th USENIX Conference on File and Storage Technologies 71

Upgrade State Transfer. Ownership of state transfer data
structures must be moved between the Rust file system modules
during an upgrade to allow the new file system instance to take
ownership of state owned by the old file system instance. We
implement this ownership transfer in libBentoFS using the Rust
Box type. When the old file system instance returns its state to
libBentoFS, we create a Box to take ownership of the data and
pass the box as a raw pointer to BentoFS. The new libBentoFS
converts the pointer back to a Box, claiming ownership of the
data before passing it to the file system. Rust deletes the old file
system data structure when it goes out of scope at the end of the
transfer; the old file system is uninstalled in the background.

4.2 Experiences Using Bento

We began this project developing both a Bento version of a file
system and its VFS equivalent in C, as a way to quantify the
performance cost of Bento. However, we eventually stopped
development on the VFS version because implementing
and debugging new features were significantly more time
consuming and difficult than for the Bento version. In VFS, we
were much more likely to accidentally write memory errors,
such as NULL pointer dereferences and memory leaks. These
bugs took much longer to diagnose and fix than bugs in the
Bento version because they would crash the kernel, forcing
us to reboot between tests, and they were difficult to isolate.

We further illustrate our experience developing with Bento
on three axes: functionality, performance, and correctness.

Functionality. Using Bento, we implemented Bento-fs,
a file system designed to have ext4-like performance, in
3038 lines of safe Rust code. Bento-fs is structurally similar
to the xv6 file system, a simple file system included in
MIT’s teaching operating system xv6 [12]. This simplicity
made the xv6 file system an attractive starting point for
our prototype. Bento-fs includes several modifications for
improved functionality and performance. For example, xv6
does not fully support the functionality necessary to run our
benchmarks. Likewise, we added double indirect blocks to
support files up to 4GB, instead of 4MB in xv6.

We also added a provenance feature to Bento-fs. The
architecture of provenance tracking is borrowed from existing
work [26, 35]. It consists of two pieces: a) a file system com-
ponent that tracks file creations, deletions, and opens; and b) a
syscall-level component that tracks the process hierarchy and
operations on open file descriptors, such as dup and sendmsg.

The file system-level component is implemented by logging
information to a special file. To track existing files, ‘create’, ‘re-
name’, ‘symlink’, and ‘unlink’ operations log the user process
ID of the request, the names and inode numbers of relevant
files, any request flags, and, for ‘unlink’, whether or not the file
was deleted. The current implementation does not track hard
links, but adding such support could follow a similar strategy.
Since Bento-fs is not called for every read or write operation
due to kernel caching, we track file accesses by logging ‘open’
and ‘close’ calls, recording the read/write mode of the open call

along with the process ID of the request and the inode number
of the file. If a file is opened as writable while another file
is opened as readable, provenance tracking assumes that the
writable file’s contents depends on the readable file’s contents.

The syscall-level component tracks process creation
through ‘fork’/‘exec’ and operations on open file descriptors
so the provenance system can correctly handle instances
where a process gains access to a file without using the open
syscall. This component is implemented as a collection of
eBPF programs that log the relevant system calls, namely
‘clone’, ‘exec’, ‘pipe’, ‘dup’, ‘dup2’, and ‘sendmsg’. ‘Open’
calls are also logged so the file descriptors used in the system
calls can be matched to the file system tracking on file names.

Overall, these features were added to Bento-fs in 145 lines
of code in two weeks of development. In our development pro-
cess, we never caused a crash of the operating system and were
able to test and debug code within minutes of making changes.
In fact, many of our changes worked correctly once they com-
piled, something that has not been true of our C development.

Performance. To be able to bound the overhead imposed by
Bento by comparing it to ext4, we added various optimizations
to Bento-fs to match ext4 behavior. We particularly noticed
overhead on multi-threaded and metadata intensive bench-
marks. The xv6 free inode and free block implementations, for
example, are needlessly inefficient. The journal used by xv6 is
small by default and assumes that each operation will use the
maximum number of blocks, limiting it to only three concur-
rent operations at once. It also commits operations to the device
synchronously when transactions are completed. We increased
the size of the log and leveraged the Linux journal module
JBD2 (also used by ext4). In JBD2, transactions request the
required number of blocks and commit in the background. 1

Similarly, xv6 uses an inefficient list structure for directories.
We added tree-structured directories that use the hash of the
file name to locate directory entries.

Most of the code changes for the journal modifications were
in libBentoKS and mkfs. Tree structured directories were
implemented within Bento-fs in around 800 lines of code, split
across utility functions for the hash tree and directory lookup,
linking, and reading. Having access to dynamically allocated
data structures from Rust’s alloc crate simplified this imple-
mentation. The tree structure uses the B-tree implementation
provided by the crate and the directory lookup, linking, and
reading code use Rust’s dynamically allocated array Vec.

Correctness. We tested the correctness of our file system
using CrashMonkey [34]. It generates workloads based on
operations supported by the file system, and exhaustively
tests all combinations up to a defined sequence length. We
ran the seq-2 benchmarks [34], which test sequences of two
operations, using the operations supported by Bento-fs. This
resulted in 47314 benchmarks in total. CrashMonkey did

1Although we implemented a log manager for the userspace version, it
is likely less optimized than the kernel version, and there may be additional
ways to improve userspace write performance that we have not yet discovered.

72 19th USENIX Conference on File and Storage Technologies USENIX Association

not find any crash consistency bugs in Bento-fs. It found a
known bug from the FUSE kernel module in the C code used
in BentoFS where opening a directory then calling rmdir
followed by mkdir on the directory name before closing it
resulted in an unusable directory due to inode reuse. We fixed
this by always allocating a new inode during directory creation.

The provenance extension to Bento-fs was also used by
two groups of students to create two applications in the
context of a class. One of these applications automatically
recreated derived files when input files changed, specifically
recompiling an executable based on the input C files, inspired
by past work on transparent make [47]. The other application
performed automatic directory synchronization, syncing files
in a local directory to remote storage. In these student projects,
we found that Bento was robust enough to support a smooth
development experience.

5 EVALUATION
Our evaluation of Bento aims to answer several questions: a)
How well does Bento-fs perform on different workloads? b)
How robust is the file system under crash consistency testing?
and c) How expensive are live upgrades?

5.1 Experimental setup
Baselines. We compare: a) ext4-o: ext4, the default file system
on most Linux versions, using the default data=ordered
option with metadata journaling, b) ext4-j: ext4 with data
journaling (data=journalmode) c) Bento-fs, and d) Bento-fs
running in userspace. We focus our evaluation on ext4 with
journaling because Bento-fs also implements data journaling.
Note that Bento-fs has implemented only a subset of ext4’s
optimizations. The userspace version of Bento interacts with
the storage device by opening it with the O_DIRECT flag.
Environment. All experiments were run on a machine with
Intel Xeon Gold 6138CPU (2 sockets, each with 20 cores, 40
hyperthreads), 96 GB DDR4 RAM, and a 480 GB Intel Optane
SSD 900P Series with 2.5 GB/s sequential read speed and
2 GB/s sequential write speed. All benchmarks were run using
the SSD as the backing device using the cores and memory
on the socket connected to the SSD.

5.2 Microbenchmarks
We ran microbenchmarks from the Filebench benchmarking
suite. The workloads included sequential read, random
read, sequential write, random write, and create and delete
benchmarks. All workloads except for sequential write are run
with both 1 thread and 40 threads. Read and write benchmarks
were executed on a 4GB file using four different operation
sizes: 4, 32, 128, and 1024KB. The create workloads create
800,000 16KB files in the same directory, allocating half
before the start of the benchmark. The delete workloads delete
300,000 16KB files across many directories, with an average
of 100 files per directory. All benchmarks were run 10 times,
and averages and standard deviation were calculated. Table 4
shows the results on ext4 with both the default metadata

journaling and data journaling, Bento-fs, and Bento-user, the
userspace version of Bento-fs. Results are colored based on
the performance compared to ext4.

Reads. Reads on all three file systems have similar
performance for all sizes and both single-threaded and
40-threaded, and large reads achieve greater bandwidth than
provided by the device. This is because data is cached quickly
after the first read, and all subsequent reads hit in the page
cache. The userspace version uses the kernel cache in the
FUSE kernel module before forwarding requests to userspace,
so it performs similarly to direct kernel implementations.

Writes. For small write benchmarks, Bento-fs and ext4-j
have fairly similar write performance. Bento-fs has higher
performance than ext4-j and similar performance to ext4-o
on large write benchmarks due to slight implementation
differences. Whereas ext4-j logs blocks to the journal on
the write syscall path, Bento-fs logs asynchronously in the
writeback cache when data is flushed. This performance
difference is more prominent for single-threaded benchmarks
with large writes because these are more likely to stress the
journal in ext4-j without stressing the writeback cache. For all
cases, the user-level implementation is much slower because
it incurs additional kernel crossings and issues block I/O from
userspace. Each operation must first pass from the kernel back
to the userspace, which will then be translated into several
read/write operations on the storage device. Each system call to
the device file must in turn pass through the VFS layer to reach
the kernel block cache; this is much slower than direct accesses
to the kernel block cache by a kernel file system. Additionally,
Bento-user does not have access to the JBD2 module, so it uses
a simpler journal that is less efficient on large write workloads.
This journal is also affected by slow userspace block I/O.

Creates+Deletes. On the create and delete benchmarks,
ext4-j and Bento-fs have similar performance. Bento-fs outper-
forms ext4-j on single-threaded creates, likely due to the write
speedup. Ext4-o outperforms Bento-fs on multi-threaded cre-
ates. Both ext4 modes and Bento-fs outperform the user-level
file system for the same reason as the write benchmarks.

5.3 Application Workloads

Next, we run three application-style workloads from
Filebench, four applications, and two workloads each on two
different key-value stores. All workloads were run 10 times
and averages and standard deviation were calculated. From
Filebench, we ran ‘varmail’, ‘fileserver’, and ‘webserver’. (1)
The ‘varmail’ mail-serving workload uses 16 threads to create
and delete 1000 files in one directory and performs reads and
writes followed by fsyncs to these files. (2) The ‘fileserver’ file-
serving workload uses 50 threads to create and delete 10,000
files across 500 directories and executes reads and appends
to these files. (3) The ‘webserver’ web-serving workload
uses 100 threads to read from 1000 small (16KB average size)
files across around 50 directories and append to an operation
log. All benchmarks execute for one minute. For application

USENIX Association 19th USENIX Conference on File and Storage Technologies 73

Benchmark ext4-o ext4-j Bento-fs Bento:ext4-j Bento-user user:ext4-j
seq. read, 1-t, 4k 286 (±2) 287 (±2) 289 (±4) 1.01 290 (±2) 1.01
seq. read, 1-t, 32k 1811 (±20) 1796 (±21) 1817 (±18) 1.01 1807 (±18) 1.00
seq. read, 1-t, 128k 4170 (±55) 4071 (±75) 4119 (±82) 1.01 4112 (±50) 1.01
seq. read, 1-t, 1024k 6434 (±129) 6580 (±197) 6730 (±197) 1.02 6510 (±160) 0.99
seq. read, 40-t, 4k 429 (±7) 433 (±9) 436 (±7) 1.00 429 (±9) 0.99
seq. read, 40-t, 32k 3372 (±65) 3561 (±332) 3488 (±184) 0.98 3417 (±56) 0.96
seq. read, 40-t, 128k 17668 (±143) 17878 (±162) 17784 (±132) 0.99 17833 (±168) 1.00
seq. read, 40-t, 1024k 21407(±1774) 22024 (±101) 22082 (±339) 1.00 22136 (±101) 1.00
rand. read, 1-t, 4k 150 (±1) 149 (±2) 149 (±2) 1.01 149 (±3) 1.00
rand. read, 1-t, 32k 1037 (±6) 1044 (±6) 1049 (±8) 1.00 1041 (±6) 0.99
rand. read, 1-t, 128k 2901 (±20) 2955 (±36) 2957 (±33) 1.00 2908 (±31) 0.98
rand. read, 1-t, 1024k 5836 (±68) 5961 (±152) 5967 (±116) 1.00 5890 (±131) 0.99
rand. read, 40-t, 4k 223 (±24) 211 (±2) 217 (±5) 1.02 218 (±5) 1.02
rand. read, 40-t, 32k 1717 (±34) 1712 (±34) 1737 (±37) 1.01 1738 (±31) 1.02
rand. read, 40-t, 128k 9265 (±104) 9232 (±70) 9206 (±132) 1.00 9224 (±55) 1.00
rand. read, 40-t, 1024k 21635 (±46) 21650 (±49) 21637 (±50) 1.00 21569 (±54) 1.00
seq. write, 1-t, 4k 234 (±7) 172 (±3) 252 (±6) 1.46 3.7 (±0.0) 0.02
seq. write, 1-t, 32k 860 (±86) 409 (±1) 1003 (±65) 2.45 4.0 (±0.1) 0.01
seq. write, 1-t, 128k 1058 (±109) 430 (±44) 1774 (±352) 4.12 4.0 (±0.1) 0.01
seq. write, 1-t, 1024k 1365 (±0) 469 (±62) 1843 (±329) 3.93 4.0 (±0.0) 0.01
rand. write, 1-t, 4k 142 (±3) 120 (±1) 139 (±2) 1.16 8.5(±0.14) 0.07
rand. write, 1-t, 32k 875 (±7) 395 (±22) 898 (±9) 2.27 10.1 (±0.0) 0.03
rand. write, 1-t, 128k 1952 (±16) 330 (±18) 2167 (±62) 6.55 10.3 (±0.1) 0.03
rand. write, 1-t, 1024k 3051 (±35) 309 (±8) 3789 (±56) 12.24 10.1 (±0.3) 0.03
rand. write, 40-t, 4k 230 (±3) 208 (±4) 241 (±14) 1.15 9.2 (±0.1) 0.04
rand. write, 40-t, 32k 1237 (±46) 357 (±61) 1500 (±34) 4.20 10.0 (±0.2) 0.03
rand. write, 40-t, 128k 1414 (±43) 303 (±10) 1894 (±39) 6.24 10.4 (±0.1) 0.03
rand. write, 40-t, 1024k 1391 (±49) 296 (±13) 1924 (±78) 6.50 11.0 (±0.0) 0.04
create, 1-t, ops/s 12510 (±418) 8564 (±186) 12087 (±390) 1.41 194 (±5) 0.02
create, 40-t, ops/s 34377(±2157) 17858 (±0) 18819 (±663) 1.05 216 (±2) 0.01
delete, 1-t, ops/s 23331 (±878) 22913 (±0.3) 24997 (±0) 1.09 827 (±11) 0.03
delete, 40-t, ops/s 60493(±7088) 63253(±7101) 57253(±6258) 0.91 808 (±27) 0.01

Table 4: Performance results for ext4 in data=ordered mode (ext4-o), and data=journal mode (ext4-j), Bentofs, and a userspace version
of Bento-fs (Bento-user) on Filebench microbenchmarks using varying operation sizes and 1 and 40 threads. Reads and writes are measured
in MBps. Reads and writes are cached in the kernel and so can outperform the 2.5 GBps and 2.0 GBps device read and write speed. Results
are averaged over 10 runs and standard deviations are included in parentheses. Color indicates performance relative to ext4-j. Bento-fs performs
similarly to ext4-j for most benchmarks. Both significantly outperform Bento-user.

workloads, we used ‘tar’, ‘untar’, and ‘grep’ on the Linux
kernel source code and ‘git clone’ on the xv6 source repository.

We also evaluate read and write workloads on the Redis [41]
and RocksDB [43] key-value stores. Redis is an in memory
key-value store used in distributed environments. By default, it
periodically dumps the database to a file but can be configured
to also log all operations to an append-only-file (AOF) for
persistence. In our evaluation, we use the AOF and configure
it to sync every second. We run the ‘set’ and ‘get’ workloads
from redis-benchmark, the provided benchmarking utility,
for 1,000,000 operations using 100B values. RocksDB is a
persistent key-value store developed by Facebook based on
Google’s LevelDB [14]. Using db_bench, the included bench-
marking utility, we evaluate the ‘fillrandom’ and ‘readrandom’
workloads each for 1,000,000 operations using 100B values.

Filebench: Figure 2 presents the application-style
Filebench results for the three file systems described earlier,
plus Bento-fs with file provenance (Bento-prov). Across all

benchmarks, Bento-fs (with or without provenance) outper-
forms Bento-user by 10-400x due to the reasons discussed
earlier. For varmail and webserver, ext4-j and Bento-fs exhibit
similar performance, but for fileserver, Bento-fs significantly
outperforms ext4-j due to an unintentional quirk in the
benchmark. Filebench ‘fileserver’ executes many sequences
of create-write-delete operations, but it does not sync the
file before the file is deleted. With writeback caching, Bento
recognizes that the pages belong to files that no longer exist,
and drops the writes. In ext4-j, on the other hand, writes are
associated with the appropriate location on the storage device
during the write syscall path by mapping the written page
to the appropriate buffer head. This writeback code path
therefore has no need to identify the written file and executes
the block I/O regardless of whether the file exists or not. Like
Bento-fs, ext4-o is able to drop the writes to the deleted files
so both file systems show similar performance.

Applications: Figure 3 shows the results for application

74 19th USENIX Conference on File and Storage Technologies USENIX Association

varmail fileserver webserver
0

2500
5000
7500

10000
12500
15000

Op
s/
s 7705

12776

3679

7676

4199 4152

6434

12526

3895
4637

12892

4022

153 30 374

ext4-ordered
ext4-journal
Bento-fs
Bento-prov
Bento-user

Figure 2: Performance results for ext4 in data=ordered mode and
data=journal mode, Bento-fs, Bento-fs with provenance, and a
userspace version of Bento-fs on Filebench application-style work-
loads in ops/s. Bento-user performs much worse on all benchmarks.
Bento-fs and Bento-prov outperform ext4-journal on ‘fileserver’ due
to different handling of un-synced writes to deleted files.

200

400

untar tar grep git clone
0

25

50

Ti
m

e
(s

)

8.75

24.9

1.83 1.59
10.0

25.9

1.84 1.56
9.49

24.9

2.26 1.46
11.4

25.0

3.09 1.56

346

109.0

34.4

10.4

ext4-ordered
ext4-journal
Bento-fs
Bento-prov
Bento-user

Figure 3: Performance results for ext4 in data=ordered mode and
data=journal mode, Bento-fs, Bento-fs with provenance, and a
userspace version of Bento-fs on application workloads ‘tar’, ‘untar’,
and ‘grep’ on Linux source code and ‘git clone’ on xv6. Bento-user
performs much worse than the other file systems. Ext4-journal
performs somewhat better than Bento-fs and Bento-prov on ‘grep’.

workloads. Here, Bento-fs outperforms Bento-user by 4-36x.
The difference is particularly noticeable for ‘untar’ which
involves many creates. Creates are particularly impacted
by slow block I/O from userspace due to the large number
of separate disk operations needed to modify the directory,
allocate an inode, and fill the allocated inode. Relative to
ext4-j, Bento-fs performs similarly on ‘untar’, ‘tar’, and ‘git
clone’ and 19% worse on ‘grep’. The slowdown is due to
optimized page caching in ext4 that is not implemented in
Bento-fs. Relative to ext4-o, Bento-fs performs 13% worse on
‘untar’ due to data journaling and the lack of delayed allocation.
On other benchmarks, ext4-o shows similar results to ext4-j.

For most tested workloads, Bento-prov has similar per-
formance to Bento-fs. Bento-fs outperforms Bento-prov on
‘varmail’ by 39%, ‘untar’ by 13%, ‘grep’ by 68% because
Bento-prov logs information on creates, deletes, opens,
and closes. Similarly, Bento-prov is 25% slower on the
multithreaded create microbenchmark.

Key-Value Stores: Figure 4 shows the results for Redis
(‘set’ and ‘get’) and RocksDB (‘fillrandom’ and ‘readrandom’)
workloads on the four file systems. Due to caching, Bento-user
performs similarly to the others on read-intensive workloads,
but it performs much worse on writes. Bento-fs and Bento-prov
show similar performance to ext4-j and ext4-o on reads but
slightly outperform them on writes.

5.4 Live Upgrade
In this section, we measure the effect of a live upgrade on
application file system performance during an upgrade of
the file system from Bento-fs to Bento-prov. We do not use
Filebench for these benchmarks so we can collect latency of
individual operations. We ran two tests, both using a directory

set get fillrandom readrandom
0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

Bp
s)

6.7 7.9

35.0

17.7

6.6 8.1

34.2

17.7

7.0 8.4

42.0

18.0

7.0 7.7

42.7

17.7

1.3

7.8

0.2

17.4

ext4-ordered
ext4-journal
Bento-fs
Bento-prov
Bento-user

Figure 4: Performance results for ext4 in data=ordered mode and
data=journal mode, Bento-fs, Bento-fs with provenance , and a
userspace version of Bento-fs on Redis ‘set’ and ‘get’ and RocksDB
‘fillrandom’ and ‘readrandom’. Bento-user performs much worse
on write benchmarks.

that initially contained 400,000 files. In the first, we executed
a single thread that repeatedly created and deleted files. In
the second, we executed 10 threads that repeatedly wrote
and synced 64Kb writes to random files; we used 10 threads
because with too many threads any service interruption
caused by the upgrade was hidden by the latency variability of
individual operations. In both tests, we upgraded to the version
with provenance tracking after 0.5 seconds and completed
the test after another 0.5 seconds. We converted the latency
measurements into throughput by calculating the number of
operations that occur each 5ms interval to smooth the data
slightly. The results are shown in Figure 5a and Figure 5b.

These graphs show a performance drop where the upgrade
occurred at 0.5 seconds. In both tests, the upgrade took around
15ms, during which time the file system was unavailable and
a single operation per thread was blocked in the kernel. The
performance recovered after the upgrade completed but create
and delete performance was lower because the provenance-
tracking file system performs extra work on these operations.

6 RELATED WORK
Using safe languages for kernel development. Several
systems, including Pilot [40], SPIN [6], Singularity [20],
Biscuit [13], Redox [42], and Tock [23] write the entire op-
erating system, including the kernel, in a high-level language.
SPIN leverages type safety to allow application-specific
customization of kernel behavior. We are also not the first to
integrate Rust into the Linux kernel [24, 27]. The Berkeley
Packet Filter (eBPF) [32] is a type safe language for safe
extensibility in Linux. Users can insert eBPF programs at
predefined kernel locations, and the kernel verifies the safety
of the inserted programs before running them. ExtFUSE [8]
has enabled writing parts of a stackable file system using eBPF.
Compared to these, Bento shows that it is possible to develop
feature-rich file systems in a safe language to allow continuous
integration of new features into a commodity operating system.

Software fault isolation and verification. An alternative
approach is to allow development in an unsafe language (e.g.,
C) but do additional compile-time and runtime checks to
prevent memory errors from affecting the rest of the system.
Software fault isolation (SFI) [9, 30, 49] is a technique for
sandboxing the impact of faults in C modules to the module
itself; SFI has been widely used for protecting kernel device

USENIX Association 19th USENIX Conference on File and Storage Technologies 75

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

20000

40000

60000

Cr
ea

te
/D

el
et

e
(O

ps
/s

)

(a) Create+delete operations in ops/s.

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

200

400

W
rit

e
Tp

ut
 (M

Bp
s)

(b) Synced writes with 10-threads in MBps.
Figure 5: Performance during an upgrade from Bento-fs to Bento-prov, a provenance-tracking version of Bento-fs. At 0.5 seconds, Bento-fs
is upgraded to Bento-prov. The system experiences around 15ms of downtime.

drivers. We chose to use Rust instead as it has lower runtime
overhead and provides the additional benefit of bug prevention
in addition to sandboxing errors. Software verification is a
powerful tool for producing bug-free kernel code, and it has
been shown that a simple, single-threaded file system can be
verified [45]. Extending that work to handle concurrency and
high performance file systems is still ongoing.

Moving kernel features to userspace. Microkernel design,
where kernel services run in userspace, is another way to
speed operating system development [1, 25] especially when
safety and/or development velocity are more important than
raw performance. Filesystem in Userspace (FUSE) is a good
example in the Linux file system context. Many file systems
have been developed in FUSE; when people need performance,
they often re-implement the system inside the kernel [10, 19]
using VFS. With Bento, developers no longer need to choose
between performance and development velocity.

A related approach is to run the userspace OS service on
dedicated processor cores, where applications communicate
with the service via asynchronous message queues in shared
memory [4,7,22,31]. To date, this approach has only been pro-
posed and not implemented for file systems [28]. Performance
can often be competitive with an equivalent kernel implemen-
tation, except when processors need to busy wait or when the
system needs page remapping for efficient zero copy I/O.

Rump kernels (or anykernels) enable running unmodified
kernel code as userspace libraries by hijacking system calls
and providing userspace implementations of necessary kernel
internals. They are used for untrusted execution of kernel code,
e.g., when mounting an untrusted file system, or userspace
debugging. Implementations exist for NetBSD as a rump
kernel [21] and Linux as the libOS [46] and Linux Kernel
Library [39] projects; similarly, User Mode Linux [15] enables
running a Linux kernel as a userspace process.

OS live upgrade. There are three main commercially avail-
able tools for live upgrade of Linux systems: ksplice [3, 36],
kpatch [38], or kGraft [37]. All three perform live upgrade of
Linux kernel diffs and focus on security patches that do not
modify data structure layout. The internals of each approach
differ, but all three reroute calls from modified functions to new
functions. Some research systems provide support for upgrade
of more complex components. Most similar to Bento’s design
is K42 [5], a research operating system that enables upgrade of
modular components by quiescing the component then trans-

ferring state to the new instance and updating references. PRO-
TEOS [18], another research operating system, also supports
live upgrade of modular components. DynAMOS [29] and LU-
COS [11] enable live upgrade of complex components in Linux
without the need for state quiescence by using shadow data
structures and virtualization, respectively, to maintain state.

Stackable file systems. Stackable designs construct com-
plex file systems by stacking layers of functionality on top of
simple base file systems, enabling high velocity development.
File system stacking is natively supported by VFS and is used
by the overlay file system and eCryptfs, but these file systems
still suffer from the velocity problems caused by kernel C
code. FiST [50] proposed a framework for development of
portable stackable file systems written in a new high-level
language, augmented with C code. This improves velocity
by reducing the complexity of code written by developer, but
cannot support complex file system data structures and cannot
provide safety guarantees about the C code.

7 CONCLUSION

Bento is a framework for high velocity development of
Linux kernel file systems that enables several goals: safety,
performance, generality, compatibility with existing operating
systems, ability to do live upgrade, and support for easy debug-
ging. Bento provides these properties for file systems written
in Rust, by translating Linux interfaces into safe interfaces
with restricted memory sharing, supporting live upgrade with
state transfer, and exposing identical interfaces to kernel and
userspace file systems for userspace debugging. We implement
Bento-fs, a simple file system using Bento and show that it has
similar performance to ext4 and significantly outperforms the
version of Bento-fs compiled to run in userspace. We develop
a provenance tracking version of Bento-fs, and show that we
can transparently upgrade Bento-fs to it with only 15 ms of
service interruption to running applications.

Acknowledgements. We would like to thank Remzi
Arpaci-Dusseau for his helpful feedback on earlier drafts
of this paper. We would also like to thank our anonymous
reviewers and our shepherd, Rob Ross, for their helpful
comments and feedback. This work is partially supported by
the National Science Foundation grant CNS-1856636 AM04.
This work was also supported by Google and Huawei.

76 19th USENIX Conference on File and Storage Technologies USENIX Association

REFERENCES
[1] Mike Accetta, Robert Baron, William Bolosky, David

Golub, Richard Rashid, Avadis Tevanian, and Michael
Young. Mach: A New Kernel Foundation For UNIX
Development. In Summer USENIX, 1986.

[2] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark
Nelson, Gregory R. Ganger, and George Amvrosiadis.
File Systems Unfit as Distributed Storage Backends:
Lessons from 10 Years of Ceph Evolution. In SOSP,
2019.

[3] Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic
Rebootless Kernel Updates. In EuroSys, 2009.

[4] Andrew Baumann, Paul Barham, Pierre-Evariste
Dagand, Tim Harris, Rebecca Isaacs, Simon Peter,
Timothy Roscoe, Adrian Schüpbach, and Akhilesh
Singhania. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In SOSP, 2009.

[5] Andrew Baumann, Gernot Heiser, Jonathan Appavoo,
Dilma Da Silva, Orran Krieger, Robert W. Wisniewski,
and Jeremy Kerr. Providing Dynamic Update in an
Operating System. ATEC, 2005.

[6] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility Safety and Performance in the SPIN
Operating System. In SOSP, 1995.

[7] Brian Bershad, Thomas E. Anderson, Edward D.
Lazowska, and Henry M. Levy. User-level Interprocess
Communication for Shared Memory Multiprocessors.
ACM Transactions on Computer Systems, 9(2), May
1991.

[8] Ashish Bijlani and Umakishore Ramachandran. Ex-
tension Framework for File Systems in User Space. In
USENIX ATC, 2019.

[9] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
Marcus Peinado, Periklis Akritidis, Austin Donnelly,
Paul Barham, and Richard Black. Fast Byte-granularity
Software Fault Isolation. In SOSP, 2009.

[10] Ceph. Ceph kernel module. https://github.com/
ceph/ceph-client.

[11] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang,
and Pen-Chung Yew. Live Updating Operating Systems
Using Virtualization. In VEE, 2006.

[12] Russ Coxx, Frans Kaashoek, and Robert Morris. Xv6,
a simple Unix-like teaching operating system, 2020.

[13] Cody Cutler, M. Frans Kaashoek, and Robert T. Morris.
The benefits and costs of writing a POSIX kernel in a
high-level language. In OSDI, 2018.

[14] Jeff Dean and Sanjay Ghemawat. LevelDB: A Fast
Persistent Key-Value Store, 2011.

[15] J. Dike. A user-mode port of the Linux kernel. In Annual
Linux Showcase & Conference, 2000.

[16] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exoker-
nel: An Operating System Architecture for Application-
level Resource Management. In SOSP, 1995.

[17] Filesystem in Userspace. https://github.com/
libfuse/libfuse.

[18] Cristiano Giuffrida, Anton Kuijsten, and Andrew S.
Tanenbaum. Safe and Automatic Live Update for
Operating Systems. In ASPLOS, 2013.

[19] GlusterFS. Glusterfs kernel module. https:
//staged-gluster-docs.readthedocs.io/en/
release3.7.0beta1/Features/libgfapi/.

[20] Galen C. Hunt and James R. Larus. Singularity:
Rethinking the Software Stack. SIGOPS OSR, 2007.

[21] Antti Kantee. Rump File Systems: Kernel Code Reborn.
In USENIX Annual Technical Conference, 2009.

[22] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas E. Anderson. TAS: TCP Acceleration as an OS
Service. In EuroSys, 2019.

[23] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kB Computer Safely and
Efficiently. In SOSP, 2017.

[24] Zhuohua Li, Jincheng Wang, Mingshen Sun, and
John C.S. Lui. Securing the Device Drivers of Your
Embedded Systems: Framework and Prototype. In
ARES, 2019.

[25] Jochen Liedtke. On Microkernel Construction. In SOSP,
1995.

[26] Lineage File System. https://crypto.stanford.
edu/~cao/lineage.

[27] Linux-kernel-module-rust. https://github.com/
fishinabarrel/linux-kernel-module-rust.

[28] Jing Liu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Sudarsun Kannan. File Systems as
Processes. In HotStorage, 2019.

[29] Kristis Makris and Kyung Dong Ryu. Dynamic and
Adaptive Updates of Non-Quiescent Subsystems in Com-
modity Operating System Kernels. In EuroSys, 2007.

USENIX Association 19th USENIX Conference on File and Storage Technologies 77

https://github.com/ceph/ceph-client
https://github.com/ceph/ceph-client
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/libgfapi/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/libgfapi/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/libgfapi/
https://crypto.stanford.edu/~cao/lineage
https://crypto.stanford.edu/~cao/lineage
https://github.com/fishinabarrel/linux-kernel-module-rust
https://github.com/fishinabarrel/linux-kernel-module-rust

[30] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M. Frans Kaashoek. Software
Fault Isolation with API Integrity and Multi-principal
Modules. In SOSP, 2011.

[31] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael
Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, and et al. Snap: A Microkernel Approach to
Host Networking. In SOSP, 2019.

[32] Steven McCanne and Jacobson Van. The BSD Packet
Filter: A New Architecture for User-level Packet Capture.
In Winter USENIX, 1993.

[33] Jeffrey C. Mogul and John Wilkes. Nines are Not Enough:
Meaningful Metrics for Clouds. In HotOS, 2019.

[34] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Finding
Crash-Consistency Bugs with Bounded Black-Box
Crash Testing. In OSDI, 2018.

[35] Kiran-Kumar Muniswamy-Reddy, David A. Holland,
Uri Braun, and Margo Seltzer. Provenance-Aware
Storage Systems. In ATEC, 2006.

[36] Oracle Ksplice. https://ksplice.oracle.com/.

[37] Vojtech Pavlik. kGraft: Live Kernel
Patching. https://www.suse.com/c/
kgraft-live-kernel-patching/.

[38] Josh Poimboeuf. Introducing kpatch: Dynamic Kernel
Patching. https://www.redhat.com/en/blog/
introducing-kpatch-dynamic-kernel-patching.

[39] O. Purdila, L. A. Grijincu, and N. Tapus. LKL: The Linux
kernel library. In 9th RoEduNet IEEE International
Conference, pages 328–333, 2010.

[40] David D. Redell, Yogen K. Dalal, Thomas R. Horsley,
Hugh C. Lauer, William C. Lynch, Paul R. McJones,
Hal G. Murray, and Stephen C. Purcell. Pilot: An
Operating System for a Personal Computer. Commun.
ACM, 23(2):81–92, February 1980.

[41] Redis. https://redis.io.

[42] Redox. https://www.redox-os.org/.

[43] RocksDB. https://rocksdb.org/.

[44] Marc Rozier, Vadim Abrossimov, François Armand,
I. Boule, Michel Gien, Marc Guillemont, F. Herrmann,
Claude Kaiser, S. Langlois, Pierre Leonard, and
W. Neuhauser. CHORUS Distributed Operating Systems.
Computing Systems, 1988.

[45] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button Verification of File Systems
via Crash Refinement. In OSDI, 2016.

[46] H. Tazaki, Ryo Nakamura, and Y. Sekiya. Operating
System with Mainline Linux Network Stack. 2015.

[47] Amin Vahdat and Thomas E. Anderson. Transparent
result caching. In 1998 USENIX Annual Technical
Conference, New Orleans, Louisiana, USA, June 15-19,
1998. USENIX Association, 1998.

[48] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and
Erez Zadok. To FUSE or Not to FUSE: Performance
of User-Space File Systems. In FAST, USA, 2017.
USENIX Association.

[49] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient Software-based Fault
Isolation. In SOSP, 1993.

[50] Erez Zadok and Jason Nieh. FiST: A Language for
Stackable File Systems. ACM SIGOPS Operating
Systems Review, 34, 03 2002.

78 19th USENIX Conference on File and Storage Technologies USENIX Association

https://ksplice.oracle.com/
https://www.suse.com/c/kgraft-live-kernel-patching/
https://www.suse.com/c/kgraft-live-kernel-patching/
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://redis.io
https://www.redox-os.org/
https://rocksdb.org/

API Function Description
bento_init(&mut self, req, devname, fc_info) Initialize the file system.
bento_destroy(&mut self, req) Destroy the file system.
bento_lookup(&self, req, parent, name, reply) Lookup a file
bento_forget(&self, req, ino, nlookup) Forget lookups of a file
bento_getattr(&self, req, ino, reply) Get attributes
bento_setattr(&self, req, args..., reply) Set attributes
bento_readlink(&self, req, ino, reply) Read a symbolic link
bento_mknod(&self, req, parent, name, mode, rdev, reply) Create a file node
bento_mkdir(&self, req, parent, name, mode, reply) Create a directory
bento_unlink(&self, req, parent, name, reply) Unlink a file
bento_rmdir(&self, req, parent, name, reply) Remove a directory
bento_symlink(&self, req, parent, name, link, reply) Create a symbolic link
bento_rename(&self, req, parent, name, newparent, newname, flags) Rename a file
bento_link(&self, req, ino, newparent, newname, reply) Create a hard link
bento_open(&self, req, ino, flags, reply) Open a file
bento_read(&self, req, ino, fh, offset, size, reply) Read data from a file
bento_write(&self, req, ino, fh, offset, data, flags, reply) Write data to a file
bento_flush(&self, req, ino, fh, lock_owner, reply) Called on each close of a file
bento_release(&self, req, ino, fh, flags, lock_owner, flush, reply) Called on the last close of an open file
bento_fsync(&self, req, ino, fh, datasync, reply) Sync a file
bento_opendir(&self, req, ino, flags, reply) Open a directory
bento_readdir(&self, req, ino, fh, offset, reply) Read a directory
bento_releasedir(&self, req, ino, fh, flags, reply) Called on the last close of a directory
bento_fsyncdir(&self, req, ino, fh, datasync, reply) Sync a directory
bento_statfs(&self, req, ino, reply) Get file system statistics
bento_setxattr(&self, req, ino, name, value, flags, position, reply) Set extended attributes of a file
bento_getxattr(&self, req, ino, name, size, reply) Get extended attributes of a file
bento_listxattr(&self, req, ino, size, reply) List extended attributes of a file
bento_removexattr(&self, req, ino, name, reply) Remove an extended attribute of a file
bento_access(&self, req, ino, mask, reply) Check file permissions
bento_create(&self, req, parent, name, mode, flags, reply) Create and open a file
bento_getlk(&self, req, ino, fh, lock_owner, start, end, typ, pid, reply) Test for a file lock
bento_setlk(&self, req, ino, fh, lock_owner, start, end, typ, pid, sleep, reply) Acquire a file lock
bento_bmap(&self, req, ino, blocksize, idx, reply) Map a block index within a file
bento_update_prepare(&mut self) -> Option<TransferOut> Prepare to be removed during a live upgrade
bento_update_transfer(&mut, Option<TransferIn>) Initialize during a live upgrade

Table 5: The full File Operations API, based on the FUSE lowlevel API with bento_update_prepare and bento_update_transfer added for live
upgrade. File systems implement a subset of the provided functions. The req includes the requesting application’s user id, group id, and process
id. The reply data structures are used to return data or error values.

USENIX Association 19th USENIX Conference on File and Storage Technologies 79

Scalable Persistent Memory File System with Kernel-Userspace Collaboration

Youmin Chen, Youyou Lu, Bohong Zhu,

Andrea C. Arpaci-Dusseau†, Remzi H. Arpaci-Dusseau†, Jiwu Shu∗

Tsinghua University † University of Wisconsin – Madison

Abstract
We introduce Kuco, a novel direct-access file system architec-

ture whose main goal is scalability. Kuco utilizes three key

techniques – collaborative indexing, two-level locking, and

versioned reads – to offload time-consuming tasks, such as

pathname resolution and concurrency control, from the kernel

to userspace, thus avoiding kernel processing bottlenecks.

Upon Kuco, we present the design and implementation of

KucoFS, and then experimentally show that KucoFS has

excellent performance in a wide range of experiments; impor-

tantly, KucoFS scales better than existing file systems by up

to an order of magnitude for metadata operations, and fully

exploits device bandwidth for data operations.

1 Introduction

Emerging byte-addressable persistent memories (PMs), such

as PCM [22, 34, 51], ReRAM [3], and the recently released

Intel Optane DCPMM [27], provide performance close to

DRAM and data persistence similar to disks. Such high-

performance hardware increases the importance of redesign-

ing efficient file systems. In the past decade, the systems

community has proposed a number of file systems, such

as BPFS [11], PMFS [14], and NOVA [43], to minimize

the software overhead caused by a traditional file system

architecture. However, these PM-aware file systems are part

of the operating system and applications need to trap into the

kernel to access them, where system calls (syscalls) and the

virtual file system (VFS) still incur non-negligible overhead.

In this regard, recent work [13, 21, 28, 39] proposes to deploy

file systems in userspace to access file data directly (i.e., direct

access), thus exploiting the high performance of PM.

Despite these efforts, we find that another important per-

formance metric – scalability – still has not been well ad-

dressed, especially when multicore processors meet fast PMs.

NOVA [43] improves multicore scalability by partitioning

internal data structures and avoiding using global locks.

However, our evaluation shows that it still fails to scale

well due to the existence of the VFS layer. Even worse,

some userspace file system designs further exasperate the

scalability problem by introducing a centralized component.

For example, Aerie [39] ensures the integrity of file system

metadata by sending expensive inter-process communications

(IPCs) to a trusted process (TFS) that has the authority to

update metadata. Strata [21], as another example, avoids the

∗Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).

involvement of a centralized process in normal operations by

directly recording updates in PM logs, but requires a KernFS

to apply them (including both data and metadata) to the file

system, which causes one more time of data copying. The

trusted process (e.g., TFS or KernFS) in both file systems

is also responsible for concurrency control, which inevitably

becomes the bottleneck under high concurrency.

In this paper, we revisit the file system design by in-

troducing a kernel-userspace collaboration architecture, or

Kuco, to achieve both direct access performance and high

scalability. Kuco follows a classic client/server model with

two components, including a userspace library (named Ulib)

to provide basic file system interfaces, and a trusted thread

(named Kfs) placed in the kernel to process requests sent by

Ulib and perform critical updates (e.g., metadata).

Inspired by distributed file system designs, e.g., AFS [17],

that improve scalability by minimizing server loads and reduc-

ing client/server interactions, Kuco presents a novel task divi-

sion and collaboration between Ulib and Kfs, which offloads

most tasks to Ulib to avoid a possible Kfs bottleneck. For

metadata scalability, we introduce a collaborative indexing

technique to allow Ulib to perform pathname resolution before

sending requests to Kfs. In this way, Kfs can update metadata

items directly with the pre-located addresses provided by

Ulib. For data scalability, we first propose a two-level locking

mechanism to coordinate concurrent writes to shared files.

Specifically, Kfs manages a write lease for each file and

assigns it to the process that intends to open the file. Instead,

threads within this process lock the file with a range-lock

completely in userspace. Second, we introduce a versioned

read protocol to achieve direct reads even without interacting

with Kfs, despite the presence of concurrent writers.

Kuco also includes techniques to enforce data protection

and improve baseline performance. Kuco maps the PM space

into userspace in readonly mode to prevent buggy programs

from corrupting file data. Userspace direct writes are achieved

with a three-phase write protocol. Before Ulib writes a file,

Kfs switches the related PM pages from readonly to writeable

by toggling the permission bits in the page table. A pre-

allocation technique is also used to reduce the number of

interactions between Ulib and Kfs when writing a file.

With the Kuco architecture, we build a PM file system

named KucoFS, which gains userspace direct-access per-

formance and delivers high scalability simultaneously. We

evaluate KucoFS with file system benchmarks and real-world

USENIX Association 19th USENIX Conference on File and Storage Technologies 81

applications. The evaluation results show that KucoFS scales

better than existing file systems by an order of magnitude

under high contention workloads (e.g., creating files in the

same directory or writing data in a shared file), and delivers

slightly higher throughput under low contention. It also

hits the bandwidth ceiling of PM devices for normal data

operations. In summary, we make the following contributions:

• We conduct an in-depth analysis of state-of-the-art PM-

aware file systems and summarize their limitations on

solving the software overhead and scalability problems.

• We introduce Kuco, a userspace-kernel collaboration archi-

tecture with three key techniques, including collaborative

indexing, two-level locking, and versioned read to achieve

high scalability.

• We implement a PM file system named KucoFS based

on the Kuco architecture, and experimentally show that

KucoFS achieves up to one order of magnitude higher

scalability for metadata operations, and fully exploits the

PM bandwidth for data operations.

2 Motivation

In the past decade, researchers have developed a number of

PM file systems, such as BPFS [11], SCMFS [41], PMFS [14],

HiNFS [29], NOVA [43], Aerie [39], Strata [21], SplitFS [28],

and ZoFS [13]. They are broadly categorized into three types.

First, kernel-level file systems. Applications access them by

trapping into the kernel for both data and metadata operations.

Second, userspace file systems (e.g., Aerie [39], Strata [21],

and ZoFS [13]). Among them, Aerie [39] relies on a trusted

process (TFS) to manage metadata and ensure the integrity

of it. The TFS also coordinates concurrent reads and writes

to shared files with a distributed lock service. Strata [21],

in contrast, enables applications to append their updates

directly to a per-process log, but requires background threads

(KernFS) to asynchronously digest logged data to storage

devices. ZoFS avoids using a centralized component and

allows userspace applications to update metadata directly

with the help of a new hardware feature named Intel Memory

Protection Key (MPK). Note that Aerie, Strata, and ZoFS still

rely on the kernel to enforce coarse-grained allocation and

protection. Third, hybrid file systems (e.g., SplitFS [28] and

our proposed Kuco). SplitFS [28] presents a coarse-grained

split between a user-space library and an existing kernel file

system. It handles data operations entirely in userspace, and

processes metadata operations through the Ext4 file system.

Table 1 provides a summary of existing PM-aware file systems

and how well they behave in various aspects.

❶ Multicore scalability. NOVA [43], a state-of-the-art kernel

file system for PMs, is carefully designed to improve scal-

ability by introducing the per-core allocator and per-inode

log. Nevertheless, VFS still limits its scalability for certain

operations. We experimentally show this by deploying NOVA

on Intel Optane DCPMMs (detailed experimental setup is

described in § 5.1), and use multiple threads to create, delete,

NOVA Aerie/Strata ZoFS SplitFS KucoFS

Category Kernel Userspace Hybrid

❶
S

ca
la

b
il

it
y Metadata

Medium

(§5.2.1)

Low

(§5.2.1)

Medium

(Fig. 7g in [13])

Low

(§5.2.1)

High

(§5.2.1)

Read
Medium

(§5.2.2)

Low

(§5.2.2)
High Low

(journaling

in Ext4)

High

(§5.2.2)

Write
Medium

(§5.2.3)

Low

(§5.2.3)

Medium

(Fig.7f in [13])

High

(§5.2.3)

❷
Softeware

overhead
High Low

Medium

(sigsetjump)

Medium

(metadata)
Low

❸
O

th
er

is
su

es

Avoid stray

writes
✓ ✗ ✓ ✗ ✓

Read

protection
POSIX Partition Coffer POSIX Partition

Visibility

of updates

Immed-

iately

After batch/

After digest

Immed-

iately

append:

After sync

Immed-

iately

Hardware

required
None None MPK None None

Table 1: Comparison of different NVM-aware file systems.

or rename files in the same directory. As shown in Figure 1a,

their throughput is almost unchanged as we increase the

number of threads, since VFS needs to acquire the lock

of the parent directory. Aerie [14] relies on a centralized

TFS to handle metadata operations and enforce concurrency

control. Although Aerie batches metadata changes to reduce

communication with the TFS, our evaluation in §5 shows

that the TFS still inevitably becomes the bottleneck under

high concurrency. In Strata [21], the KernFS needs to digest

logged data and metadata in the background. If an application

completely uses up its log, it has to wait for an in-progress

digest to complete before it can reclaim log space. As a

result, the number of digestion threads limits Strata’s overall

scalability. Both Aerie and Strata interact with the trusted

process (TFS/KernFS) via expensive IPCs, which introduces

extra syscall overhead. ZoFS does not require a centralized

component, so it achieves much higher scalability. However,

ZoFS still fails to scale well when processing operations that

require allocating new spaces from the kernel (e.g., creat

and append, see Figures 7d, 7f, and 7g in their paper). Our

evaluation shows that SplitFS scales poorly for both data and

metadata operations because it 1) does not support sharing

between different processes, and 2) relies on Ext4 to update

metadata (see Figures 7 and 9).

❷ Software overhead. Placing a file system in the kernel

faces two types of software overhead, i.e., the syscall and VFS

overhead. We investigate such overhead by still analyzing

NOVA, where we collect the latency breakdown of common

file system operations. Each operation is performed on 1

million files or directories with a single thread. We make

two observations from Figure 1b. First, syscalls take up

to 21% of the total execution time (e.g., stat and open).

Also, after a process traps into the kernel, the OS may

schedule other tasks before returning control to the original

one. Hence, syscalls bring extra uncertainty for latency-

sensitive applications [12, 33]. Second, Linux kernel file

systems are implemented by overriding VFS functions, and

VFS causes non-negligible overhead. Although recent PM file

82 19th USENIX Conference on File and Storage Technologies USENIX Association

L
a
te

n
c
y
 B

re
a
k
d
o
w

n
 (

%
)

0

50

100

150

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/
s
)

0

0.1

0.2

0.3

FS VFS SyscallCreate
Rename

Unlink

(a) (b)

Number of Threads

0
.8

0
.4

6
.1

5
.1

8
.7

5
.9

1
.4

4
.8

(μ
s
)

10 20 30
open

sta
t

mkdir

mknod

rename
unlin

k

read-1K

writ
e-1K

Figure 1: Software overhead and scalability of NOVA.

systems [9, 11, 14, 29, 40, 43, 50] use direct access (DAX) to

bypass the page cache in VFS, we find that an average of 34%

of the time is still spent in the VFS layer for NOVA. ZoFS [13]

deploys a file system in userspace to avoid trapping into the

kernel; however, it still incurs extra software overhead. ZoFS

allows userspace applications to update metadata directly,

which may cause a normal program to be terminated when

accessing metadata that is corrupted by malicious attackers.

To achieve graceful error return, ZoFS invokes a sigsetjump

instruction at the beginning of each syscall, which causes

extra delays (∼200 ns). SplitFS requires a kernel file system

to handle metadata operations, so it still introduces kernel

overhead.

❸ Other issues. First, misused pointers can lead to writes to

incorrect locations and corrupt the data, which is known as

stray writes [14]. Strata [21] exposes the per-process opera-

tion log and the DRAM cache (including both metadata and

data) to userspace applications. Aerie [39] and SplitFS [28]

map a subset of the file system image to userspace. Hence,

stray writes can easily corrupt the data in these areas, and

such corruptions are permanent in NVM even after reboots.

Second, Aerie, Strata, and SplitFS improve performance by

delaying the visibility of the newly written data to other

processes until issuing a fsync, forcing applications to make

corresponding adjustments. Third, ZoFS heavily relies on the

MPK mechanism, if an application also needs to use MPK,

they may compete for the limited MPK resources.

To summarize, it is hard to achieve high scalability and low

software overhead with existing file system designs, and this

motivates us to introduce the Kuco architecture.

3 The Kuco Architecture

In this paper, we introduce the Kuco architecture to show

that a client/server model can be adopted to realize the two

goals simultaneously. The central idea underlying Kuco is

a fine-grained task division and collaboration between the

client and server, where most loads are offloaded to the client

part to avoid the server from becoming the bottleneck.

3.1 Overview
Figure 2 shows the Kuco architecture. It follows a client/

server model with two parts, including a userspace library

and a global kernel thread, which are called Ulib and Kfs,

respectively. An application accesses Kuco by linking with

…
open() read() write() unlink()

User

Kernel

Msg	Buf	

Applica(on

Kfs

Poll

Meta	request

map	

Userspace	library	(Ulib)

Update Par77on	tree

Readonly
Writequery

Index

Leases

Range	locks

Page	table
read	

Versioned
1

2

3

4

Figure 2: The Kuco architecture. metadata updates (➀-➃): Ulib

interacts with Kfs via collaborative indexing; read: direct access via

versioned read; write: direct access based on a three-phase write

protocol and two-level locking for concurrency control.

Ulib first, and different Ulib instances (i.e., applications)

interact with Kfs via separate memory message buffers. Like

existing userspace file systems [21, 39], Kuco maps the PM

space to userspace to support direct read and write accesses.

To protect file system metadata from being corrupted, Kuco

does not allow applications to update metadata directly;

instead, such requests are posted to Kfs, and Kfs then updates

metadata on behalf of them.

Kuco delivers high scalability with a fine-grained task

division and collaboration between Ulib and Kfs. For metadata

scalability, Kuco incorporates the collaborative indexing

mechanism to offload the pathname traversal job from Kfs to

userspace (§3.2). Instead of sending metadata operations (e.g.,

creat or unlink) to Kfs directly, Ulib first finds all the related

metadata items in userspace, and then encapsulates such

information in the request before sending it out. Therefore,

Kfs can perform metadata modifications directly with the

given addresses. For data scalability, a two-level locking

mechanism is used to handle concurrent writes to shared

files (§3.3). Specifically, Kfs uses a lease-based distributed

lock to resolve write conflicts between different applications

(or processes). Concurrent writes from the same process

are serialized using a pure userspace range lock, which can

be acquired without the involvement of Kfs. Kuco further

introduces the versioned read technique to perform file

reading in userspace (§3.5). By adding extra version bits in

data block mappings (which map logical file data to physical

PM addresses), Kuco can read a consistent version of data

blocks without interacting with Kfs to acquire the lock, despite

that there are other concurrent writers.

To further prevent buggy programs from corrupting file

data, PM space is mapped to userspace in readonly mode.

Kuco enables userspace direct writes on readonly addresses

by placing Kfs in the kernel with a three-phase write protocol

(§3.4). Before Ulib writes a file, Kfs modifies the permission

bits in the page table first to switch the involved data pages

from readonly to writable. To further reduce the number

of interactions between Ulib and Kfs when writing a file,

Kuco adopts pre-allocation, where Ulib can allocate more free

pages from Kfs than desired. Except for the write protection

USENIX Association 19th USENIX Conference on File and Storage Technologies 83

mechanism that prevents stray writes, the PM space in Kuco

is then divided into different partition trees, which act as

the minimum unit for read protection. By applying Kuco

in a file system named KucoFS and putting all techniques

together, KucoFS gains direct-access performance, delivers

high scalability, and ensures the kernel-level data protection.

3.2 Collaborative Indexing

In a typical client-server model, whenever Kfs receives a

metadata request, it needs to find the related metadata (e.g.,

inodes that describe file attributes, or dentries that map file

names to inode numbers) by performing iterative pathname

resolution from the root inode to the directory containing this

file. Such pathname traversal overhead is a heavy burden for

Kfs, especially when a directory contains a large number of

sub-files or with deep directory hierarchies.

To address this issue, we propose to offload the pathname

resolution task from Kfs to Ulib. By mapping partition trees to

userspace, Ulib can find the related metadata items directly in

userspace, and then sends a metadata update request to Kfs by

encapsulating the metadata addresses in the request as well.

In this way, Kfs can update metadata directly with the given

addresses, and the pathname resolution overhead is offloaded

from Kfs to userspace.

Figure 3 shows how Kuco creates a file with a pathname of

“/Bob/a”. Ulib first finds the predecessor dentry of file “a” in

the dentry list of “Bob” (➀). It then sends a creat request to

Kfs, and the address of the predecessor is put in the message

too (➁). Kfs then creates the file after receiving the request

(➂➃), which includes creating an inode of this file, and then

inserting a new dentry in the parent directory’s dentry list with

the given predecessor. To delete a file, both the inode of this

file and dentry in the parent directory should be deleted, so

both of their addresses are kept in the unlink request before

Ulib sends it. Note that atime is disabled by default, enabling

readonly operations (e.g., stat, readdir) to be performed

in userspace without posting extra requests to Kfs.

In Kuco, Ulibs produce pointers and Kfs consumes them.

This “one-way” pointer sharing paradigm simplifies ensuring

the correctness and safety of Kuco. On the one hand, metadata

items are placed in a metadata area with separate address

space and Ulib can only pass the addresses of two types of

metadata items (i.e., dentry and inode). Hence, we add an

identifier field at the beginning of each metadata item, which

helps Kfs to check the metadata type – any addresses not in the

metadata area or not pointing to a dentry/inode is considered

invalid. On the other hand, Kfs also performs consistency

checking based on the file system internal logic:

First, Ulib might read an inconsistent directory tree. For

example, when Kfs is creating new files in a directory,

concurrent Ulibs may read an inconsistent dentry list of this

directory. To address this issue, we organize the dentry list of

each directory with a skip list [32] and each dentry is indexed

by the hash value of the file name. Skip list has multiple

Msg	buf	

Kfs

Poll

Creat(“a”,	pred,	…)	

Userspace	library	(Ulib)

Validate	&	create

“/” “Bob”

Pathname	
resolu;on12

3

4 predecessor
…

/

Bob Tom

Figure 3: Creating a file (➀-➃) with collaborative indexing.

layers of linked list-like data structure. Each higher layer acts

as an “express lane” for the lower list layer. The list-based

structure enables lock-free atomic updates by performing

pointer manipulations. Besides, there are only insert and

delete operations to the dentry list performed by a single Kfs,

including rename operations which are performed by first

inserting a new node and then deleting the old one. Therefore,

a read to a dentry is always performed to a consistent one

even without acquiring the lock.

Second, with such a lock-free design, userspace applica-

tions may read metadata items that are being deleted by Kfs,

causing the “read-after-delete” anomaly. To safely reclaim

the deleted items, we need to ensure that no threads access

it anymore. We address this issue by using an epoch-based

reclamation mechanism (EBR) [15]. EBR maintains a global

epoch and three reclaim queues, where the execution is

divided into epochs and reclaim queues are maintained for

the last three epochs. Each thread also owns a private epoch.

Items deleted in epoch e are placed into the queue for epoch

e. Each time Ulib starts an operation, it reads the global epoch

and updates its own epoch to be equal to the global one. It

then checks the private epochs of others. If all Ulibs are active

in the current epoch e, then a new epoch begins. At this time,

all threads are active either in e or in e+1, and items in the

queue related to e-1 can be reclaimed safely. We also add a

dirty flag in each inode/dentry. Kfs deletes a metadata item by

setting its dirty flag to an invalid state, preventing applications

from reading the already deleted items.

Third, Kfs needs to handle conflicting metadata operations

properly. For example, when multiple Ulibs are performing

metadata operations concurrently, the pre-located metadata

item of one Ulib might be deleted or renamed by another

concurrent Ulib before Kfs accesses it. Hence, this item

is no longer valid and its address cannot be used by Kfs

anymore. It is also possible that a malicious process attacks

Kfs by providing arbitrary addresses. Luckily, only the Kfs can

update metadata, and it can validate the pre-located metadata

before processing the operation. Specifically, Kfs checks if

the pre-located item still exists or is still the predecessor, and

avoids creating files with the same name. When the validation

fails, Kfs then resolves the pathname itself and returns an

error code to the Ulib if the operation fails anyway.

Discussion. First, Kuco ensures that all metadata operations

are processed atomically. For creat, Kfs atomically inserts

a new dentry in the skip list only after an inode has been

created, to make the created file visible; For unlink, it

84 19th USENIX Conference on File and Storage Technologies USENIX Association

state

offset

size

c*me

version

checksum

2 Init	a	lock	item

3 Insert

1 Atomic	add

Ring	buffer

4 Conflict	checking	

0:	invalid;	1:	valid

Lock	create	*me

Range	of	write

Figure 4: Direct access range-lock. Each opened file owns a

range-lock. ❶-❹ show the steps to acquire a lock.

atomically deletes the dentry before deleting other fields.

Rename involves updating two dentries (create a new entry in

the destination path, and then delete the old one), so a program

can see two same files on both places at some point in time.

We leverage the dirty flag in each dentry to prevent such an

inconsistent state. Specifically, the old entry on the source

path is set to dirty before creating the new entry, and is then set

to invalid after the new entry is created. As a whole, we can

observe that metadata operations always change the directory

tree atomically, and Ulib is guaranteed to have a consistent

view of the directory tree even without acquiring the lock.

Second, Kuco’s scalability is further improved by avoiding

using locks — concurrent metadata updates are all delegated

to the global Kfs, so they can be processed without any locking

overhead (only Kfs can update metadata) [16, 35]. Kuco

ensures the crash consistency of metadata via an operation

log, which will be discussed in §4.2.

3.3 Two-Level Locking
Kuco introduces a two-level locking service to coordinate

concurrent writes to shared files, which prevents Kfs from

being frequently involved in concurrency control. First, Kfs

assigns write leases (in the kernel, see Figure 2) on files

to enforce coarse-grained coordination between different

processes, as in Aerie and Strata [21, 39]. Only the process

that holds a valid write lease (not yet expired) can write the

file. We assume that Ulib applies for leases infrequently, and

this is based on the fact that it is not the common case for

multiple processes to frequently and concurrently write the

same file. More fine-grained sharing between processes can

be achieved via shared memory or pipes [21]. Read leases are

not needed in Kuco (see Section 3.5).

Second, we introduce a direct access range-lock to serialize

concurrent writes between threads within the same process.

Once a Ulib acquires the write lease of a file, it creates a range

lock for this file in userspace, which is actually a DRAM

ring buffer (as shown in Figures 4). A thread writes a file

by acquiring the range-lock first, and it is blocked if a lock

conflict occurs. Each slot in the ring buffer has five fields,

which are state, offset, size, ctime, and a checksum. The

checksum is the hash value of the first four fields. We also

place a version at the head of each ring buffer to describe

the order of each write operation. To acquire the lock of

a file, Ulib firstly increments the version with an atomic

fetch_and_add (i.e., ❶). It then inserts a lock item into

a specific slot in the ring buffer (❷ and ❸, the location is

determined by the fetched version modulo the ring buffer

size). The insertion is blocked when this slot overlaps with

the head of the ring buffer. After this, Ulib traverses the ring

buffer backward to find the first conflicting lock item (i.e.,

their written data overlaps). If such a conflict exists, Ulib

verifies its checksum, and then polls on its state until it is

released. Ulib also checks its ctime field repeatedly to avoid

the deadlock if a thread aborts before it releases the lock (❹).

With this design, multiple threads can write different data

pages in the same file concurrently.

3.4 Three-Phase Write
Once the lock has been required, Ulib can actually write

file data. Since PM spaces are mapped to userspace in

readonly mode, Ulib cannot write file data directly. Instead,

we propose a three-phase write protocol to perform direct

writes. To ensure the crash consistency, Kuco follows a copy-

on-write (CoW) approach to write file data, where the newly

written data is always redirected to new PM pages. Similar

to NOVA [43] and PMFS [14], we use 4 KB as the default

data page size. The write protocol in Kuco consists of three

steps. First, Ulib locks the file via two-level locking and sends

a request to Kfs to allocate new PM pages. Note that, by

using a CoW way, space allocation is necessary for both

overwrite and append operations. Kfs also needs to modify

the related page table entries to make these allocated PM

pages writable before sending the response message back.

Second, Ulib copies both the unmodified data from the old

place and new data from the user buffer to the allocated PM

pages, and persists them via flush instructions. Third, Ulib

sends another request to Kfs to update the metadata of this file

(i.e., inode, block mapping), switch the newly written pages

to readonly, and finally releases the lock.

Furthermore, we introduce the pre-allocation mechanism

to avoid allocating new PM pages from Kfs for every write

operations. Specifically, we allow Ulib to allocate more

free pages from Kfs than desired (4 MB at a time in our

implementation). In this way, Ulib can use local free PM

pages without interacting with Kfs for most write operations.

When an application exits, the unused pages are given back to

the Kfs. For an abnormal exit, these free pages are temporarily

non-reusable by other applications, but still can be reclaimed

during the recovery phase (see §4.2). Pre-allocation also

helps with reducing the overhead of updating page table

entries. When the Kfs updates page table entries after each

allocation, it needs to flush the related TLB entries explicitly

to make the modifications visible. Pre-allocation allows

allocating multiple data pages at a time, so the TLB entries

can be flushed in batch.

3.5 Versioned Read

In the write protocol, both old and new versions of data pages

are temporarily kept due to the CoW way, providing us the

USENIX Association 19th USENIX Conference on File and Storage Technologies 85

V1 V1 V1

	version pointerstart end

1 96

V2 V2

V1 V1 V3 V3 V3

V4 V4 V4 V3 V3

(a)

(b)

(c)

start	=	1

end	=	1

Block	mapping	item

55 560

a8r

inode

0
1

2

3

…

n

…

Direct

data

page

0

1

…

n

Indirect

block

mappingBlock
mapping

Figure 5: Block mapping format and the versioned read
protocol. Mapping items with the same version correspond to the

same write operation. The above three consistent cases describe how

the start and end bits can be formatted when the version changes.

opportunity to read file data even without blocking writes.

However, block mappings that map a logical file to physical

pages are still updated in place by Kfs. This dirves us to

design the versioned read mechanism to achieve user-level

direct reads without any involvement of the Kfs, regardless of

concurrent writers.

Versioned Read is designed to allow userspace reads

without locking the file, while ensuring that readers never read

data from incomplete writes. To achieve this, Kuco uses an

Ext2-like [6] block mapping to index data pages and embeds

a version field in each pointer of the block mapping. As

shown in Figure 5, each 96-bit block mapping item contains

four fields, which are start, version, end and pointer. For a

write operation, say, writing three data pages, Kfs updates

the related block mapping items with the following format:

1|V1|0|P1 0|V1|0|P2 0|V1|1|P3 . In particular, all three items

share the same version (i.e., V1), which is provided by Ulib

when it acquires the range lock (in Section 3.3). The start bit

of the first item and the end bit of the last item are set to 1.

We only reserve 40-bit for the pointer field since it points to a

4 KB-aligned page and the lower 12 bits can be discarded.

With this format, readers can read a consistent snapshot of

data pages when one of the three cases is met in Figure 5:

a) No overlapping. When two updates to a file are performed

on non-overlapping pages, items with the same version

should be enclosed with both a start bit and an end bit (V1

and V2 in case a).

b) Overlaps the end part. When a thread overwrites the end

part of a former write, a reader should always see a start

bit when the version increases (V1➔V3 in case b).

c) Overlaps the front part. When a thread overwrites the first

half of a former write, a reader should always see an end

bit before the version decreases (V4➔V3 in case c).

If Ulib meets any case other than the above three cases, it

indicates that Kfs is updating the block mapping for some

other incomplete writes. In this case, Ulib needs to validate

again by re-scanning the sequence of the related versions.

After Ulib succeeds in the version checking, it then reads

the associated data pages. As a whole, Kuco utilizes the

embedded versions to detect incomplete writes and retries

until reading a consistent snapshot of data.

Read Semantics. In a multi-thread/process execution, ver-

inode
table

DRAM

NVM

binode

mapping
Block

Bob Dentry	List

…

Data	pages Opera7on	log

Append

a

2

1

3

… User:	Bob

creat(/Bob/a)

Tail	ptr

Metadata	pages

checkpoint

		Op:	Create

		inode:	4

		p_inode:	7

		name:	a

		Attr:	…

LogEntry:

Figure 6: Data layout of a partition tree in KucoFS. creat
operation with three steps is also shown.

sioned read is slightly different from legacy locked read in

that it allows concurrent writes. For example, a write starts

and has not yet been completed, but in-between, there is a read,

which reads an old snapshot of data. In this case, the execution

still equals to a serializable order (e.g., “read➛write”, “➛”

indicates happens-before). Versioned read has the same

semantic as locked read within each thread, because a read or

write has to complete before issuing the next one.

4 KucoFS Implementation

In this section, we describe how the Kuco architecture is

applied in a persistent memory file system named KucoFS.

4.1 Data Layout

KucoFS organizes partition trees of Kuco in a hybrid way

using both DRAM and PM (Figure 6). In DRAM, an array

of pointers (inode table) is placed at a predefined location to

point to the actual inodes. The first element in the inode table

points to the root inode of the current partition tree. With this,

Ulib can find any files from the root inode in userspace. As

discussed before, the dentry list of a directory is organized

into a skip list, which is also placed in DRAM.

For efficiency, KucoFS only operates on the DRAM meta-

data for normal requests. To ensure the durability and crash

consistency of metadata, KucoFS places an append-only

persistent operation log in PM for each partition tree. When

the Kfs updates the metadata, it first atomically appends a

log entry, and then actually updates the DRAM metadata

(see §4.2). When system failures occur, the DRAM metadata

can always be recovered by replaying the log entries in the

operation log. In addition to the operation log, the extra PM

space is cut into 4 KB data pages and metadata pages. Free

PM pages are managed with both a bitmap in PM and a free

list in DRAM (for fast allocation), and the bitmap is lazily

persisted by the Kfs during the checkpoint phase.

4.2 Crash Consistency and Recovery

Metadata consistency. KucoFS ensures the metadata con-

sistency by ordering updates to DRAM and PM. Figure 6

shows the steps of how Kfs creates a file when it receives a

creat request from Ulib. In ➊, Kfs reserves an unused inode

number from the inode table and appends a log entry to the

86 19th USENIX Conference on File and Storage Technologies USENIX Association

operation log. This log entry records the inode number, file

name, parent directory inode number, and other attributes. In

➋, it allocates an inode with each field filled, and updates

the inode table to point to this inode. In ➌, it then inserts

a dentry into the dentry list with the given address of the

predecessor, to make the created file visible. A creation fails

if the same dentry already exists (avoid creating the same

files). To delete a file, Kfs appends a log entry first, deletes

the dentry in the parent directory with the given addresses,

and finally frees the related spaces (e.g., inode, data pages and

block mapping). If a crash happens before the operation is

finished, the DRAM metadata updates will be lost, but Kfs can

reconstruct them to the newest state by replaying the log after

recovery. For rename oprations, except for system failures,

the kernel thread may crash and cause the dirty flag to be

in an inconsistent state. However, we consider the whole file

system crashes if the kernel thread crashes, which requires the

file system to be rebooted, and the above logging technique

ensures that rename operation is also crash-consistent.

Data consistency. KucoFS handles file write operations by

first updating data pages in a CoW way, and then appending

a log entry in the operation log to record the metadata

modifications. At this point, the write is considered durable.

Then, KucoFS can safely update DRAM metadata to make

this operation visible. when a system failure occurs before

the log entry is persisted, KucoFS can roll back to its last

consistent state since old data and metadata are untouched.

Otherwise, this write operation is made visible by replaying

the operation log after recovery.

Log cleaning and recovery. We introduce a checkpoint mech-

anism to avoid the operation log from growing arbitrarily.

When the Kfs is not busy, or the size of the log exceeds a

threshold (1MB on our implementation), we use a background

kernel thread to trigger a checkpoint, which applies metadata

modifications in the operation log to PM metadata pages.

The bitmap that is used to manage the PM free pages is

updated and persisted as well. After that, the operation log

is truncated. Background digestion never blocks front-end

operations, and the only impact is that log cleaning consumes

extra PM bandwidth. However, metadata are typically small-

sized and bandwidth consumption is not high.

Each time KucoFS is rebooted from a crash, Kfs first

replays the un-checkpointed log entries in the operation log,

so as to make PM metadata pages up-to-date. It then copies

PM metadata pages to DRAM. The free list of PM data pages

is also reconstructed according to the bitmap stored in PM.

Crashing again during the recovery is not a concern since

the log has not yet been truncated and can be replayed again.

Keeping redundant copies of metadata between DRAM and

PM introduces higher consumption of PM/DRAM space, but

we believe it is worth the efforts. With structured metadata

in DRAM, we can perform fast indexing directly in DRAM;

appending log entries in the log saves the number of updates

to PMs, which reduces the persistence overhead. In the future,

we plan to reduce the DRAM footprint by only keeping active

metadata in DRAM.

4.3 Write Protection

KucoFS strictly controls updates to the file system image.

Both in-memory metadata and the persistent operation log

are critical, so the Kfs in the kernel is the only one that is

allowed to update them. File pages are mapped to userspace

in readonly mode. Applications can only write data to

newly allocated PM pages and existing data pages cannot

be modified. KucoFS also provides process-level isolation

for userspace data structures. The message buffer and range

locks are privately owned by each process, so an attacker

cannot access them in other processes, except that it performs

a privilege escalation attack. Such security issues are out of

the scope of this work. As such, we conclude that KucoFS

achieves the same write protection as kernel file systems.

Preventing stray writes. Unlike many existing userspace

file systems that are vulnerable to stray writes [21, 28, 39],

KucoFS prevents this issue by mapping the PM space in

readonly mode. Note that there is still a temporary, writable

window (less than 1 µs) for the newly-written pages after a

write operation is finished but before the permission bits are

changed. This is unavoidable, as same as in existing kernel file

systems like PMFS. Fortunately, this rarely happens. Besides,

range locks and message buffers in userspace might also be

corrupted by stray writes. For this threat, we add checksum

and lease fields at each slot, which can be used to check

whether the inserted element has been corrupted or not.

4.4 Read Protection

KucoFS organizes its directory tree with partition trees, which

act as the minimal unit for access control. Each partition tree

is self-contained, consisting of metadata and data in PM, and

the related metadata copy in DRAM. KucoFS does not allow

file/directory structures to span across different partitions.

When a program accesses KucoFS, only the partition trees

it has access to are mapped to its address space, but other

partition trees are invisible to it.

In KucoFS, read access control is strengthened with the

following compromises. First, similar to existing userspace

file system [13, 39], KucoFS cannot support “write-only” or

complex permission semantics such as POSIX access control

lists (ACLs), since existing page table only has a single bit

to indicate a page is readonly or read-write. Second, KucoFS

does not support flexible data sharing between users, because

it is hard to change the permission of a specific file (e.g., via

chmod) with the partition tree design [13,21,31]. Yet there are

several practical approaches: ❶ creating a standalone partition

that applications with different permissions have access to it;

❷ posting user-level RPCs between different applications to

acquire the data. We believe such a tradeoff is not likely to be

an obstacle, since KucoFS still supports efficient data sharing

between applications within the same user, which is the more

USENIX Association 19th USENIX Conference on File and Storage Technologies 87

common case in real-world scenarios [13].

4.5 Memory-Mapped I/O
Supporting DAX feature in a copy-on-write file system needs

extra efforts, since files are out-of-place updated in normal

write operations [43]. Besides, DAX leaves great challenges

for programmers to correctly use PM space with atomicity

and crash consistency. Taking these factors into consideration,

we borrow the idea from NOVA to provide atomic-mmap,

which has higher consistency guarantees. When an application

maps a file into userspace, Ulib copies file data to its privately

managed data pages, and then sends a request to Kfs to

map these pages into contiguous address space. When the

application issues a msync system call, Ulib then handles it

as a write operation, so as to atomically make the updates in

these data pages visible to other applications.

4.6 KucoFS’s APIs
KucoFS provides a POSIX-like interface, so existing appli-

cations are able to access it without any modifications to the

source code. We achieves this by setting the LD_PRELOAD

environment variable. Ulib intercepts all APIs in standard C

library that are related to file system operations. Ulib processes

syscalls directly if the prefix of an accessed file matches

with a predefined string (e.g., /kuco/usr1). Otherwise, the

syscalls is processed in legacy mode. Note that read or write

operations only pass file descriptors in the parameter list.

Ulib distinguishes them from legacy syscalls via a mapping

table [23], which tracks files of KucoFS.

4.7 Examples: Putting It All Together

Finally, we summarize the design of the Kuco architecture

and KucoFS by walking through an example of writing 4 KB

of data to a new file and then reading it out.

Open. Before sending an open request, Ulib pre-locates the

related metadata first. Since this is a new file, Ulib cannot

find it directly. Instead, it finds the predecessor in its parent

directory’s dentry list for latter creation. The address, as well

as other information (e.g., file name, O_CREAT flags, etc.),

are encapsulated in the open request. When the Kfs receives

the request, it creates this file based on the given address. It

also needs to assign a write lease to this process. Then, the

Kfs sends a response message. After this, Ulib creates a file

descriptor and a range lock for this opened file, and returns to

the application.

Write. The application then uses a write call via Ulib to

write 4 KB of data to this newly created file. First, Ulib tries

to lock the file via the two-stage locking service. Since the

write lease is still valid, it acquires the lock directly through

the range-lock. Ulib blocks the program when there are write

conflicts and wait until other concurrent threads have released

the lock. After that, Ulib can acquire the lock successfully. It

then allocates a 4 KB-page from the pre-allocated pages,

copies the data into it, and flushes them out of the CPU

cache. Ulib also needs to post an extra request to the Kfs

to allocate more free data pages once the pre-allocated space

is used up. Finally, Ulib sends the write request to the Kfs to

finish the rest steps, including changing the permission bits

of the written data pages to readonly, appending a log entry

to describe this write operation, and updating the DRAM

metadata. Ulib finally unlocks the file in the range lock.

Read. KucoFS enables reading file data without interacting

with the Kfs. To read the first 4 KB from this file, Ulib finds

the inode in userspace and reads the first block mapping item.

The version checking is performed to ensure its state satisfies

one of the three conditions described in Section 3.5. After

this, Ulib can safely read the data page pointed by the pointer

in the mapping item.

Close. Ulib also needs to send a close request to the Kfs

upon closing this file. Kfs then reclaims the write lease since

it will not access this file anymore.

5 Evaluation

In our evaluation, we try to answer the following questions:

• Does KucoFS achieve the goal of delivering direct access

performance and high scalability?

• How does each individual technique in KucoFS help with

achieving the above goals?

• How does KucoFS perform under macro-benchmark and

real-world applications?

5.1 Experimental Setup

Testbed. Our experimental testbed is equipped with 2× Intel

Xeon Gold 6240M CPUs (36 physical cores), 384 GB DDR4

DRAM, and 12 Optane DCPMMs (256GB per module, 3 TB

in total). We perform all experiments on the Optane DCPMMs

residing on NUMA 0 (1.5 TB), whose read bandwidth peaks

at 37.6 GB/s and the write bandwidth is 13.2 GB/s. The server

is installed with Ubuntu 19.04 and Linux 5.1, the newest

kernel version supported by NOVA.

Compared systems. We evaluate KucoFS against NVM-

aware file systems including PMFS [14], NOVA [43],

SplitFS [28], Aerie [39], and Strata [21], as well as traditional

file systems with DAX support including Ext4-DAX [2] and

XFS-DAX [38]. Strata only supports a few applications and

has trouble running multi-threaded workloads. Similar to

previous papers [13,49], we only show part of its performance

results in § 5.3 and § 5.4. We only evaluate SplitFS in §5.2

and § 5.4 since it only supports a subset of APIs. For a

fair comparison, we deploy SplitFS with strict mode, which

ensures both durability and atomicity. ZoFS is not open-

sourced so we did not evaluate it. Aerie is based on Linux

3.2.2, which cannot support Optane DCPMMs. Hence, we

compare with Aerie [39] by emulating persistent memory

with DRAM, which injects extra delays. Due to limited space,

we only describe Aerie’s experimental data verbally without

adding extra figures.

88 19th USENIX Conference on File and Storage Technologies USENIX Association

XFS-DAX
EXT4-DAX
PMFS

NOVA
SplitFS
KucoFS

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/
s
)

 #. of Threads

(a) Creat,
Low

(b) Creat,
Medium

(c) Creat,
Medium

(more files)

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/
s
)

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/
s
)

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/
s
)

0

0.5

1

0

0.5

1

1.5

0

0.5

1

1.5

0 10 20 30

Figure 7: creat performance with FxMark. Low: in different

folders; medium: in the same folder; more files: each thread creates

one million files.

5.2 Effects of Individual Techniques

We use FxMark [25] to analyze the effects of individual

techniques, which explores the scalability of basic file system

operations. FxMark provides 19 micro-benchmarks, which

is categorized based on four criteria: data types (i.e., data or

metadata), modes (i.e., read or write), operations, and sharing

levels. We only evaluate the commonly used operations (e.g.,

read, write, mknod, etc.) due to the limited space.

5.2.1 Effects of Collaborative Indexing

Basic performance. In KucoFS, creat operation requires

posting requests to Kfs, so we choose this operation to show

the effects of collaborative indexing. FxMark evaluates creat

operations by letting each client thread create 10 K files in

private directories (i.e., low sharing level) or a shared directory

(i.e., medium). As shown in Figures 7a and 7b, KucoFS

exhibits the highest performance among the compared file

systems and its throughput never collapses, regardless of

the sharing level. XFS-DAX, Ext4-DAX and PMFS use

a global lock to perform metadata journaling in a shared

log, which leads to their poor scalability. NOVA shows

excellent scalability under low sharing level by avoiding

global locks (e.g., it uses per-inode log and partitions its

free spaces). However, all kernel file systems fail to scale

under the medium sharing level since VFS needs to lock

the parent directory before creating files. SplitFS relies on

Ext4 to create files, which accounts for its low scalability.

From the ZoFS paper we also find that ZoFS even shows

lower throughput than NOVA under low sharing level, since

it needs to trap into the kernel frequently to allocate new

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/
s
)

E
x
e
c
u
ti

o
n
 t

im
e

(s
)

#. of Threads

Create, Medium

0

20

40

60

w/o CI
KucoFS

NOVA
rw Lock

w/o Lock
KucoFS

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/
s
)

(a)
Collaborative

indexing

(b)
Conflicts
handling

(c)
Versioned

reads

NOVA
KucoFS

0

0.3

0.6

0.9

0

0.5

1

1.5

0 4 8 12 16

Figure 8: Benefits of collaborative indexing and versioned
read. w/o CI: KucoFS without collaborative indexing.

spaces. Aerie supports synchronizing metadata updates of

the created files to TFS with batching (by compromising the

visibility), so it achieves comparable performance to that of

KucoFS. Aerie fails to work properly when the number of

threads increases. The throughput of KucoFS, however, is

only decreased slightly with the medium sharing level, which

is one order of magnitude higher than other file systems, and

3× higher than that of ZoFS. We explain the high scalability

of KucoFS from the following aspects. First, in KucoFS, all

metadata updates are delegated to Kfs, so it can update them

without any locking overhead. Second, by offloading indexing

tasks to userspace, Kfs only needs to do lightweight work.

Larger workload. Furthermore, we measure the scalability of

KucoFS in terms of data capacity by extending the workload

size. Specifically, we let each thread create 1 million files,

100× larger than the default size in FxMark, and the results

are shown in Figure 7c. Compared to the results with a smaller

workload size, the throughput of KucoFS drops by 28.5%.

This is mainly because a file system needs more time to find

a proper slot for insertion in the parent directory when the

number of files increases. Even so, KucoFS still outperforms

other file systems by an order of magnitude.

Conflict handling. KucoFS requires Kfs to fall back and

retry when a conflict occurs, which may impact overall

performance. In this regard, we also test how KucoFS be-

haves when handling operations that conflict with each other.

Specifically, we use multiple threads to create the same file

concurrently if it does not exist, or delete it instead when

it has already been created. We collect the throughput of

these successful creations and deletions and the results are

shown in Figure 8b. As a comparison, the results of NOVA

USENIX Association 19th USENIX Conference on File and Storage Technologies 89

#. of Threads

(a) Read, Low (b) Read, Medium (c) Overwrite, Low

0

1

2

3
(e) Overwrite,
 Medium

(d) Append, Low

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/
s
)

#. of Threads #. of Threads #. of Threads #. of ThreadsT
h
ro

u
g
h
p
u
t

(M
o
p
s
/
s
)XFS-DAX EXT4-DAX PMFS NOVA SplitFS KucoFS

0

1

2

3

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/
s
)

0

3

6

9

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Figure 9: Read and Write throughput with FxMark. Low: threads read(write) data from(to) separate files; medium: in the same file but

different data blocks; default I/O size: 4 KB; gray area: Optane DCPMMs do not scale on NUMA platform.

is also shown in the figure. We can observe that KucoFS

achieves 2.4× higher throughput than NOVA. In NOVA, a

thread needs to acquire the lock before creating or deleting

files. Worse, if this creation or deletion fails, other concurrent

threads will be blocked unnecessarily since the lock does

not protect a valid operation. Instead, in KucoFS, threads can

send creation or deletion requests to Kfs without been blocked

and Kfs is responsible for determining whether this operation

can be processed successfully. Furthermore, since Ulib has

already provided related addresses in the request, Kfs can use

these addresses to validate metadata items directly, which

introduces insignificant overhead.

Breakdown. We also measure the benefit of collaborative

indexing by comparing with a variant of KucoFS that disables

this optimization (i.e., move the metadata indexing tasks

back to Kfs, denoted as “w/o CI”). Figure 8a shows the

results by measuring the throughput of creat with a varying

number of clients. We make the following observations. First,

in the single thread evaluation, collaborative indexing does

not contribute to improving performance, since moving the

metadata indexing task from Ulib back to the Kfs does not

reduce the overall latency of each operation. Second, when the

number of client threads increases, we find that collaborative

indexing improves throughput by up to 55%. Since KucoFS

only allows the Kfs to update metadata on behalf of multiple

Ulib instances, the theoretical throughput limit is Tmax = 1/L

(Ops/s, where L is the latency for Kfs to process one request).

Therefore, the offloading mechanism improves performance

by shortening the execution time of each request (i.e., L).

5.2.2 Effects of Versioned Read

Figures 9a and 9b show the file read performance of each

file system with a varying number of threads under different

sharing levels (i.e., low/medium). We make the following

observations. First, KucoFS exhibits the highest throughput

among the compared file systems, which peaks at 9.4 Mops/s

(hardware bandwidth has been fully utilized). The perfor-

mance improvement stems primarily from the design of ver-

sioned read, which empowers userspace direct access without

the involvement of Kfs. These kernel file systems (e.g., XFS,

Ext4, NOVA and PMFS) have to perform context switches

and walk through the VFS layer, which impact the read

performance. SplitFS only achieves comparable performance

to that of NOVA despite its direct-access feature. We find that

SplitFS needs to map more PM space to userspace whenever

it reads a page that has not been mapped yet, which causes

extra overhead. The performance improvement of KucoFS

is more obvious for medium sharing level because all the

compared systems need to lock the file before actually reading

file data. The locking overhead impacts their performance

significantly, despite they use shared locks [23]. Second,

the read performance of all evaluated file systems drops

dramatically when the number of threads keeps increasing

(gray area). To get stable results, we first bind threads to

NUMA 0 (local access), and the cores at NUMA 1 are used

only if the total number of threads is greater than 18. Both

we and past work [47] observe that cross-socket accessing

to Optane impacts performance greatly. To confirm that our

software design is scalable, we deploy NOVA and KucoFS

in DRAM, and both of them show scalable read throughput

again. Therefore, many recent papers [13, 19] only use the

cores from the local NUMA node in their evaluation. With our

emulated persistent memory, Aerie shows almost the same

performance as that of KucoFS with the low sharing level,

but its throughput falls far behind others at a medium sharing

level because Aerie needs to interact with the TFS frequently.

We further demonstrate the efficacy of versioned read by

concurrently reading/writing data from/to the same file. In

our evaluation, one read thread is selected to sequentially

read a file with an I/O size of 16 KB, and an increasing

number of threads are launched to overwrite the same file

concurrently (4 KB writes to a random offset). We let the

read thread issue read operations for 1 million times and

measure its execution time with a varying number of writers.

For comparison, we also implement KucoFS r/w lock that

reads file data by acquiring read-write locks in the range-lock

ring buffer, and KucoFS w/o lock that reads file data directly

without a correctness guarantee. We make the following

observations from Figure 8b. First, the proposed versioned

read achieves almost the same performance as that of KucoFS

w/o lock. This proves that the overhead of version checking is

extremely low. We also observe that KucoFS r/w lock needs

much more time to finish reading (7% to 3.2× more time than

KucoFS for different I/O sizes). This is because it needs to use

atomic operations to acquire the range lock, which severely

impact read performance when conflicts become frequent.

90 19th USENIX Conference on File and Storage Technologies USENIX Association

Second, the execution time of NOVA is orders of magnitudes

higher than that of KucoFS. NOVA directly uses mutexes

to synchronize the reader and concurrent writers. As a result,

the reader is always blocked by writers.

5.2.3 Effects of Three-Phase Writes

We evaluate both append and overwrite operations to

analyze the write protocol (see Figures 9 c-d). For overwrite

operations with low sharing level, some of them exhibit a

performance curve that increases first and then decreases.

In the rising part, KucoFS shows the highest throughput

among the compared systems because it is enabled to write

data in userspace directly. XFS and NOVA also show good

scalability. Among them, NOVA partitions free spaces to

avoid the locking overhead when allocating new data pages,

while XFS directly writes data in-place without allocating new

pages. Both PMFS and Ext4 fail to scale since they rely on a

centralized transaction manager to write data, introducing ex-

tra locking overhead. In the decreasing part, their throughput

is mainly affected by two factors: the cross-NUMA overhead,

which has been explained before, and the poor scalability of

Optane’s write performance [19]. SplitFS fails to run properly

under this setting. For append operations, XFS-DAX, Ext4-

DAX and PMFS exhibit bad scalability as the number of

threads increases. This is because they use a global lock to

manage the free data pages and metadata journal, so the lock

contention contributes to the major overhead. Both NOVA

and KucoFS show better scalability, and KucoFS outperforms

NOVA by from 10% to 2× with an increasing number of

threads. The throughput of SplitFS lies between NOVA and

Ext4-DAX. This is because, SplitFS first appends data in a

staging file, and then re-links it to the original file by trapping

into the kernel. On our emulated persistent memory, Aerie

shows the worst performance because the trusted service is

the bottleneck, where clients need to frequently interact with

the TFS to acquire the lock and allocate spaces.

Two-level locking. To analyze the effects of the lock design,

we also evaluate overwrite operations with the medium

sharing level, where threads write data to the same file at

different offsets. As shown in Figure 9e, the throughput of

KucoFS is one order of magnitude higher than the other four

file systems when the number of threads is small (SplitFS

fails to run properly in this setting). The range-lock design in

KucoFS enables parallel updates to different data blocks in

the same file. The performance of KucoFS drops again when

the number of threads grows to more than 8, which is mainly

restricted by the ring buffer size in the range-lock (we reserve

8 lock slots in the ring buffer). We also find that ZoFS shows

2× - 3× higher throughput than that of NOVA (Fig.7f in their

paper), but it still underperforms KucoFS.

Memory-mapped I/O. Memory-mapped I/O is the most effi-

cient way to access the file system. Kfs in KucoFS constructs

all page tables in advance when processing mmap requests.

For a fair comparison, we add the MAP_POPULATE flag

Workload Fileserver Webserver Webproxy Varmail

R/W Size 16 KB/16 KB 1 MB/8 KB 1 MB/16 KB 1 MB/16 KB

R/W Ratio 1:2 10:1 5:1 1:1

Total number of files in each workload is 100K.

Threads 1 16 1 16 1 16 1 16

XFS-DAX 39K 127K 121K 1.35M 192K 863K 99K 319K

Ext4-DAX 52K 362K 123K 1.33M 316K 2.50M 57K 135K

PMFS 72K 317K 110K 1.25M 218K 1.54M 169K 1.06M

NOVA 71K 537K 133K 1.43M 337K 3.02M 220K 2.04M

Strata 75K - 105K - 420K - 283K -

KucoFS 99K 683K 141K 1.48M 463K 3.22M 320K 2.55M

➶ 32% 27% 6% 3% 10% 7% 13% 24%

“➶” indicates the performance improvement over the 2nd-best system.

Table 2: Filebench throughput with 1 and 16 threads (Ops/s).

when using mmap to access kernel file systems, which builds

the page table during the syscall. The experimental results are

as expected (not shown in the figure): when we concurrently

issue 4KB read/write requests, all the evaluated file systems

saturate the hardware bandwidth.

5.3 Filebench: Macro-Benchmarks

We then use Filebench [1] as a macro-benchmark to evaluate

the performance of KucoFS. Table 2 shows both workload

settings (similar to that in the NOVA paper) and experimental

results with 1 and 16 threads (adding more threads does not

contribute to higher throughput with Filebench [13]). We can

observe that, first, KucoFS shows the highest performance

among all the evaluated workloads. In single-threaded evalu-

ation with Fileserver workload, its throughput is 2.5×, 1.9×,

1.38×, 1.39× and 1.32× as much as that of XFS, Ext4, PMFS,

NOVA, and Strata respectively, and is 3.2×, 5.6×, 1.9×, 1.45×

and 1.13× higher with Varmail workload. For read-dominated

workloads (e.g., webserver/webproxy), KucoFS also shows

slightly higher throughput. The performance improvement

mainly comes from the direct access feature of KucoFS. Strata

also benefits from direct access and performs the second-

best in most workloads. We also observe that the design

of KucoFS is a good fit for the Varmail workload. This is

expected: Varmail frequently creates and deletes files, so it

generates more metadata operations and issues system calls

more frequently. As described before, KucoFS eliminates

the OS-part overhead and is better at handling metadata

operations. Besides, Strata shows much higher throughput

than NOVA since the file I/Os in Varmail is small-sized.

Strata only needs to append these small-sized updates to the

operation log, reducing the write amplification dramatically.

Second, KucoFS is better at handling concurrent workloads.

With 16 client threads under the Fileserver workload, KucoFS

outperforms XFS-DAX by 4.4×, PMFS by 1.2×, and NOVA

by 27%. The performance improvement is more obvious

for Varmail workload: it achieves 10× higher performance

than XFS-DAX and Ext4-DAX on average. Two reasons

contribute to its good performance: first, KucoFS incorporates

techniques like collaborative indexing to enable Kfs to

provide scalable metadata accessing performance; second,

USENIX Association 19th USENIX Conference on File and Storage Technologies 91

XFS-DAX
EXT4-DAX

PMFS
NOVA

Strata
SplitFS

KucoFS

T
h
ro

u
g
h
p
u
t

(K
o
p
s
/
s
)

Object Size (SET)

0

100

200

300

128 1KB 4KB 8KB

Figure 10: Redis performance with different file systems.

KucoFS avoids using a global lock by letting each client

manage private free data pages. NOVA also exhibits good

scalability since it uses per-inode log-structure and partitions

the free spaces to avoid global locks.

5.4 Redis: Real-World Application

Redis exports a set of APIs allowing applications to process

and query structured data, and uses the file system for persis-

tent data storage. Redis has two approaches to persistently

record its data: one is to log operations to an append-only-

file (AOF), and the other is to use an asynchronous snapshot

mechanism. We only evaluate Redis with AOF mode in this

paper. Figure 10 shows the throughput of SET operations

using 12-byte keys with various value sizes. For small values,

the throughput of Redis is 53% higher on average on KucoFS,

compared to PMFS, NOVA, and Strata, and 76% higher

compared to XFS-DAX and Ext4-DAX. This is consistent

with the results of append in Section 5.2. With larger object

sizes, KucoFS achieves slightly higher throughput than other

file systems since most of the time is spent on writing data.

Note that Redis is a single-threaded application, so it is

reasonable for KucoFS to achieve a throughput of 100 Kops/s

with 8KB objects (around 800MB/s). SplitFS is good at

handling append operations since it processes data-plane

operations in userspace. However, it still underperforms

KucoFS, because Redis posts fsync to flush the AOF file

each time it appends new data. Hence, SplitFS needs to trap

into the kernel to update metadata, which again causes VFS

and syscall overhead.

6 Related Work

Kernel-userspace collaboration. The idea of moving I/O

operations from the kernel to userspace has been well studied.

Belay et al. [4] abstract the Dune process leveraging the

virtualization hardware in modern processors. It enables direct

access to the privileged CPU instructions in userspace and

executes syscalls with reduced overhead. Based on Dune,

IX [5] steps further to improve the performance of data-center

applications by separating management and scheduling func-

tions of the kernel (control-plane) from network processing

(data plane). Arrakis [31] is a new network server operating

system, where applications have direct access to I/O de-

vices and the kernel only enforces coarse-grained protection.

FLEX [42] avoids kernel overhead by replacing conventional

file operations with similar DAX-based operations, which

shares some similarities to SplitFS. While these systems

share the same idea of splitting tasks between the kernel and

userspace, KucoFS is different in that it exhibits a fine-grained

split of responsibilities while enforcing close collaboration.

Persistent memory storage systems. Except for persistent

memory file systems mentioned before, we summarize more

PM systems here. First, general PM optimizations. Yang et

al. [46] explore the performance properties and characteristics

of Optane DCPMM at the micro and macro levels, and

provide a number of guidelines to maximize the performance.

Libnvmmio [10] extends userspace memory-mapped I/O with

failure atomicity. Many recent papers also designed various

data structures that work correctly and efficiently on persistent

memory [7,18,26,30,48,52]. Second, PM-aware file systems.

BPFS [11] adopts short-circuit shadow paging to guarantee

the metadata and data consistency. SCMFS [41] simplifies

the file management by mapping files to contiguous virtual

address regions with the virtual memory management (VMM)

in existing OS. NOVA-Fortis [44] steps further to be fault-

tolerant by providing a snapshot mechanism. Ziggurat [49]

is a tiered file system which estimates the temperature of file

data and migrates cold data from PM to disks. DevFS [20]

pushes the file system implementation into the storage device

that has compute capability and device-level RAM. Third,

distributed PM systems. Hotpot [36] manages PM devices

of different nodes in the cluster with a distributed shared

persistent memory architecture. Octopus [24, 37] leverages

PM and RDMA to build an efficient distributed file system by

reducing the software overhead. Similarly, Orion [45] is also

distributed persistent memory file system but is built in the

kernel. FlatStore [8] is a log-structured key-value storage

engine based on RDMA network; it minimizes the flush

overhead by batching small-sized requests.

7 Conclusion

In this paper, we introduce a kernel and user-level collabora-

tive architecture named Kuco, which exhibits a fine-grained

task division between userspace and the kernel. Based on

Kuco, we further design and implement a PM file system

named KucoFS and experiments show that KucoFS provides

both efficient and highly scalable performance.

Acknowledgements

We sincerely thank our shepherd Donald E. Porter and the

anonymous reviewers for their insightful feedback. We also

thank Qing Wang and Ramnatthan Alagappan for their excel-

lent suggestions. This material is supported by the National

Key Research & Development Program of China (Grant No.

2018YFB1003301), the National Natural Science Founda-

tion of China (Grant No. 62022051, 61832011, 61772300,

61877035), and Huawei (Grant No. YBN2019125112).

92 19th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Filebench file system benchmark. "http:

//www.nfsv4bat.org/Documents/nasconf/

2004/filebench.pdf", 2004.

[2] Support ext4 on NV-DIMMs. "https://lwn.net/

Articles/588218", 2014.

[3] IG Baek, MS Lee, S Seo, MJ Lee, DH Seo, D-S Suh,

JC Park, SO Park, HS Kim, IK Yoo, et al. Highly

scalable nonvolatile resistive memory using simple

binary oxide driven by asymmetric unipolar voltage

pulses. In Electron Devices Meeting, 2004. IEDM

Technical Digest. IEEE International, pages 587–590.

IEEE, 2004.

[4] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David

Terei, David Mazières, and Christos Kozyrakis. Dune:

Safe user-level access to privileged cpu features. In

Proceedings of the 10th USENIX Conference on Oper-

ating Systems Design and Implementation, OSDI’12,

pages 335–348, Berkeley, CA, USA, 2012. USENIX

Association.

[5] Adam Belay, George Prekas, Ana Klimovic, Samuel

Grossman, Christos Kozyrakis, and Edouard Bugnion.

Ix: A protected dataplane operating system for high

throughput and low latency. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’14, pages 49–65, Berkeley, CA,

USA, 2014. USENIX Association.

[6] Remy Card, Theodore Ts’o, and Stephen Tweedie.

Design and implementation of the second extended

filesystem. In Proceedings of the 1st Dutch International

Symposium on Linux, pages 1–6, 1994.

[7] Shimin Chen and Qin Jin. Persistent b+-trees in non-

volatile main memory. Proc. VLDB Endow., 8(7):786–

797, February 2015.

[8] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang

Wang, and Jiwu Shu. Flatstore: An efficient log-

structured key-value storage engine for persistent mem-

ory. In Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’20, page

1077–1091, New York, NY, USA, 2020. Association for

Computing Machinery.

[9] Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu.

Hinfs: A persistent memory file system with both buffer-

ing and direct-access. ACM Trans. Storage, 14(1):4:1–

4:30, April 2018.

[10] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-

soo Han. Libnvmmio: Reconstructing software IO path

with failure-atomic memory-mapped interface. In 2020

USENIX Annual Technical Conference (USENIX ATC

20), pages 1–16. USENIX Association, July 2020.

[11] Jeremy Condit, Edmund B. Nightingale, Christopher

Frost, Engin Ipek, Benjamin Lee, Doug Burger, and

Derrick Coetzee. Better i/o through byte-addressable,

persistent memory. In Proceedings of the ACM SIGOPS

22Nd Symposium on Operating Systems Principles,

SOSP ’09, pages 133–146, New York, NY, USA, 2009.

ACM.

[12] Jeffrey Dean and Luiz André Barroso. The tail at scale.

Commun. ACM, 56(2):74–80, February 2013.

[13] Mingkai Dong, Heng Bu, Jiefei Yi, Benchao Dong,

and Haibo Chen. Performance and protection in the

zofs user-space nvm file system. In The 27th ACM

Symposium on Operating Systems Principles, SOSP ’19,

2019.

[14] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-

murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,

and Jeff Jackson. System software for persistent memory.

In Proceedings of the Ninth European Conference on

Computer Systems, EuroSys ’14, pages 15:1–15:15, New

York, NY, USA, 2014. ACM.

[15] Keir Fraser. Practical lock-freedom. Technical report,

University of Cambridge, Computer Laboratory, 2004.

[16] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir.

Flat combining and the synchronization-parallelism

tradeoff. In Proceedings of the Twenty-Second Annual

ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’10, page 355–364, New York, NY,

USA, 2010. Association for Computing Machinery.

[17] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-

narayanan, Robert N. Sidebotham, and M. West. Scale

and performance in a distributed file system. In Pro-

ceedings of the Eleventh ACM Symposium on Operating

Systems Principles, SOSP ’87, page 1–2, New York, NY,

USA, 1987. Association for Computing Machinery.

[18] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and

Beomseok Nam. Endurable transient inconsistency in

byte-addressable persistent b+-tree. In Proceedings

of the 16th USENIX Conference on File and Storage

Technologies, FAST’18, page 187, 2018.

[19] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao

Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan

Wang, Yi Xu, Subramanya R Dulloor, et al. Basic per-

formance measurements of the intel optane dc persistent

USENIX Association 19th USENIX Conference on File and Storage Technologies 93

memory module. arXiv preprint arXiv:1903.05714,

2019.

[20] Sudarsun Kannan, Andrea C Arpaci-Dusseau, Remzi H

Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath

Palani. Designing a true direct-access file system with

devfs. In 16th USENIX Conference on File and Storage

Technologies, page 241, 2018.

[21] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon

Peter, Emmett Witchel, and Thomas Anderson. Strata:

A cross media file system. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17,

pages 460–477, New York, NY, USA, 2017. ACM.

[22] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug

Burger. Architecting phase change memory as a scalable

dram alternative. In Proceedings of the 36th annual

International Symposium on Computer Architecture

(ISCA), pages 2–13, New York, NY, USA, 2009. ACM.

[23] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao

Zhang. Socksdirect: Datacenter sockets can be fast and

compatible. In Proceedings of the ACM Special Interest

Group on Data Communication, SIGCOMM ’19, pages

90–103, New York, NY, USA, 2019. ACM.

[24] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-

pus: An rdma-enabled distributed persistent memory file

system. In Proceedings of the 2017 USENIX Conference

on Usenix Annual Technical Conference, USENIX ATC

’17, page 773–785, USA, 2017. USENIX Association.

[25] Changwoo Min, Sanidhya Kashyap, Steffen Maass,

Woonhak Kang, and Taesoo Kim. Understanding

manycore scalability of file systems. In Proceedings

of the 2016 USENIX Conference on Usenix Annual

Technical Conference, USENIX ATC ’16, pages 71–85,

Berkeley, CA, USA, 2016. USENIX Association.

[26] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H.

Noh, and Beomseok Nam. Write-optimized dynamic

hashing for persistent memory. In 17th USENIX Con-

ference on File and Storage Technologies (FAST 19),

pages 31–44, Boston, MA, February 2019. USENIX

Association.

[27] Intel Newsroom. Intel@ optaneT M dc persistent

memory. https://www.intel.com/content/

www/us/en/products/memory-storage/

optane-dc-persistent-memory.html, April

2019.

[28] Kadekodi ohan, Kwon Lee Se, Kashyap Sanidhya,

Kim Taesoo, Kolli Aasheesh, and Chidambaram Vijay.

Splitfs: A file system that minimizes software overhead

in file systems for persistent memory. In The 27th ACM

Symposium on Operating Systems Principles, SOSP ’19,

2019.

[29] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A high perfor-

mance file system for non-volatile main memory. In

Proceedings of the Eleventh European Conference on

Computer Systems, EuroSys ’16, pages 12:1–12:16, New

York, NY, USA, 2016. ACM.

[30] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas

Willhalm, and Wolfgang Lehner. Fptree: A hybrid scm-

dram persistent and concurrent b-tree for storage class

memory. In Proceedings of the 2016 International

Conference on Management of Data, SIGMOD ’16,

pages 371–386, New York, NY, USA, 2016. ACM.

[31] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,

Doug Woos, Arvind Krishnamurthy, Thomas Anderson,

and Timothy Roscoe. Arrakis: The operating system

is the control plane. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’14, pages 1–16, Berkeley, CA,

USA, 2014. USENIX Association.

[32] William Pugh. Skip lists: A probabilistic alternative to

balanced trees. Commun. ACM, 33(6):668–676, June

1990.

[33] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft,

and John Ousterhout. Arachne: Core-aware thread

management. In Proceedings of the 12th USENIX Con-

ference on Operating Systems Design and Implemen-

tation, OSDI’18, page 145–160, USA, 2018. USENIX

Association.

[34] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and

Jude A. Rivers. Scalable high performance main

memory system using phase-change memory technol-

ogy. In Proceedings of the 36th annual International

Symposium on Computer Architecture (ISCA), pages

24–33, New York, NY, USA, 2009. ACM.

[35] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu.

Ffwd: Delegation is (much) faster than you think.

In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, pages 342–358, New

York, NY, USA, 2017. ACM.

[36] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-

tributed shared persistent memory. In Proceedings of

the 2017 Symposium on Cloud Computing, SoCC ’17,

page 323–337, New York, NY, USA, 2017. Association

for Computing Machinery.

[37] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu,

Junru Li, and Youyou Lu. Th-dpms: Design and im-

plementation of an rdma-enabled distributed persistent

94 19th USENIX Conference on File and Storage Technologies USENIX Association

memory storage system. ACM Trans. Storage, 16(4),

October 2020.

[38] Adam Sweeney, Doug Doucette, Wei Hu, Curtis An-

derson, Mike Nishimoto, and Geoff Peck. Scalability

in the xfs file system. In USENIX Annual Technical

Conference, volume 15, 1996.

[39] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-

vam, Venkatanathan Varadarajan, Prashant Saxena, and

Michael M. Swift. Aerie: Flexible file-system interfaces

to storage-class memory. In Proceedings of the Ninth Eu-

ropean Conference on Computer Systems, EuroSys ’14,

pages 14:1–14:14, New York, NY, USA, 2014. ACM.

[40] Ying Wang, Dejun Jiang, and Jin Xiong. Caching or

not: Rethinking virtual file system for non-volatile main

memory. In 10th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage 18). USENIX

Association, 2018.

[41] Xiaojian Wu and A. L. Narasimha Reddy. Scmfs: A

file system for storage class memory. In Proceedings of

2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’11,

pages 39:1–39:11, New York, NY, USA, 2011. ACM.

[42] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven

Swanson. Finding and fixing performance pathologies

in persistent memory software stacks. In Proceed-

ings of the Twenty-Fourth International Conference

on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’19, page 427–439,

New York, NY, USA, 2019. Association for Computing

Machinery.

[43] Jian Xu and Steven Swanson. Nova: A log-structured

file system for hybrid volatile/non-volatile main mem-

ories. In Proceedings of the 14th Usenix Conference

on File and Storage Technologies, FAST’16, pages 323–

338, Berkeley, CA, USA, 2016. USENIX Association.

[44] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha

Gangadharaiah, Amit Borase, Tamires Brito Da Silva,

Steven Swanson, and Andy Rudoff. Nova-fortis: A

fault-tolerant non-volatile main memory file system.

In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, pages 478–496, New

York, NY, USA, 2017. ACM.

[45] Jian Yang, Joseph Izraelevitz, and Steven Swanson.

Orion: A distributed file system for non-volatile main

memories and rdma-capable networks. In Proceedings

of the 17th USENIX Conference on File and Stor-

age Technologies, FAST’19, page 221–234, USA, 2019.

USENIX Association.
[46] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph

Izraelevitz, and Steve Swanson. An empirical guide

to the behavior and use of scalable persistent memory.

In 18th USENIX Conference on File and Storage Tech-

nologies (FAST 20), pages 169–182, Santa Clara, CA,

February 2020. USENIX Association.

[47] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph

Izraelevitz, and Steven Swanson. An empirical guide

to the behavior and use of scalable persistent memory.

arXiv preprint arXiv:1908.03583, 2019.

[48] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,

Khai Leong Yong, and Bingsheng He. Nv-tree: Reduc-

ing consistency cost for nvm-based single level systems.

In Proceedings of the 13th USENIX Conference on File

and Storage Technologies, FAST’15, pages 167–181,

Berkeley, CA, USA, 2015. USENIX Association.

[49] Shengan Zheng, Morteza Hoseinzadeh, and Steven

Swanson. Ziggurat: A tiered file system for non-volatile

main memories and disks. In 17th USENIX Conference

on File and Storage Technologies (FAST 19), pages 207–

219, 2019.

[50] Deng Zhou, Wen Pan, Tao Xie, and Wei Wang. A file

system bypassing volatile main memory: Towards a

single-level persistent store. In Proceedings of the 15th

ACM International Conference on Computing Frontiers,

CF ’18, pages 97–104, New York, NY, USA, 2018.

ACM.

[51] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A

durable and energy efficient main memory using phase

change memory technology. In Proceedings of the

36th annual International Symposium on Computer

Architecture (ISCA), pages 14–23, New York, NY, USA,

2009. ACM.

[52] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and

high-performance hashing index scheme for persistent

memory. In Proceedings of the 13th USENIX Confer-

ence on Operating Systems Design and Implementation,

OSDI’18, page 461–476, USA, 2018. USENIX Associ-

ation.

USENIX Association 19th USENIX Conference on File and Storage Technologies 95

Rethinking File Mapping for Persistent Memory

Ian Neal
University of Michigan

Gefei Zuo
University of Michigan

Eric Shiple
University of Michigan

Tanvir Ahmed Khan
University of Michigan

Youngjin Kwon
School of Computing, KAIST

Simon Peter
University of Texas at Austin

Baris Kasikci
University of Michigan

Abstract
Persistent main memory (PM) dramatically improves IO

performance. We find that this results in file systems on PM
spending as much as 70% of the IO path performing file map-
ping (mapping file offsets to physical locations on storage
media) on real workloads. However, even PM-optimized file
systems perform file mapping based on decades-old assump-
tions. It is now critical to revisit file mapping for PM.

We explore the design space for PM file mapping by build-
ing and evaluating several file-mapping designs, including dif-
ferent data structure, caching, as well as meta-data and block
allocation approaches, within the context of a PM-optimized
file system. Based on our findings, we design HashFS, a hash-
based file mapping approach. HashFS uses a single hash oper-
ation for all mapping and allocation operations, bypassing the
file system cache, instead prefetching mappings via SIMD
parallelism and caching translations explicitly. HashFS’s re-
sulting low latency provides superior performance compared
to alternatives. HashFS increases the throughput of YCSB on
LevelDB by up to 45% over page-cached extent trees in the
state-of-the-art Strata PM-optimized file system.

1 Introduction

Persistent main memory (PM, also known as non-volatile
main memory or NVM) is a new storage technology that
bridges the gap between traditionally-slow storage devices
(SSD, HDD) and fast, volatile random-access memories
(DRAM). Intel Optane DC persistent memory modules [20],
along with other PM variants [1,2,4,30,35,50], are anticipated
to become commonplace in DIMM slots alongside traditional
DRAM. PM offers byte-addressable persistence with only
2–3× higher latency than DRAM, which is highly appealing
to file-system designers. Indeed, prior work has re-designed
many file-system components specifically for PM, reducing
overhead in the IO path (e.g. by eliminating memory copies
and bypassing the kernel) [11, 14, 24, 29, 48, 52, 56].

However, not all aspects of the IO path have been exam-
ined in detail. Surprisingly, file mapping has received little
attention in PM-optimized file systems to date. File mapping—
the translation from logical file offsets to physical locations

on the underlying device—comprises up to 70% of the IO
path of real workloads in a PM-optimized file system (as we
show in §4.8). Even for memory-mapped files, file mapping is
still involved in file appends. Yet, existing PM-optimized file
systems either simply reuse mapping approaches [11, 14, 24]
originally designed for slower block devices [29], or devise
new approaches without rigorous analysis [15, 57].

PM presents a number of challenges to consider for file
mapping, such as dealing with fragmentation and concurrency
problems. Notably, the near-DRAM latency of PM requires
reconsidering many aspects of file mapping, such as mapping
structure layout, the role of the page cache in maintaining
volatile copies of file mapping structures, and the overhead of
physical space allocation. For example, some PM-optimized
file systems maintain copies of their block mapping structures
in a page cache in DRAM, as is traditional for file systems on
slower storage devices [11, 24, 29], but others do not [14, 15,
48] and instead rely on CPU caching. It is currently unclear if
maintaining a volatile copy of mapping structures in DRAM
is beneficial versus relying on CPU caches to cache mapping
structures, or designing specialized file map caches.

In this work, we build and rigorously evaluate a range of
file mapping approaches within the context of PM-optimized
file systems. PM’s random access byte addressability makes
designing fully random access mapping structures (i.e., hash
tables) possible, which expands the design space of possible
file mapping structures. To this end, we evaluate and PM-
optimize two classic per-file mapping approaches (i.e., where
each file has its own mapping structure) that use extent trees
and radix trees. We propose and evaluate two further, global
mapping approaches (i.e., where a single structure maps all
files in the entire file system). The first uses cuckoo hashing,
the second is HashFS, a combined global hash table and block
allocation approach that uses linear probing. We use these
approaches to evaluate a range of design points, from an
emphasis on sequential access performance to an emphasis
on minimizing memory references, cached and non-cached,
as well as the role of physical space allocation.

We evaluate these file-mapping approaches on a series
of benchmarks that test file system IO latency and through-
put under different workloads, access and storage patterns,
IO sizes, and structure sizes. We show how the usage of

USENIX Association 19th USENIX Conference on File and Storage Technologies 97

PM-optimized file mapping in a PM-optimized file system,
Strata [29], leads to a significant reduction in the latency of file
IO operations and large gains in application throughput. An
evaluation of Strata on YCSB [10] workloads running on Lev-
elDB [17] shows up to 45% improvement in throughput with
PM-optimized file mapping (§4). Our analysis indicates that
the performance of file-mapping is file system independent,
allowing our designs to be applied to other PM file systems.

Prior work investigates the design of PM-optimized stor-
age structures [31, 36, 54, 59] and indexing structures for
PM-optimized key-value stores [28, 51, 58]. These structures
operate on top of memory mapped files and rely on file map-
ping to abstract from physical memory concerns. Further, PM-
optimized storage and indexing structures are designed with
per-structure consistency (e.g., shadow paging) [31, 54, 59].
File systems already provide consistency across several meta-
data structures, making per-structure methods redundant and
expensive. In our evaluation, we show that storage structures
perform poorly for file mapping (§4.9).

In summary, we make the following contributions:
• We present the design and implementation of four file map-

ping approaches and explore various PM optimizations to
them (§3). We implement these approaches in the Strata
file system [29], which provides state-of-the-art PM perfor-
mance, particularly for small, random IO operations, where
file mapping matters most (§4.4). We perform extensive
experimental analyses on how the page cache, mapping
structure size, IO size, storage device utilization, fragmen-
tation, isolation mechanisms, and file access patterns affect
the performance of these file mapping approaches (§4).

• We show that our PM-optimized HashFS is the best per-
forming mapping approach, due to its low memory over-
head and low latency (§4.1) during random reads and in-
sertions. We demonstrate that this approach can increase
throughput by up to 45% over Strata’s page-cached extent
trees in YCSB workloads (§4.8).

• We show that using a traditional page cache provides no ben-
efit for PM-optimized file mapping (§4.7). We also demon-
strate that PM-optimized storage structures are ill-suited
for use as file mapping structures and cannot be simply
dropped into PM-optimized file systems (§4.9).

2 File Mapping Background

What is file mapping? File mapping is the operation of map-
ping a logical offset in a file to a physical location on the
underlying device. File mapping is made possible by one or
more metadata structures (file mapping structures) maintained
by the file system. These file mapping structures map logical
locations (a file and offset) to physical locations (a device
offset) at a fixed granularity. File mapping structures have
three operations: lookups, caused by file reads and writes of
existing locations; insertions, caused by file appends or IO to

unallocated areas of a sparse file; and deletions, caused by file
truncation (including file deletion) or region de-allocation in
a sparse file. Inserts and deletions require the (de-)allocation
of physical locations, typically provided by a block allocator
maintaining a separate free block structure. PM file systems
generally map files at block granularity of at least 4KB in
order to constrain the amount of metadata required to track
file system space [15, 29, 52]. Block sizes often correspond to
memory page sizes, allowing block-based PM file systems to
support memory-mapped IO more efficiently.

2.1 File Mapping Challenges
The following properties make designing efficient file map-
ping challenging. Careful consideration must be taken to find
points in the trade-off space presented by these properties
that maximize performance for a given workload and storage
device. PM intensifies the impact of many of these properties.
Fragmentation. Fragmentation occurs when a file’s data is
spread across non-contiguous physical locations on a storage
device. This happens when a file cannot be allocated in a
single contiguous region of the device, or when the file grows
and all adjacent blocks have been allocated to other files.
Fragmentation is inevitable as file systems age [42] and can
occur rapidly [9, 23].

Fragmentation can magnify the overhead of certain file
mapping designs. Many traditional file systems use compact
file mapping structures, like extent trees (§3.1), which can
use a single extent entry to map a large range of contigu-
ous file locations. Fragmentation causes locations to become
non-contiguous and the mapping structure to become larger,
which can increase search and insert times (§4). This is re-
ferred to as logical fragmentation and is a major source of
overhead in file systems [19], especially on PM (as file map-
ping constitutes a larger fraction of the IO path on PM file
systems). Another consequence of fragmentation is the re-
duction in sequential accesses. Fragmentation results in the
separation of data structure locations across the device, which
causes additional, random IO on the device. This degrades IO
performance, particularly on PM devices [22].

Fragmentation must be considered as an inevitable occur-
rence during file mapping, since defragmentation is not al-
ways feasible or desirable. Defragmentation is an expensive
operation—it can incur many file writes, which can lower de-
vice lifespan by more than 10% in the case of SSDs [19]. Sim-
ilar concerns exist for PM, which may make defragmentation
undesirable for PM-optimized file systems as well [18, 59].
Locality of reference. Locality of reference when accessing
a file can be used to reduce file mapping overhead. Accesses
with locality are typically accelerated by caching prior ac-
cesses and prefetching adjacent ones. OS page caches and
CPU caches can achieve this transparently and we discuss
the role of the OS page cache for PM file mapping in §2.2.
However, approaches specific to file mapping can yield fur-

98 19th USENIX Conference on File and Storage Technologies USENIX Association

ther benefits. For example, we can hide part of the file map-
ping structure traversal overhead for accesses with locality,
by remembering the meta-data location of a prior lookup
and prefetching the location of the next lookup. Further, with
an efficient cache in place, the file mapping structure itself
should be optimized for random (i.e., non-local) lookups, as
the structure is referenced primarily for uncached mappings.

Mapping structure size. The aggregate size of the file map-
ping structures as a fraction of available file system space
is an important metric of file mapping efficiency. Ideally, a
file mapping structure consumes a small fraction of available
space, leaving room for actual file data storage. Furthermore,
the size of the mapping structure impacts the amount of data
that can remain cache-resident.

Traditional file mapping structures are designed to be elas-
tic—the size of the structure is proportional to the number of
locations allocated in the file system. This means that as the
number and size of files increase, the size of the file mapping
structure grows as well. However, elastic mapping structures
introduce overhead by requiring resizing, which incurs asso-
ciated space (de-)allocation and management cost.

Concurrency. Providing isolation (ensuring that concurrent
modifications do not affect consistency) can be an expensive
operation with limited scalability. This is a well-known prob-
lem for database mapping structures (called indexes) that sup-
port operations on arbitrary ranges. For example, insertions
and deletions of tree-based range index entries may require
updates to inner tree nodes that contend with operations on
unrelated keys [16, 49].

Isolation is simpler in per-file mapping structures, where
the variety and distribution of operations that can occur con-
currently is limited. With the exception of sparse files, updates
only occur during a change in file size, i.e. when appending
new blocks or truncating to remove blocks. File reads and in-
place writes (writes to already allocated blocks) only incur file
mapping structure reads. For this reason, it is often sufficient
to protect per-file mapping structures with a coarse-grained
reader-writer lock that covers the entire structure [29].

The most common scenario for per-file mapping structure
concurrent access is presented by workloads with one writer
(updating the file mapping structure via appends or truncates),
with concurrent readers (file reads and writes to existing off-
sets). In this case, file mapping reads and writes can proceed
without contention in the common case. Other mapping struc-
ture operations can impact concurrency, but they generally
occur infrequently. For example, some file mapping structures
require occasional resizing. For consistency, this operation
occurs within a critical section but is required only when the
structure grows beyond a threshold. Extent trees may split or
merge extents and these operations require partial-tree locking
(locking inner nodes) but occur only on updates.

For global file mapping structures, the possibility of con-
tention is higher, as there can be concurrent writers (append-

ing/truncating different files). Global file mapping structures
have to be designed with concurrency in mind. In this case,
contention does not favor the use of tree-based indices, but
is tractable for hash table structures with per-bucket locks, as
contention among writers only occurs upon hash collision.

2.2 File Mapping Non-Challenges

Crash consistency. An overarching concern in file systems
is providing consistency—transitioning metadata structures
from one valid state to another, even across system crashes.
File systems have many metadata structures that often need
to be updated atomically across crashes, i.e. a free-list and a
file-mapping structure when a new location is allocated for a
file. File systems generally employ some form of journaling
to ensure these updates can be replayed and made atomic
and consistent, even in the case of a crash. This makes crash
consistency a non-challenge for file mapping. This is unlike
PM persistent data structures, which are typically designed to
provide crash consistency within the structure itself.
Page caching. Traditionally, file systems read data and meta-
data (including file-mapping structures) into a page cache in
DRAM before serving it to the user. The file system batches
updates using this page cache and writes back dirty pages.
This is a necessary optimization to reduce the overhead of
reading directly from a block device for each IO operation.
However, page caches have overheads. A pool of DRAM
pages must be managed and reallocated to new files as they
are opened, and the pages in the cache must be read and
written back to ensure updates are consistent.

For PM, an OS-managed page cache in DRAM may no
longer be required for file mapping structures. One analy-
sis [48] found that eschewing the page cache for inodes and
directories results in better performance in PM-optimized file
systems. Until now, there has been no such consensus on the
optimal design point for file mapping structures: some PM-file
systems maintain file mapping structures only in PM [15], oth-
ers maintain file mapping structures only in DRAM [52, 56],
still others manage a cache of PM-based file mapping struc-
tures in DRAM [11, 29]. However, as we show in §4.7, page-
cache management turns out to be a non-challenge, as it is
always more efficient to bypass page-caching for file-mapping
structures on PM-optimized file systems.

3 PM File Mapping Design

Based on our discussion of the challenges (§2.1), we now
describe the design of four PM-optimized file mapping ap-
proaches, which we analyze in §4. We first describe two tra-
ditional, per-file mapping approaches and their PM optimiza-
tions, followed by two global mapping approaches. We dis-
cuss the unique challenges faced by each approach, followed
by a description of the approach’s mapping structure.

USENIX Association 19th USENIX Conference on File and Storage Technologies 99

Logical Block: 21

binsearch
O(log2n)

0-21
22-25
26-90

...
91-100

0: 10(3)
3: 20(7)

10: 40(11)
21: 60(1)

Indirect Node Direct Node

binsearch
O(log2n)

1 Perform binary
search to find node
containing logical block

2 Repeat until direct
node is searched

Figure 1: An extent tree lookup example. Each indirect node lists
the range of logical blocks in the direct nodes it points to (shown
as <start block-end block>). Each direct block contains extents
that map ranges of logical blocks to physical blocks, represented
as <logical block start: physical block start (number
of blocks)>. Traversal of nodes is repeated until the direct map-
ping node is found.

3.1 Traditional, Per-File Mapping
File mapping is done per-file in most traditional file systems.
Each file has its own elastic mapping structure which grows
and shrinks with the number of mappings the structure needs
to maintain. The mapping structure is found via a separate,
fixed-size inode table, indexed by a file’s inode number. Per-
file mapping generally provides high spatial locality, as all
mappings for a single file are grouped together in a single
structure, which is traditionally cached in the OS page cache.
Adjacent logical blocks are often represented as adjacent map-
pings in the mapping structure, leading to more efficient se-
quential file operations. Concurrent access is a minor problem
for per-file mapping approaches due to the restricted per-file
access pattern (§2.1). Physical block allocation is performed
via a separate block allocator, which is implemented using a
red-black tree in our testbed file system (§4).
Challenges. Per-file mapping structures must support resiz-
ing, which can be an expensive operation. Since they need to
grow and shrink, per-file mapping structures have multiple
levels of indirection, requiring more memory references for
each mapping operation. Fragmentation destroys the compact
layout of these structures and exacerbates overhead by in-
creasing the amount of indirection and thus memory accesses.

We now discuss two common mapping structures used for
per-file mapping.

3.1.1 Extent Trees

The extent tree is a classic per-file mapping structure, but
is still used in modern PM-optimized file systems [11, 29].
Extent trees are B-trees that contain extents, which map file
logical blocks to physical blocks, along with a field that indi-
cates the number of blocks the mapping represents. Extents
can also be indirect, pointing to further extent tree nodes rather
than to file data blocks. In order to perform a lookup, a binary
search is performed on each node to determine which entry
holds the desired physical block. This search is performed on
each level of the extent tree, as shown in Fig. 1.

We create a PM-optimized variant of extent trees, based on
the implementation from the Linux kernel [33]. Traditionally,

0x00000015

Logical Block: 21

1 Perform offset
calculation

0
1
2
3

...

...

...

100

102
101

...

...

Level 1 Level D

0x00000015

...

2 Repeat at each level
until the bottom

Figure 2: An example radix tree performing a lookup. Each level is
indexed by using a portion of the logical block number as an offset.
The last level offset contains a single physical block number.

extent tree operations are performed on copies of tree blocks
in the page cache. As using a page cache for PM mapping
structures leads to unnecessary copy overhead (see §4.7),
we instead design our extent tree to operate directly on PM.
Consistency under concurrent extent access is guaranteed by a
per-extent entry valid bit, which is only enabled once an extent
is available to be read. Consistency for complex operations
(resizing, splitting extents, etc.) is provided by an undo log.
We also keep a cursor [5] in DRAM of the last accessed path,
improving performance for accesses with locality.
Design considerations. Extent trees have the most compact
representation of any of the mapping structures that we evalu-
ate, since multiple mappings can be coalesced into a single
extent, leading to small structure size. Extent trees, however,
require many memory accesses, as they must perform a binary
search at each level of the extent tree to find the final mapping.
Cursors can simplify the search, but only for sequential scans
through the structure and repeat block accesses.

3.1.2 Radix Trees

Radix trees are another popular per-file mapping struc-
ture [15], shown in Fig. 2. Each node in a radix tree occupies
a physical block on the device (typically 4KB), with the ex-
ception of a few entries that can be stored within the inode
directly. A lookup starts at the top level node resolving the
top N bits of the logical block number. With 8 byte pointers
and 4KB per node, we can resolve N = log2(

4096
8) = 9 bits

per radix tree node. The second level node resolves the next
N bits, and so on. Radix trees grow and shrink dynamically
to use as many levels as required to contain the number of
mappings (e.g., a file with N < 9 would only need a single-
level tree). The last level node contains direct mappings to
physical blocks. To accelerate sequential scans, a cursor in
DRAM is typically used to cache the last place searched in
the tree. As each pointer is simply a 64-bit integer (a physical
block number), consistency can be guaranteed through atomic
instructions of the CPU. Consistency for resizing is provided
by first recording modifications in an undo log.
Design considerations. Radix trees are less compact than
extent trees, and typically require more indirection. Thus, tree
traversal will take longer on average, since radix trees grow
faster than the compact extent trees. However, radix trees have
the computationally simplest mapping operation—a series of

100 19th USENIX Conference on File and Storage Technologies USENIX Association

offset calculations, which only require one memory access
per level of the tree. Hence, they often perform fewer memory
accesses than extent trees, as extent trees make O(log(N))
memory accesses per extent tree node (a binary search) to
find the next node to traverse.

3.2 PM-specific Global File Mapping
Based on our analysis of file mapping performance and the
challenges posed by per-file mapping approaches, we design
two PM-specific mapping approaches that, unlike the per-
file mapping approaches used in existing PM-optimized file
systems, are global. This means that, rather than having a
mapping structure per file, these approaches map both a file,
as represented by its inode number (inum), and a logical block
to a physical block. Hence, they do not require a separate
inode table.

Both of the global mapping structures we design are hash
tables. The intuition behind these designs is to leverage the
small number of memory accesses required by the hash ta-
ble structure, but to avoid the complexity of resizing per-file
mapping structures as files grow and shrink. We are able to
statically create these global structures, as the size of the file
system—the maximum number of physical blocks—is known
at file-system creation time. Hash tables are not affected by
fragmentation as they do not use a compact layout. Consis-
tency under concurrent access can frequently be resolved on
a per hash bucket basis due to the flat addressing scheme.

We employ a fixed-size translation cache in DRAM that
caches logical to physical block translations to accelerate
lookups with locality. It is indexed using the same hash value
as the full hash table for simplicity. The goal of the fixed-size
translation cache is to provide a mechanism for the hash table
structures that is similar to the constant-size cursor that the
extent and radix trees use to accelerate sequential reads [5].
This cache contains 8 entries and is embedded in an in-DRAM
inode structure maintained by Strata, our testbed file system
(§4). This fixed-size translation cache is different from a
page cache, which caches the mapping structure, rather than
translations. The translation cache reduces the number of PM
reads required for sequential read operations, benefiting from
the cache locality of the in-DRAM inode structure, accessed
during file system operations (§4.1).
Global Structure Challenges. Since these global mapping
structures are hash tables, they exhibit lower locality due to the
random nature of the hashing scheme. These global hash ta-
bles potentially exhibit even lower locality than a per-file hash
table might experience, since a per-file hash table would only
contain mappings relevant to that file, where the mappings
in a global hash table may be randomly distributed across
a much larger region of memory. However, the translation
cache ameliorates this challenge and accelerates mappings
with locality.

We now discuss two global file mapping hash table designs.

3.2.1 Global Cuckoo Hash Table

We show a diagram for the first global hash table structure in
Fig. 3. In this hash table, each entry maps <inum>, <logical
block>: <physical block>(<# of blocks>). This hash table
uses cuckoo hashing [38], which means each entry is hashed
twice using two different hash functions. For lookups, at most
two locations have to be consulted. For insertions, if both
potential slots are full, the insertion algorithm picks one of
the existing entries and evicts it by moving it to its alternate
location, continuing transitively until there are no more con-
flicts. We use cuckoo hashing for this design instead of linear
probing to avoid having to traverse potentially long chains
of conflicts in pathological cases, bounding the number of
memory accesses required to find a single index to 2.

1 Compute hash

2 Search both locations

File Number: 1
Logical Block: 21

hash2 O(1)

hash1 O(1)

...
1, 22: 101(2)

2, 51: 201(1)
1, 23: 102(1)

...

1, 21: 100(3)

Figure 3: Global
hash table with
cuckoo hashing.

The hash table is set up as a con-
tiguous array, statically allocated at file-
system creation. Consistency is ensured
by first persisting the mapping informa-
tion (physical block number, size) be-
fore persisting the key (inum, logical
block), effectively using the key as a
valid indicator. Consistency for complex
inserts (i.e., inserts which cause shuf-
fling of previous entries) is maintained
by first recording operations in the file-
system undo log. As complex updates
are too large for atomic compare-and-
swap operations, we use Intel TSX [21]
in place of a per-entry lock to provide
isolation. This isolation is required as
inserts may occur concurrently across
files—this is not a challenge for per-file mapping structures,
which can rely on per-file locking mechanisms for isolation.

One issue with hash tables is that they generally present
a one-to-one mapping, which is not conducive to represent-
ing ranges of contiguously allocated blocks like traditional
mapping structures. To compensate, each entry in this hash
table also contains a field which includes the number of file
blocks that are contiguous with this entry. This mapping is
maintained for every block in a series of contiguous blocks;
for example, if logical blocks 21..23 are mapped contiguously
to device blocks 100..102, the hash table will have entries for
100 with size 3 (shown in Fig. 3 as 100(3)), 101 with size
2, and so on. Each entry also contains a reverse index field
which describes how many blocks come before it in a con-
tiguous range so that if a single block is removed from the
end of a contiguous block range, all entries in the group can
be updated accordingly. This hash table can also do parallel
lookups for multiple blocks (e.g., by using SIMD instructions
to compute hashes in parallel) to make lookup more efficient
for ranged accesses (i.e. reading multiple blocks at a time)
if fragmentation is high. Ranged nodes are crucial for the
performance of large IO operations (we discuss this further in

USENIX Association 19th USENIX Conference on File and Storage Technologies 101

M
etadata R

egion

1, 1
1, 21

1, 50

2, 51
2, 22

File Number: 1
Logical Block: 21

hash O(1)

1 Compute hash
2 Search
collisions

3 Recover file data block
(same offset as hash table index)

File Data Region

Figure 4: HashFS and an example lookup operation. Rather than
storing a physical block number in the hash entry, the offset in the
hash table is the physical block number.

§4.4). Ranged nodes are also cached in the translation cache
to accelerate small, sequential IO operations.

Design considerations. There is a trade-off between
cuckoo hashing and linear probing. Cuckoo hashing accesses
at most 2 locations, but they are randomly located within the
hash table, resulting in poor spatial locality. Linear probing
may access more locations when there are conflicts, but they
are consecutive and therefore have high spatial locality with
respect to the first lookup. Therefore, a linear probing hash
table with a low load factor may access only 1 or 2 cache lines
on average, which would outperform a cuckoo hash table in
practice. We explore this trade-off by comparing this global
hash table scheme to a linear probing scheme (described in
§3.2.2) to determine which scheme has better performance
in practice—we measure the latency of lookups and modifi-
cations separately in our microbenchmarks (§4.1–§4.5) and
end-to-end performance in our application workloads (§4.8).

3.2.2 HashFS

We also design a second global hash table, with the idea of
specifically reducing the cost of the insert operation, which
normally involves interacting with the block allocator. To this
end, we build a single hash table that also provides block
allocation, which we call HashFS. We present a diagram of
this structure in Fig. 4.

HashFS is split into a metadata region and a file data re-
gion. Physical blocks are stored in the file data region, which
starts at f ileDataStart. A lookup resolves first to the meta-
data region. The corresponding physical block location is
calculated from the offset of the entry in the metadata region.
For example, if the hash of <inum=1, lblk=21> resolves to
offset i in the metadata region, the location of the correspond-
ing physical block is (f ileDataStart + i× blockSize), with
blockSize = 4KB.

Unlike the cuckoo hash table (§3.2.1), this table does not
have any ranged nodes, instead providing a pure one-to-one
mapping between logical blocks and physical blocks. This
uses a constant space of 8 bytes per 4KB data block in the
file system, for a total space overhead of < 0.2% of PM. An-
other advantage to this scheme is that the hash table entries
are extremely simple—a combined inum and logical block,
which fits into a 64-bit integer. Consistency can therefore be
guaranteed simply with intrinsic atomic compare-and-swaps.

In order to efficiently implement large IO and sequential

How is file mapping
affected by... Design Question §

Locality? Optimize for specific workloads? 4.1
Fragmentation? Make robust against file system aging? 4.2
File size? Specialize for different file sizes? 4.3
IO size? Optimize for sequential access? 4.4
Space utilization? Make file mapping structure elastic? 4.5
Concurrency? Is ensuring isolation important? 4.6
Page caching? Is page caching necessary? 4.7
Real workloads? Are mapping optimizations impactful? 4.8
Storage structures? Can we reuse PM storage structures? 4.9

Table 1: The questions we answer in our evaluation.

access, we perform vector hash operations using SIMD in-
structions. This is possible due to PM’s load/store addressabil-
ity and adequate bandwidth. If an IO operation does not use
the maximum SIMD bandwidth, the remaining bandwidth
is used to prefetch following entries, which are then cached
in the translation cache. The global hash table uses linear
probing, which inserts conflicting hash values into an off-
set slot in the same area [8]. This is in contrast to separate
chaining, which allocates separate memory for a linked list
to handle conflicts. An advantage of linear probing is that
conflicting entries are stored in adjacent locations, reducing
the overhead of searching conflicts by avoiding misses in the
PM buffer [43]. Additionally, unlike cuckoo hashing, linear
probing never relocates entries (i.e., rehashing), which pre-
serves the correspondence between the index of the metadata
entry and file data block. As discussed previously, we mea-
sure the trade-offs of linear probing and cuckoo hashing in
our evaluation (§4.1–§4.5 and §4.8).

HashFS is not fundamentally limited to 8 byte entries.
Rather than performing atomic compare-and-swap operations
on an 8 byte entry, other atomic update techniques can ensure
isolation (e.g., Intel TSX). The existing logging mechanisms
provide crash consistency regardless of the size of the HashFS
entries. The overall space overhead is low, even with larger
entries (e.g., < 0.4% of the total file system capacity with 16
byte entries).

Design considerations. HashFS, like the global cuckoo
hash table, also has very low spatial locality, but improves
sequential access by prefetching via SIMD parallelism.
HashFS’s computational overhead is low on average, as
HashFS only has to compute a single hash function per lookup.
However, conflicts are expensive, as they are resolved by lin-
early following chains of entries. This means that HashFS
may perform worse at high load factors (i.e. as the file system
becomes more full).

4 Evaluation

We perform a detailed evaluation of the performance of our
PM file-mapping approaches over a series of microbench-
marks and application workloads and discuss the performance
characteristics of each mapping structure. We then demon-
strate that the non-challenges we discussed in §2.2 are indeed

102 19th USENIX Conference on File and Storage Technologies USENIX Association

non-challenges in PM-optimized file systems. We summarize
the questions we answer in our analysis in Table 1.

Experimental setup. We run our experiments on an Intel Cas-
cade Lake-SP server with four 128GB Intel Optane DC PM
modules [20]. To perform our analysis, we integrate our map-
ping approaches into the Strata file system [29]. We choose
Strata for our analysis as it is one of the best performing open-
source PM-optimized file systems, which is actively used by
state-of-the-art research [39]. We configure Strata to only
use PM (i.e., without SSD or HDD layers). Our file-mapping
structures are integrated into both the user-space component
of Strata (LibFS, which only reads mapping structures) and
the kernel-space component of Strata (KernFS, which reads
and updates mapping structures based on user update logs
“digested” [29] from LibFS). Each experiment starts with cold
caches and, unless noted, mapping structures are not page
cached.

Generating fragmentation. We modify the PM block alloca-
tor in Strata to accept a layout score parameter at file-system
initialization that controls the level of fragmentation encoun-
tered during our experiments. Layout score is a measure of
file-system fragmentation which represents the ratio of file
blocks that are contiguous to non-contiguous file blocks [42].
A layout score of 1.0 means all blocks are contiguous and
a layout score of 0.0 means no blocks are contiguous. We
allocate blocks in fragmented chunks such that the resulting
files have an average layout score that is specified by the
initialization parameter, which fragments both allocated file
data and free space. These fragmented chunks are randomly
distributed throughout the device to simulate the lack of lo-
cality experienced with real-world fragmentation. By making
this modification, we can effectively simulate fragmentation
without using high-overhead aging methods [25, 42]. Unless
otherwise stated, we use a layout score of 0.85 for our experi-
ments, as this was determined to be an average layout score
for file systems in past studies [42].

Experimental results. Unless otherwise stated, we report
the average latency of the file mapping operation over 10
repeated measurements, including all overhead associated
with the mapping structure, such as hash computation and
undo logging. Error bars report 95% confidence intervals. For
insertion/truncation operations, the latency of the file map-
ping operation includes the overhead of the block allocator.
Note that HashFS uses its own block allocation mechanisms
(§3.2.2). All other evaluated file mapping structures use the
block allocator already present in Strata.

4.1 Locality

We analyze how particular access patterns impact the perfor-
mance of file mapping. We perform an experiment using a
1GB file where we perform single-block reads and appends
in either a “cold cache” scenario (i.e., only perform one oper-

Figure 5: Locality test, measuring the latency of the file mapping
operation in cycles (using rdtscp).

ation and then reset the experiment) or a “hot cache” scenario
(i.e., perform 100,000 operations). We perform reads and ap-
pends as they exercise file mapping structure reads and file
mapping structure writes, respectively. We measure the la-
tency of the file mapping operation and report the average (in
CPU cycles) in Fig. 5.

On average, hot cache operations result in low latency for
all file mapping approaches, especially for sequential reads,
for which the per-file cursor optimizations and global SIMD
prefetching were designed. The greatest difference is in the
cold cache case, where global file mapping is up to 15× faster
than per-file mapping. This is due to the cost of tree opera-
tions when operating on a cold cache. Tree operations must
traverse multiple levels of indirection, making multiple mem-
ory accesses per level of indirection; the global file-mapping
structures, on the other hand, make fewer than two accesses
to PM on average. The exception to the performance benefits
of global file-mapping structures is the performance of cold
global cuckoo hash table inserts, which perform on par with
radix trees (within confidence intervals) and extent trees. The
main factor causing the high variability in cold cache insert
performance for these structures is the overhead of the block
allocator, which also has persistent and volatile metadata struc-
tures which incur last level cache misses (e.g., a persistent
bitmap, a volatile free-list maintained as a red-black tree, and
a mutex for providing exclusion between kernel threads [29]).
In contrast, HashFS, which does not use Strata’s block allo-
cator, is between 14–20× faster than all other file-mapping
structures in this case. Overall, this initial experiment shows
us that a global hash table structure can dramatically outper-
form per-file tree structures, particularly for access patterns
without locality.

4.2 Fragmentation

We now measure the effect that file-system fragmentation has
on file mapping. We perform this experiment on a single 1GB

USENIX Association 19th USENIX Conference on File and Storage Technologies 103

Figure 6: Fragmentation test, measuring the impact of high (0.7)
and low (1.0) fragmentation on file mapping latency.

file, and vary the fragmentation of the file from no fragmen-
tation (layout score 1.0) to heavily fragmented (layout score
0.7 represents a heavily-fragmented file system according to
prior work [42]). We measure the average “cold cache” file
mapping latency (i.e., one operation before reset, as described
in the previous experiment) over 10 trials of each operation
and present the results of our experiment in Fig. 6.

Between the different levels of fragmentation, the only
major difference is the performance of the extent trees. Intu-
itively, this difference arises from the way that extent trees
represent extents—if the file is not fragmented, the extent tree
can be much smaller and therefore much faster to traverse.
The other evaluated mapping approaches are unaffected by
fragmentation for reads. For insertions, the block allocator
takes longer on average to find free blocks, giving HashFS
an advantage. We conclude that per-file mapping performs
poorly on fragmented file systems, while HashFS is unaf-
fected by fragmentation.

4.3 File Size
The per-file tree structures have a depth that is dependent on
the size of the file, whereas the global hash table structures
are flat. We therefore measure the latency of file mapping
across three file sizes: 4KB, 4MB, and 4GB, representing
small, medium, and large files. We report the average latency
(over 10 trials) for each file mapping operation in Fig. 7.

As expected, the per-file structures grow as the size of the
file increases, which results in more indirect traversal opera-
tions per file mapping, resulting in longer latency. The range
of this increase is naturally smaller for sequential reads (less
than 10% across extent trees and radix trees for sequential
reads, but 34% for random reads) due to the inherent locality
of the data structure). The mapping overhead for the hash ta-
bles, however, is static, showing that the hash table structures
do not suffer performance degradation across file sizes.

Figure 7: Impact of file size on file mapping latency.

4.4 IO Size

Our previous experiments perform single block operations
(i.e., reading or writing to a single 4KB block). However,
many applications batch their IO to include multiple blocks.
We therefore measure the impact on file mapping as an appli-
cation operates on 4KB (a single block), 64KB (16 blocks),
and 1MB (256 blocks). We then measure the proportion of
the IO path that comprises file mapping and report the aver-
age (over 10 trials) in Fig. 8. Since IO latency increases with
IO size regardless of the mapping structure, we present the
results of this experiment as a ratio of IO latency to normalize
this increase in latency and to specifically show the impact of
the file mapping operation on the overall latency.

As the number of blocks read in a group increases, the
gap between the tree structures and the hash table structures
closes. Radix and extent trees locate ranges of blocks together
in the same leaf node and thus accelerate larger IO operations.
At the same time, as the number of blocks increases, the pro-
portion of the file system time spent on file mapping drops
dramatically. For example, for an IO size of 1MB, radix tree
mapping takes only 3% of the IO path for reads. At this IO
size, radix trees perform best for both sequential and random
reads. However, the impact of this performance increase is not
seen at the application level (§4.8). We also note that without
the ranged node optimization introduced for the cuckoo hash
table (§3.2.1), the mapping latency ratio would remain con-
stant for the global cuckoo hash table, rather than decreasing
as the IO size increases.

We also see the advantage HashFS has over the global
cuckoo hash table. Not only does HashFS have lower file
mapping latency for all operations compared to cuckoo hash-
ing, it also has the lowest insertion time, since it is able to
bypass the traditional block allocation overhead.

104 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 8: IO size test. We report the average proportion of the IO
path spent performing file mapping.

4.5 Space Utilization

A potential disadvantage of using a global hash table structure
is that collisions grow with the percentage of the structure
used, meaning that as file system utilization grows, file map-
ping latency may increase as the number of collisions increase.
We measure this effect by creating a file system with a to-
tal capacity of 128GB. We then measure the proportion of
the IO path that comprises file mapping when the overall
space utilization ranges from moderately full (80%) to ex-
tremely full (95%). Our prior experiments demonstrate the
performance on a mostly empty file system. We perform this
microbenchmark using “cold cache” (i.e., one operation per
file), single-block file mapping operations as per previous
experiments. We report the average file mapping latency ra-
tio (over 10 trials) in Fig. 9. Since IO latency increases with
overall file system utilization, we present the results of this ex-
periment as a fraction of IO latency to account for the increase
in overall latency.

As expected, the latency of the mapping operation for per-
file tree structures is unchanged when comparing low utiliza-
tion to high utilization. The main difference is the latency of
the two global hash table structures. At low utilization, as seen
in previous experiments (§4.4), HashFS outperforms global
cuckoo hashing. At 80% utilization, the performance of ran-
dom and sequential reads are very similar for HashFS and
the global cuckoo hash table (within ±3%, or within error).
HashFS still outperforms the global cuckoo hashing table for
insertions. At 95% utilization, however, HashFS incurs be-
tween 12–14% more latency for reads than the global cuckoo
hash table, and has equivalent performance for insertions.

We conclude that while higher utilization causes HashFS
to degrade in performance relative to global cuckoo hash-

Figure 9: Space utilization test, measuring the proportion of the IO
path spent in file mapping versus the overall utilization of the file
system (in percent).

Figure 10: Average file mapping latency, varying # of threads.

ing, both file mapping structures still outperform the per-file
mapping structures even at high utilization.

4.6 Concurrency

We now conduct an experiment to quantify how well our file-
mapping approaches perform under concurrent access. To sim-
ulate a high-contention scenario, we conduct an experiment
with multiple threads reading and writing the same file (every
thread reads and then appends to the same file). This causes
high read-write contention between Strata’s KernFS compo-
nent which asynchronously updates the file-mapping struc-
tures and the user-space LibFS which reads the file-mapping
structures, causing contention for both the per-file and global
file-mapping structures. Each file-mapping structure manages
its own synchronization—Strata manages the synchronization
of other file metadata via a per-file reader-writer lock.

We show the result of the experiment in Fig. 10. We see that,
as the number of threads increases, the latency of file map-
ping increases slightly (up to 13% for extent trees for an 8×
increase in concurrency) across all file mapping approaches.
Furthermore, the ranking among approaches does not change
across any number of threads. This shows that common con-
current file access patterns allow per-file mapping approaches
to use coarse-grained consistency mechanisms without im-
pact on scalability, while the transactional memory and hash
bucket layout optimizations for our two global file mapping

USENIX Association 19th USENIX Conference on File and Storage Technologies 105

Figure 11: Page-cache experiment, measuring the average file-
mapping latency of PM-optimized extent trees and page-cached
extent trees (Strata Baseline).

Workload Average
file size

of
files

IO size
(R/W)

R/W
ratio

fileserver 128KB 1,000 1MB/16KB 1:2
webproxy 16KB 1,000 16KB/16KB 5:1

Table 2: Filebench workload configurations.

approaches can effectively hide synchronization overheads.
In summary, we find that the isolation mechanisms used in

our PM-optimized file-mapping structures are not bottlenecks.
All structures are scalable for common file access patterns.

4.7 Page Caching

We now discuss why traditional page-caching should not be
employed for PM file-mapping structures. To demonstrate
why, we provide a microbenchmark that compares Strata’s
default mapping structure (page-cached extent trees) to our
implementation of extent trees (which is based on Strata’s
implementation, but bypasses the page cache and operates
directly on PM). In this experiment, we open a 1GB file and
perform 1,000,000 operations on it (single block reads or
inserts) and report the average file mapping latency in cycles.

We show the results in Fig. 11. We can see that, even
after many iterations, the dynamic allocation overhead of the
page cache is not amortized in the read case. The insertion
case is also slower due to the page cache overhead—the PM-
optimized extent trees write updates directly back to PM.

Based on the results of this experiment, it is clearly more
beneficial to perform file mapping directly on PM, as it re-
duces the number of bytes read and written to the device,
reduces DRAM overhead, and decreases the overall overhead
of the IO path. Therefore, we advocate for the use of lower
overhead caching methods, such as cursors, rather than relying
on the page cache.

4.8 Application Workloads

We provide two application benchmarks to measure the over-
all benefit our PM-optimized file-mapping structures have on
application throughput. We compare our file-mapping struc-
tures to the file-mapping structure present in Strata, which is
a per-file, page-cached extent tree. We use this file-mapping
structure as our baseline, as Strata is a state-of-the-art PM-
optimized file system [29, 39].
Filebench. We test our file mapping structures using

Figure 12: Filebench results for one write-heavy workload (file-
server) and one read-heavy workload (webproxy).

Workload Characterization Example
A 50% reads, 50% updates Session activity store
B 95% reads, 5% updates Photo tagging
C 100% reads User profile cache

D 95% reads, 5% inserts
User status updates

(read latest)

E 95% scans, 5% inserts
Threaded

conversations

F
50% reads,

50% read-modify-write User database

Table 3: Description of YCSB workload configurations.

filebench [45], a popular file-system-testing framework which
has been used to evaluate many PM-optimized file sys-
tems [29, 52, 56]. We select the fileserver (write-heavy) and
webproxy (read-heavy) workloads. These workloads test file
mapping structure reads, updates, and deletions, and emulate
the performance of mapping structures as they age under re-
peated modifications. We describe the characteristics of these
workloads in Table 2.

We show the results of the filebench experiments in Fig. 12.
In the fileserver workload, HashFS outperforms the baseline
by 26%, while the other mapping structures perform simi-
larly to the baseline. This result is explained by the IO size
microbenchmark (§4.4). In this microbenchmark, HashFS
performs the best for insertions, which is the predominant
operation in this workload. In this workload, the radix trees
perform the worst, experiencing a 10% throughput drop ver-
sus the baseline. Insert performance of radix trees is the worst
among our file mapping approaches (Fig. 8). Extent trees
and the global cuckoo hash table both perform similarly for
large IO reads and smaller block insertions, so they perform
similarly here and are not an improvement over the baseline.

The webproxy workload does not show any major differ-
ence in throughput across the file mapping approaches (all
within ±2%, or within error). This is because this is a read-
heavy workload on relatively small files with hot caches, and
we show in §4.1 that the performance across file mapping
structures is very similar in this case.
YCSB. We also evaluate the end-to-end performance on key-
value workloads using YCSB [10] on LevelDB [17], a com-
mon benchmark to measure the performance of PM-optimized
file systems [29]. We measure the throughput for all standard
YCSB workloads (A–F). YCSB uses a Zipfian distribution
to select keys for operations. We report the characteristics of
these workloads in Table 3. We configure our YCSB tests to

106 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 13: YCSB running on LevelDB. We report the average over-
all throughput (operations/second) on all workloads (A–F).

use a key-value database containing 1.6 million 1 KB key-
value pairs (a 1.5 GB database), using a maximum file size of
128 MB for the LevelDB backend running on 4 threads. Our
experiments perform 100,000 operations on the database, as
dictated by the YCSB workload.

We show the results of our YCSB tests in Fig. 13. Work-
loads A and E are primarily bounded by the in-memory op-
erations of LevelDB (e.g. performing read and scan opera-
tions), and not bounded by the file system, thus we see similar
throughput across all mapping approaches (within 3% of
the baseline). However, for the other workloads (B, C, D, F),
HashFS provides the best performance, providing between
10–45% increase in throughput on workload F versus the
other file mapping approaches. Radix trees and the global
cuckoo hash tables are both slower by 2–4% on average than
HashFS, but the PM-optimized extent trees perform worse
than HashFS by 13% in workloads C and F. This is due to
the generally poor performance of the extent tree structure
for random reads, which dominate these workloads. In these
workloads, the default file mapping structure in Strata spends
70% of the file IO path in file mapping—this provides ample
opportunity for improvement, which is why HashFS is able to
increase the overall throughput by up to 45% in these cases.
We further discuss the performance of the baseline in our
discussion on concurrency (§4.6).

We also show how concurrency impacts file mapping in
real workloads by rerunning our YCSB benchmark using a
single thread (Fig. 14).This experiment differs from the multi-
threaded version (Fig. 13) other than the overall magnitude
of the throughput. Additionally, the increase in throughput
over the baseline is much higher (45%) in the multi-threaded
experiment than the single threaded experiment (23%). Upon
further investigation, we find that this is because the Strata
page cache is not scalable. Strata’s page cache maintains a
global list of pages, with a single shared lock for consistency.

Summary. We draw two conclusions from these experiments:
(1) HashFS results in the best overall throughput among our
PM-optimized mapping structures; and (2) HashFS always

Figure 14: YCSB experiment using a single thread.

matches or exceeds the performance of Strata’s default map-
ping structure (page-cached extent trees). We therefore con-
clude that HashFS file mapping provides the best overall
performance in real application workloads.

4.9 File Mapping via Level Hashing?
We examine whether PM storage structures can be efficiently
used for file mapping, thus enabling the reuse of prior work.
We select level hashing [7, 59], a state-of-the-art hash-table
storage structure for PM, as a case study. Level hashing out-
performs RECIPE-converted structures [32] and, as a hash
table, is a good contender against our best-performing file
mapping structures, which are also hash tables. The goal of
this case study is to see if general-purpose PM data structures
proposed in prior work can be used as file mapping struc-
tures, as-is. Hence, we do not apply any file-system specific
optimizations to level hashing.

We evaluate how level hashing performs relative to our PM
file mapping structure in our filebench workloads, shown in
Fig. 12. In all cases, HashFS outperforms level hashing. In
particular, for the fileserver workload (the most write heavy
workload), level hashing underperforms even Strata’s baseline.
In particular, even though level hashing provides an efficient
resizing operation, neither of our global hash table structures
require resizing, as their total size is known at file system
creation time. This experiment shows the importance of file-
system specific optimizations for PM file-mapping structures
and this suggests that PM storage structures should not be
directly used for file mapping.

5 Discussion

Generalizability of results. In our microbenchmarks, we re-
port the performance of file mapping operations in isolation
from the rest of the file system; these results are applicable to
other PM file systems that use persistent mapping structures
(e.g., ext4-DAX, SplitFS [24], NVFS [40], and ZoFS [13]).

Strata batches file mapping updates via the application log

USENIX Association 19th USENIX Conference on File and Storage Technologies 107

in LibFS (SplitFS has a similar batching system), which is
measured in our macrobenchmark results. Batching amortizes
the update overhead of mapping structures. For this reason,
we predict that HashFS would outperform other mapping
structures by a larger margin on PM file systems that do not
batch updates (e.g., ext4-DAX, NFVS, and ZoFS).
Resilience. Resilience to crashes and data corruption is not
a challenge exclusive to file mapping structures and reliabil-
ity concerns are usually handled at a file-system level, rather
than specifically for file-mapping structures. As we use a log
for non-idempotent file-mapping structure operations (§3.1.1)
and Strata logs other file mapping operations, all of our file
mapping structures are equivalently crash-consistent. For re-
silience to data corruption and other device failures, our map-
ping structures can use existing approaches (e.g., TickTock
replication from NOVA-Fortis [53]).

6 Related Work

There is little prior work that specifically analyzes the per-
formance of file mapping structures. BetrFS [23] finds that
write-optimized, global directory and file mapping structures
are effective at optimizing write-heavy workloads. However,
this analysis is performed on SSDs.
File mapping in PM file systems. PMFS [15] uses B-trees,
allocating file data blocks in sizes of 4KB, 2MB, and 1GB
memory pages. The PMFS allocator is therefore similar to
an OS virtual memory allocator, albeit with different consis-
tency and durability requirements. PMFS contrasts itself with
systems that use extents for file mapping, but provides no
justification for its scheme other than the fact that it transpar-
ently supports large pages [21]. We therefore do not know
if its file mapping scheme is adequate for PM file systems.
This problem extends to DevFS, which re-uses the metadata
structures present in PMFS [27]. Strata and ext4-DAX both
use extent trees for file mapping, with Strata using extent trees
at all levels of its storage device hierarchy [11, 29]. Both of
these systems use extent trees based on the legacy of ext4,
providing no analysis if extent trees are optimal for PM.
PM-optimized storage structures. Much work has proposed
PM optimized storage structures, both generic [6, 12, 31, 32,
37, 46, 47, 54, 58, 59] and within the context of database appli-
cations, such as key-value stores [26, 28, 51]. These provide
in-place atomic updates whenever possible to avoid having
to keep a separate log. However, common file system opera-
tions typically require atomic update of multiple file-system
structures—e.g., when allocating blocks, the block bitmap
must also be modified. Enforcing consistency and atomicity
for a single data structure alone is therefore insufficient—we
need to analyze file mapping structures within PM file sys-
tems to achieve efficient metadata consistency and durability.
Memory mapping. Mapping virtual to physical memory lo-
cations is similar to file mapping. A large body of research

has improved virtual memory for decades [3, 44, 55] and has
devised similar structures; page tables are radix trees on many
platforms and recent work proposes cuckoo hashing as a more
scalable alternative [41]. The key differences are in caching
and consistency. File mapping caches are optimized for se-
quential access via cursors and SIMD prefetching; they are
shared across all threads, simplifying frequent concurrent up-
dates. MMUs optimize for random read access via translation
lookaside buffers (TLBs) that are not shared across CPU cores,
requiring expensive TLB shootdowns for concurrent updates.
Additionally, since file-mapping structures are maintained in
software rather than hardware, they allow for a wider variety
of designs which may be difficult to efficiently implement in
hardware (i.e., extent trees or HashFS’s linear probing).

7 Conclusion

File mapping is now a significant part of the IO path overhead
on PM file systems that can no longer be mitigated by a page
cache. We designed four different PM-optimized mapping
structures to explore the different challenges associated with
file mapping on PM. Our analysis of these mapping structures
shows that our PM-optimized hash table structure, HashFS,
performs the best on average, providing up to 45% improve-
ment on real application workloads.

Acknowledgements

We thank the anonymous reviewers and our shepherd, Rob
Johnson, for their valuable feedback. This work is supported
by Applications Driving Architectures (ADA) Research Cen-
ter (a JUMP Center co-sponsored by SRC and DARPA), the
National Science Foundation under grants CNS-1900457 and
DGE-1256260, the Texas Systems Research Consortium, the
Institute for Information and Communications Technology
Planning and Evaluation (IITP) under a grant funded by the
Korea government (MSIT) (No. 2019-0-00118) and Samsung
Electronics. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the funding agen-
cies.

References

[1] H. Akinaga and H. Shima. Resistive Random Access
Memory (ReRAM) Based on Metal Oxides. Proceed-
ings of the IEEE, 98(12):2237–2251, Dec 2010.

[2] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts,
Vladimir Nikitin, Xueti Tang, Daniel Lottis, Kiseok
Moon, Xiao Luo, Eugene Chen, Adrian Ong, Alexan-
der Driskill-Smith, and Mohamad Krounbi. Spin-
transfer Torque Magnetic Random Access Memory

108 19th USENIX Conference on File and Storage Technologies USENIX Association

(STT-MRAM). ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC), 9(2):13:1–13:35,
May 2013.

[3] Thomas W Barr, Alan L Cox, and Scott Rixner. Trans-
lation caching: skip, don’t walk (the page table). ACM
SIGARCH Computer Architecture News, 38(3):48–59,
2010.

[4] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and
Zili Shao. Emerging NVM: A survey on architectural
integration and research challenges. ACM Trans. Design
Autom. Electr. Syst., 23(2):14:1–14:32, 2018.

[5] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o.
Ext4: The next generation of ext2/3 filesystem. In LSF,
2007.

[6] Shimin Chen and Qin Jin. Persistent B+-trees in Non-
volatile Main Memory. Proc. VLDB Endow., 8(7):786–
797, February 2015.

[7] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo.
Lock-free concurrent level hashing for persistent mem-
ory. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 799–812. USENIX Associa-
tion, July 2020.

[8] JG Clerry. Compact hash tables using bidirectional
linear probing. IEEE Transactions on Computers,
100(9):828–834, 1984.

[9] Alex Conway, Ainesh Bakshi, Yizheng Jiao, William
Jannen, Yang Zhan, Jun Yuan, Michael A. Bender, Rob
Johnson, Bradley C. Kuszmaul, Donald E. Porter, and
Martin Farach-Colton. File Systems Fated for Senes-
cence? Nonsense, Says Science! In 15th USENIX Con-
ference on File and Storage Technologies (FAST 17),
pages 45–58, Santa Clara, CA, 2017. USENIX Associa-
tion.

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[11] Jonathan Corbet. Supporting filesystems in persistent
memory, September 2014.

[12] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mo-
hammed G. Khatib, and Cristian Ungureanu. Revisiting
hash table design for phase change memory. Operating
Systems Review, 49(2):18–26, 2015.

[13] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the zofs
user-space nvm file system. In Proceedings of the

27th ACM Symposium on Operating Systems Principles,
pages 478–493. ACM, 2019.

[14] Mingkai Dong, Qianqian Yu, Xiaozhou Zhou, Yang
Hong, Haibo Chen, and Binyu Zang. Rethinking bench-
marking for nvm-based file systems. In Proceedings
of the 7th ACM SIGOPS Asia-Pacific Workshop on Sys-
tems, page 20. ACM, 2016.

[15] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 15:1–15:15,
New York, NY, USA, 2014. ACM.

[16] Jose M. Faleiro and Daniel J. Abadi. Latch-free syn-
chronization in database systems: Silver bullet or fool’s
gold? In CIDR 2017, 8th Biennial Conference on In-
novative Data Systems Research, Chaminade, CA, USA,
January 8-11, 2017, Online Proceedings, page 9, 2017.

[17] Sanjay Ghemawat and Jeff Dean. Leveldb. http://
leveldb.org, 2011.

[18] Vaibhav Gogte, William Wang, Stephan Diestelhorst,
Aasheesh Kolli, Peter M. Chen, Satish Narayanasamy,
and Thomas F. Wenisch. Software wear management
for persistent memories. In 17th USENIX Conference on
File and Storage Technologies (FAST 19), pages 45–63,
Boston, MA, 2019. USENIX Association.

[19] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin
Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and
Jihong Kim. Improving file system performance of mo-
bile storage systems using a decoupled defragmenter. In
2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 759–771, 2017.

[20] Intel. Intel® Optane™ DC Persistent Memory. http://
www.intel.com/optanedcpersistentmemory, 2019.

[21] Intel Corporation. Intel® 64 and IA-32 Architectures
Software Developer’s Manual, 2019.

[22] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic Performance Measurements of
the Intel Optane DC Persistent Memory Module, 2019.

[23] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael Bender,
Martin Farach-Colton, Rob Johnson, Bradley C. Kusz-
maul, and Donald E. Porter. Betrfs: A right-optimized
write-optimized file system. In 13th USENIX Confer-
ence on File and Storage Technologies (FAST 15), pages
301–315, Santa Clara, CA, 2015. USENIX Association.

USENIX Association 19th USENIX Conference on File and Storage Technologies 109

http://leveldb.org
http://leveldb.org
http://www.intel.com/optanedcpersistentmemory
http://www.intel.com/optanedcpersistentmemory

[24] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 494–
508. ACM, 2019.

[25] Saurabh Kadekodi, Vaishnavh Nagarajan, and Gre-
gory R. Ganger. Geriatrix: Aging what you see and
what you don’t see. A file system aging approach for
modern storage systems. In 2018 USENIX Annual Tech-
nical Conference, USENIX ATC 2018, Boston, MA, USA,
July 11-13, 2018., pages 691–704, 2018.

[26] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young-ri Choi. SLM-DB: single-level
key-value store with persistent memory. In Merchant
and Weatherspoon [34], pages 191–205.

[27] Sudarsun Kannan, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath
Palani. Designing a true direct-access file system with
devfs. In 16th USENIX Conference on File and Storage
Technologies (FAST 18), pages 241–256, 2018.

[28] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing lsms for nonvolatile memory with novelsm. In
2018 USENIX Annual Technical Conference (USENIX-
ATC 18), pages 993–1005, 2018.

[29] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 460–477, New York, NY, USA, 2017. ACM.

[30] E. Lee, H. Bahn, S. Yoo, and S. H. Noh. Empirical study
of nvm storage: An operating system’s perspective and
implications. In 2014 IEEE 22nd International Sympo-
sium on Modelling, Analysis Simulation of Computer
and Telecommunication Systems, pages 405–410, Sep.
2014.

[31] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H. Noh. WORT: Write Optimal Radix
Tree for Persistent Memory Storage Systems. In 15th
USENIX Conference on File and Storage Technologies
(FAST 17), pages 257–270, 2017.

[32] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. RECIPE:
Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles (SOSP ’19),
Ontario, Canada, October 2019.

[33] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The new ext4 filesystem: current status and
future plans. In Proceedings of the Linux symposium,
volume 2, pages 21–33, 2007.

[34] Arif Merchant and Hakim Weatherspoon, editors. 17th
USENIX Conference on File and Storage Technolo-
gies, FAST 2019, Boston, MA, February 25-28, 2019.
USENIX Association, 2019.

[35] Micron. Battery-backed nvdimms, 2017.

[36] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H
Noh, and Beomseok Nam. Write-optimized dynamic
hashing for persistent memory. In 17th USENIX Confer-
ence on File and Storage Technologies (FAST 19), pages
31–44, 2019.

[37] Moohyeon Nam, Hokeun Cha, Youngri Choi, Sam H
Noh, and Beomseok Nam. Write-Optimized and
dynamic-hashing for Persistent Memory. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), 2019.

[38] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. Journal of Algorithms, 51(2):122–144, 2004.

[39] Waleed Reda, Henry N. Schuh, Jongyul Kim, Youngjin
Kwon, Marco Canini, Dejan Kostić, Simon Peter, Em-
mett Witchel, and Thomas Anderson. Assise: Perfor-
mance and availability via NVM colocation in a dis-
tributed file system. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), Banff, Alberta, November 2020. USENIX Associa-
tion.

[40] RedHat. NFVS documentation. https://
people.redhat.com/~mpatocka/nvfs/INTERNALS,
2020.

[41] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and
Josep Torrellas. Elastic cuckoo page tables: Rethinking
virtual memory translation for parallelism. In Proceed-
ings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 1093–1108, 2020.

[42] Keith A Smith and Margo I Seltzer. File system aging—
increasing the relevance of file system benchmarks. In
ACM SIGMETRICS Performance Evaluation Review,
volume 25, pages 203–213. ACM, 1997.

[43] Steven Swanson. Early measurements of intel’s 3dx-
point persistent memory dimms, Apr 2019.

[44] M. Talluri, M. D. Hill, and Y. A. Khalidi. A new page
table for 64-bit address spaces. In Proceedings of the

110 19th USENIX Conference on File and Storage Technologies USENIX Association

https://people.redhat.com/~mpatocka/nvfs/INTERNALS
https://people.redhat.com/~mpatocka/nvfs/INTERNALS

Fifteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’95, page 184–200, New York, NY, USA,
1995. Association for Computing Machinery.

[45] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system bench-
marking. USENIX; login, 41, 2016.

[46] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy H. Campbell. Consistent and Durable
Data Structures for Non-Volatile Byte-Addressable
Memory. In Proceedings of the 9th USENIX Conference
on File and Storage Technologies, pages 5–5. USENIX
Association, February 2011.

[47] Chundong Wang, Qingsong Wei, Lingkun Wu, Sibo
Wang, Cheng Chen, Xiaokui Xiao, Jun Yang, Mingdi
Xue, and Yechao Yang. Persisting rb-tree into NVM in
a consistency perspective. TOS, 14(1):6:1–6:27, 2018.

[48] Ying Wang, Dejun Jiang, and Jin Xiong. Caching or
not: Rethinking virtual file system for non-volatile main
memory. In 10th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 18), 2018.

[49] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis,
Huanchen Zhang, Michael Kaminsky, and David G. An-
dersen. Building a bw-tree takes more than just buzz
words. In Proceedings of the 2018 ACM International
Conference on Management of Data, SIGMOD ’18,
pages 473–488, 2018.

[50] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale
Liang, John P Reifenberg, Bipin Rajendran, Mehdi
Asheghi, and Kenneth E Goodson. Phase Change Mem-
ory. Proceedings of the IEEE, 98(12):2201–2227, Dec
2010.

[51] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: a hybrid index key-value store for DRAM-NVM
memory systems. In 2017 USENIX Annual Technical
Conference (USENIXATC 17), pages 349–362, 2017.

[52] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main
Memories. In Proceedings of the 14th Usenix Con-
ference on File and Storage Technologies, FAST’16,

pages 323–338, Berkeley, CA, USA, 2016. USENIX
Association.

[53] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. NOVA-Fortis: A
fault-tolerant non-volatile main memory file system. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, pages 478–496, 2017.

[54] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. NV-Tree: Re-
ducing Consistency Cost for NVM-based Single Level
Systems. In 13th USENIX Conference on File and Stor-
age Technologies (FAST 15), pages 167–181, 2015.

[55] Idan Yaniv and Dan Tsafrir. Hash, don’t cache (the page
table). In Proceedings of the 2016 ACM SIGMETRICS
International Conference on Measurement and Mod-
eling of Computer Science, SIGMETRICS ’16, page
337–350, New York, NY, USA, 2016. Association for
Computing Machinery.

[56] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: A tiered file system for non-volatile
main memories and disks. In Merchant and Weather-
spoon [34], pages 207–219.

[57] Shengan Zheng, Hao Liu, Linpeng Huang, Yanyan Shen,
and Yanmin Zhu. HMVFS: A versioning file system
on DRAM/NVM hybrid memory. J. Parallel Distrib.
Comput., 120:355–368, 2018.

[58] Jie Zhou, Yanyan Shen, Sumin Li, and Linpeng Huang.
NVHT: An efficient key-value storage library for non-
volatile memory. In Proceedings of the 3rd IEEE/ACM
International Conference on Big Data Computing, Appli-
cations and Technologies, pages 227–236. ACM, 2016.

[59] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and
High-Performance Hashing Index Scheme for Persistent
Memory. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
461–476, 2018.

USENIX Association 19th USENIX Conference on File and Storage Technologies 111

pFSCK: Accelerating File System Checking and Repair for Modern Storage
David Domingo, Sudarsun Kannan

Rutgers University

Abstract
We propose and design pFSCK, a parallel file system check-
ing and recovery (C/R) tool designed to exploit compute and
storage parallelism in modern storage devices. pFSCK en-
ables fine-grained parallelism at the granularity of inodes
and directory blocks without impacting the C/R’s correct-
ness. pFSCK first employs data parallelism by identifying
functional operations in each stage of the checking logic and
then isolating dependent operations and shared data struc-
tures. However, full isolation of shared structures is infeasible
and requires serialized updates. To reduce serialization bot-
tlenecks, pFSCK introduces pipeline parallelism, allowing
multiple stages of C/R to run concurrently without impacting
correctness. Further, pFSCK provides per-thread I/O cache
management, dynamic thread placement across C/R stages,
and a resource-aware scheduler to reduce the impact of C/R
on other applications sharing CPUs and the file system. Eval-
uation of pFSCK shows more than 2.6x gains over e2fsck
(Ext file system C/R) and more than 1.8x over XFS’s C/R that
provides coarse-grained parallelism.

1 Introduction
Modern ultra-fast storage devices such as SSDs, NVMe,

and byte-addressable NVM storage technologies offer higher
bandwidth capabilities and lower latency than hard-disks pro-
viding better opportunities for exploiting CPU parallelism.
While the I/O access performance has increased, storage hard-
ware and software errors have continued to grow coupled with
newer and exploratory high-performance designs impacting
file system reliability [10, 12, 18, 21, 27, 46]. For decades, file
system checking and repair tools (referred to as C/R hence-
forth) have played a pivotal role in increasing the reliability
of software storage and availability of systems by identifying
and correcting file system inconsistencies [41].

A significant body of prior work has shown that, in the
event of a system crash or failure in data centers, C/Rs are
typically used as the first remedial solution to system recovery.
Prior work [21, 27] and discussions with file system main-
tainers and IT teams of organizations show that C/Rs are run
across various scenarios. This includes problems during re-
boot due to hardware or software errors [11, 21, 27], periodic
maintenance, or during mandatory security upgrades [37].
When C/Rs are run on a disk partition in an offline fashion,
the partition’s data is unavailable. Some C/Rs support online
checking, but it is crucial that they do not interfere with other
applications that use the same device. Thus, improving C/R
performance and flexibility is critical for system availability
and reducing performance impact on other applications.

File system C/R tools work by identifying and fixing the
structural inconsistencies of file system metadata. The incon-
sistencies could be in inodes, data and inode bitmaps, links,
or directory entry structures. Well-known and widely used
tools such as e2fsck (file system checker for Ext4) [2] divide
C/R across multiple stages (commonly referred to as passes),
with each pass responsible for checking a file system structure
(e.g., directories, files, links). However, C/Rs are known to
be notoriously slow, showing a linear increase in C/R time
with an increase in file and directory count [24, 38–41], at
times lasting hours [37] or even weeks [11]. Although mod-
ern flash and NVM technologies provide lower latency and
bandwidth, current C/R tools fail to exploit such hardware ca-
pabilities or multi-core CPU parallelism. While modern C/Rs
have attempted to increase parallelism, they adopt coarse-
grained approaches, such as parallelizing C/R across logical
volumes or logical groups, which are insufficient to acceler-
ate C/R on file systems with data imbalance across logical
groups [20, 24, 39, 42].

To overcome such limitations, we propose pFSCK, a par-
allel C/R that exploits CPU parallelism and modern storage’s
high bandwidth to accelerate file system C/R in offline and on-
line forms, thereby reducing system downtime and improving
data (and system) reliability and availability [10, 20, 21, 39].
While pFSCK borrows ideas from prior task parallelism re-
search [35, 45], it must solve several challenges specific to
C/R, which includes increasing scalability in the presence of
complex file system layouts and shared file system structures
(e.g. universal bitmaps) without impacting correctness, adapt-
ing to various file system configurations, and reducing C/R
impact on other applications. pFSCK introduces fine-grained
parallelism, i.e., parallelism at the granularity of inodes and
directory blocks, resulting in a significantly faster execution
than traditional C/Rs. pFSCK first employs data parallelism
by breaking up the work done at each pass, redesigning data
structures for scalability, and allowing multiple threads to
perform checks in parallel. Although data parallelism acceler-
ates checking, updates to global data structures (e.g., bitmaps)
within each pass are designed to match the file system’s lay-
out (e.g., block bitmap in an Ext4 file system) and must be
synchronized to ensure checking correctness. As a result, with
increasing thread counts, the cost of synchronization and seri-
alization can quickly outweigh the performance gains. Hence,
pFSCK introduces pipeline parallelism to parallelize C/R
along with the logical flow (i.e. across multiple passes).

Supporting data and pipeline parallelism within pFSCK
requires addressing several challenges. First, certain consis-
tency checks must be ordered for correctness. For example, a

USENIX Association 19th USENIX Conference on File and Storage Technologies 113

directory cannot be certified to be error-free by the directory
checking pass until all its files are verified as consistent by the
inode checking pass. To address these ordering constraints,
we take inspiration from modern hardware processors that
support out-of-order execution but with in-order instruction
commit. We isolate the global data structures and perform
all necessary operations in parallel but certify correctness
only when the results are merged. Second, static partitioning
of CPU threads across different C/R passes is suboptimal
because the time to process different metadata (e.g., file, di-
rectory, links) varies significantly (e.g., checking a directory
can take substantially longer than a file). Hence, we propose
pFSCK scheduler, a dynamic thread scheduler that moni-
tors progress across different passes of pFSCK and uses the
pending work ratio for thread assignment.

Third, I/O optimizations such as I/O caching and read-
ahead mechanisms in current C/Rs are not designed for multi-
threaded parallelism, which we address by designing thread-
aware I/O caching, thereby substantially reducing I/O wait-
times. Finally, to exploit multi-core parallelism in ways that
do not affect the performance of other co-running applica-
tions that share CPUs or access the same disks checked by
C/R (online checking), we design a resource-aware pFSCK
scheduler that dynamically scales the C/R threads across
passes by monitoring the total CPU utilization of the system.

The combination of pFSCK’s above techniques signifi-
cantly reduces C/R runtime. For example, using pFSCK’s
data parallelism and pipeline parallelism on a 1TB NVMe
(and 2TB SSD) reduces C/R runtime for a file- and directory-
intensive disk configurations by up to 2.6x and 1.6x, respec-
tively compared to widely used e2fsck and by up to 1.8x
over the XFS C/R tool. Further, pFSCK’s scheduler increases
gains by 1.1x. When sharing the CPUs between pFSCK and
RocksDB, the resource-aware mechanism minimizes pFSCK
performance degradation to 1.07x and limits RocksDB’s
performance overheads by 1.05x. The online C/R perfor-
mance improves by up to 1.7x over the vanilla e2fsck. Finally,
pFSCK improves I/O throughput by up to 2.7x with a nominal
increase in memory use by 1.3x over e2fsck (from 2.7 GB in
e2fsck to 3.5 GB) to manage task structures for threads.

2 Background and Motivation
We first give a brief background on current hardware trends,

C/R tools, and then discuss prior approaches that accelerate
C/R and their limitations.

2.1 Hardware and Software Trends
Modern ultra-fast storage devices such as SSDs and NVMe

provide not only high bandwidth (8-16 GB/s) but also two
orders of reduction in storage access latency (< 20µsec) com-
pared to traditional hard drives [31, 49]. At the other end, fast
storage class memories such as Intel’s DC Optane [5] and
other byte-addressable persistent memory technologies are
evolving with access latency < 1µsec. In recent years, several
new file systems have evolved to exploit these hardware bene-

fits. A huge body of prior and ongoing research is developing
optimized file systems to support fast storage hardware. This
includes file systems for SSDs [34], NVMes [44], open-source
efforts to optimize traditional Ext4 and XFS file systems for
NVMs [48], and other research efforts [30, 33, 50]. However,
reducing data corruption and errors with these file systems
would require a few years of production use [9, 28]. While
file system C/R tools will play a crucial role in these file sys-
tems, they are yet to be optimized to extract hardware storage
benefits and multi-core parallelism.

2.2 File System Checking and Repair
Since the dawn of file systems, consistency has always

been an issue. Though storage mechanisms such as journal-
ing, copy-on-write, log-structured writes, and soft updates
have been developed to mitigate potential file system incon-
sistencies, they are limited as they cannot fix errors that arise
from software bugs or corruptions manifested in the past by
events such as a failing disk, bit flips, overheating, or corre-
lated crashes [13–15,29,51]. In these cases, popular C/R tools,
such as e2fsck and xfs_repair [42], are used to detect and fix
corruptions and errors by traversing the file system’s layout
and checking for inode consistency, directory consistency, file
and directory connectivity, directory entry consistency, and
consistent reference counts of inodes and blocks
C/R usage. The frequency and resulting runtime of file sys-
tem C/Rs vary significantly in the real-world setting. While
there is a lack of well-documented C/R best practices, our
discussions with file system C/R maintainers, infrastructure
teams, and other public discussions show that C/R tools such
as e2fsck and xfs_repair remain critical for data reliability in
current large-scale and personal computing systems as they
are generally run during after system errors [7, 21, 27, 29],
hardware or kernel upgrades, or even after mandatory secu-
rity updates. Infrequent C/R and storage maintenance can
increase system downtime to as high as three hours [37] and,
in extreme cases, weeks on petabyte-scale file systems [11].

2.3 Related Work
Increasing disk capacities, overall file system size, and file

counts have made C/Rs notoriously run longer, leading to
longer downtime and forcing developers and users to reduce
C/R usage at the risk of data loss [1, 7, 8, 25, 36]. We next
discuss the state-of-the-art C/R optimizations for offline (un-
mounted file systems) and online C/Rs and their limitations.
Offline C/Rs. Widely used open-source tools such as Ext4
file system’s e2fsck parallelize C/R across multiple disks
(e2fsck), where XFS file system’s xfs_repair parallelizes C/R
across disk and volume logical groups. Other approaches
like Ffsck [41] and Chunkfs [26] have proposed accelerat-
ing C/R speed up by modifying file systems to provide a
better balance across logical groups. For example, Chunkfs
utilizes disk bandwidth by partitioning the file system into
smaller, isolated groups that can be repaired individually and
in parallel. In contrast, Ffsck [41] rearranges metadata blocks

114 19th USENIX Conference on File and Storage Technologies USENIX Association

to reduce the seek cost and optimize file system traversal.
SQCK [19] enhances C/R by utilizing declarative queries
for consistency checking across file system structures. While
prior approaches have advanced C/R innovations, they suffer
from several weaknesses. First, most prior techniques fail to
exploit multi-core parallelism and high storage bandwidths.
Second, prior parallelization efforts are mostly coarse-grained
(e2fsck, xfs_repair, Chunkfs). For instance, as we show in
Section § 6, for an XFS file system that parallelizes across
logical groups, imbalance in the number of files across log-
ical groups and lack of parallelism for directory metadata
checking leads to high overheads. Finally, techniques such
as SQCK and Ffsck demand intrusive changes to file sys-
tem metadata, block placement, or the need to rebuild C/R,
hindering widespread adoption.

Online C/Rs. The last decade has seen an active push to
develop online C/R techniques to identify and fix errors while
applications concurrently use the file system in order to reduce
system downtime and allow for the proactive identification of
potentially harmful corruptions. Proprietary online C/Rs such
as WAFL file system’s Iron [32] (a NetApp-based C/R tool for
WAFL file system) performs incremental live C/R by apply-
ing invariants such as checking all blocks before any software
use and checking ancestor blocks (directory) before any data
or metadata block (inode block). To scale C/R to petabytes,
WAFL-Iron expects the presence of block-level checksums,
RAID, and, most importantly, good storage practices by cus-
tomers. Alternatively, Recon protects file system metadata
from buggy operations by verifying metadata consistency
at runtime [16]. Doing so allows Recon to detect metadata
corruption before committing it to disk, preventing error prop-
agation. Recon does not perform a global scan and cannot
identify or fix errors originating from hardware failures. C/Rs
such as e2fsck, traditionally meant for offline use, allow for
partial online checking by utilizing LVM-based snapshotting
and scanning for errors on the snapshot while the file system
is still in use [3]. However, if errors need to be fixed, the C/R
must be used offline. In this paper, we also study and evaluate
open-source and widely-used online e2fsck against online
pFSCK that exploit storage and compute parallelism.

C/R Correctness. To ensure the correctness and crash-
consistency of C/Rs itself and recover more reliably in light
of system faults, Rfsck-lib [17] provides C/Rs with robust
undo logging. pFSCK’s fine-grained parallelism goals are
orthogonal to Rfsck-lib; however, incorporating Rfsck-lib can
further improve pFSCK’s reliability.

3 Motivation and Analysis

In the pursuit of accelerating C/Rs, we first decipher the
performance bottlenecks of the widely-used Ext4 file sys-
tem’s e2fsck C/R tool. We first provide an overview of e2fsck
and then examine e2fsck’s runtime for different file system
configurations. For brevity, we study xfs_repair in Section § 6.

(a) File Count
Sensitivity:

Runtime of e2fsck as
total file count increases

(b) Directory Count
Sensitivity: Runtime of e2fsck

as total directory count
increases

Figure 1: Runtime of C/R for an 1TB file system with varying
counts of files or directories

3.1 e2fsck Overview
E2fsck uses five sequential passes for C/R: the first pass (re-

ferred to as Pass-1) checks the consistency of inode metadata;
Pass-2 checks directory consistency; Pass-3 checks directory
connectivity; Pass-4 checks reference counts; finally, Pass-5
checks data and metadata bitmap consistency.

3.2 Setup and Runtime Analysis
To analyze and decipher the cost of C/R runtime, we run

e2fsck on file systems with varying configurations. We con-
duct our analysis on a 64-core Dual Intel® Xeon Gold 5218
running at 2.30GHz, 64GB of DDR memory, a 1TB NVMe,
and a 2TB Micron 5200 SATA SSD running Ubuntu 18.04.1.
We fill the file system using fs_mark, an open-source, file
system benchmark tool [47]. We mainly focus on file systems
without corruptions but study images with corruptions in Sec-
tion § 6. To get a finer understanding of how e2fsck scales
with file system configurations, we study the sensitivity of
C/R’s runtime for multiple file system variables such as file
count and directory count.
File-intensive file systems. First, to understand how the file
count affects runtime, we generate multiple file-intensive file
system configurations with a 95 : 1 file to directory ratio.
Pass-1, which checks the consistency of inodes structures,
dominates e2fsck runtime, followed by Pass-2, which checks
directory block consistency. Figure 2 shows the function-wise
breakdown in Pass-1 that checks the consistency of file inodes
as well as tracks directory blocks encountered to be exam-
ined in the next pass. We notice a function dcigettext (a
seemingly innocuous) language translator used for error han-
dling gets (incorrectly) used for every inode check, causing
notable C/R slowdown. 1 Other steps such as check_blocks
that checks blocks referenced by an inode, next_inode that
reads next inode blocks from disk, mark_bitmap that updates
global bitmaps to track the metadata encountered, and icount
store that stores inode references also increase in runtime.
Despite fewer directories, Pass-2’s (directory checking) run-
time increases because the number of directory blocks to

1We reported this to e2fsck developers, and the fix has been upstreamed.

USENIX Association 19th USENIX Conference on File and Storage Technologies 115

Figure 2: e2fsck Pass-1 Time Breakdown. Time spent within
inode checking pass (Pass-1) as the total file count increases.

store directory entries increases. For all file counts, time spent
in Pass-1 and Pass-2 account for over 95% of the runtime.
Finally, for a small directory count, Pass-3, which checks con-
nectivity and reachability of directories from the root, has
lower runtime. Increasing the file size when keeping file count
constant does not increase C/R runtime significantly (not
shown for brevity).
Directory-intensive file system. In Figure 1b, we decipher
the runtime of a directory-heavy file system configuration
with 1 : 1 file to directory ratio. To ensure that each directory
requires the same amount of work, we create a single file in
each directory. First, the cost of fetching, identifying direc-
tory blocks, and adding them to a global block list (db_list)
increases Pass-1’s cost along with reference counting. As ex-
pected, with an increase in directory count, Pass-2’s runtime
significantly increases due to an increase in the number of di-
rectory blocks. Additionally, the directory blocks store check-
sums, and the checksum is recomputed and verified against
the one stored in the directory blocks for consistency. Similar
to the file-intensive file systems, for all directory counts, over
90% of the runtime is spent within Pass-1 and Pass-2.

3.3 Compute time and I/O utilization
To understand the computational vs. I/O bottlenecks, we

analyzed the time spent by e2fsck on compute time vs. the
time spent waiting for I/O to complete. Our analysis shows
that in modern storage devices like NVMe, the I/O wait time
for file-intensive and directory-intensive configurations are
only 3% and 20% of the overall execution time. We also notice
poor storage throughput utilization, which is just 270 MB/s
on an NVMe device with 2 GB/s and 512 MB/s sequential
and random read bandwidth, respectively. This clearly shows
that (1) computation is the main bottleneck as it dominates
overall execution time, and (2) C/Rs such as e2fsck fail to
benefit from modern storage device bandwidths.

Summary. To summarize, our analysis of widely-used
C/R tools such as e2fsck (and xfs_repair later in § 6) show
high runtime overheads mainly due to single-threaded or lack
of fine-grained parallelism. The linear complexity of C/R
runtime is unsuitable as disk capacities and file system size
trends upward, potentially taking hours, or even days, to check
datacenter-scale file systems. Besides, C/R’s repair during file
system inconsistencies could further increase C/R runtime.

4 pFSCK Goals and Insights
pFSCK aims to address the limitations of current file sys-

tem C/Rs by exploiting fine-grained multi-core parallelism
and higher disk bandwidth. We first discuss our goals and
insights, followed by pFSCK’s design and implementation.

4.1 Goals
The main goal is to make the file system C/R faster. We

want to increase the speed at which file system metadata is
scanned and inconsistencies are identified without compro-
mising repairing capabilities. In this pursuit, pFSCK strives to
achieve the following goals: (1) adapt to different file system
configurations, regardless of file system size, utilization, or
configurations, such as a file-intensive or directory-intensive
file system, (2) support efficient C/R for both online and of-
fline forms, and finally, (3) adapt to varying system resource
utilization to reduce the performance impact on any concur-
rently running applications.

4.2 Design Insights
Insight 1: Maximize potential bandwidth through mul-

tiple cores and data parallelism. To overcome the bottle-
necks of current C/R tools that employ serial or coarse-grained
parallelization techniques at the disk, volume, or logical group-
level, pFSCK introduces fine-grained data parallelism. As
shown in Section § 3.2, since Pass-1 and Pass-2 account for
over 90% of the runtime for both file- and directory-intensive
file systems, pFSCK focusses its efforts on these two passes.
Our approach divides finer file system structures such as in-
odes, directory blocks, and dirents across a pool of worker
threads in a single pass that performs C/R concurrently. While
seemingly simple, achieving data parallelism requires data
structure isolation across threads to reduce synchronization
bottlenecks.

Insight 2: Enable pipeline parallelism by reducing
inter-pass dependencies. Though data parallelism acceler-
ates C/R, each pass (e.g., directory checking) must wait for
the previous pass (e.g., inode check) to complete. Specifi-
cally, in C/R, several inter-pass global data structures are used
to build a consistent view of the file system and identify in-
consistencies (ex. bitmaps). As a consequence, updates to the
shared global structures must be serialized, thereby increasing
contention to shared structures with increasing thread count
and limiting the CPU scalability. To reduce serialization over-
heads, pFSCK designs pipeline parallelism that breaks the
rigid wall across passes allowing multiple passes to be exe-
cuted concurrently. pFSCK manages per-pass thread pools,
isolates inter-pass shared structures using divide and merge
approaches, delineates checking from actual certification of
an inode, and reduces I/O wait times.

Insight 3: Adapt to file system configurations with dy-
namic thread scheduling. Both data and pipeline parallelism
requires assigning threads across different passes. Static or
equal partitioning of CPU threads is suboptimal due to a lack
of information about metadata types (files, directories, links)

116 19th USENIX Conference on File and Storage Technologies USENIX Association

and work across passes. Simple checks such as information
about the number of files vs. directory inodes are insufficient
because directory processing is complex and time-consuming
(see § 3). To overcome the above challenge, we design a
C/R thread scheduler that dynamically assigns and migrates
threads across passes to process different file system objects
as they are discovered.

Insight 4: Reduce system impact through resource uti-
lization awareness. File system C/Rs could potentially run
with other applications sharing CPUs while performing check-
ing on separate disks. Given pFSCK’s goal is to exploit avail-
able CPUs, it could potentially impact other co-running ap-
plications. Similarly, C/R could run on disks that are also
actively used by other applications to store data. To reduce
the overall system impact on co-running applications as well
as pFSCK, we equip pFSCK’s scheduler with resource aware-
ness to dynamically identify the number of cores to use at any
single point in time to minimize the potential impact on other
co-running applications and pFSCK’s performance.

5 Design and Implementation
We discuss pFSCK’s design and implementation of data

parallelism, pipeline parallelism, dynamic thread scheduler,
and resource-aware scheduling. We aim to extend the widely
used e2fsck without requiring file system layout changes and
reuse features such as snapshot-based online C/R.

5.1 Data Parallelism
pFSCK’s data parallelism aims to divide work across

worker threads in each pass at the granularity of inodes for
parallelizing C/R. However, pFSCK must ensure efficient
parallelism without compromising file system integrity or
correctness through a functional separation of C/R passes
and per-thread contexts that isolate global data structures for
reducing synchronization cost.
Fine-grained Inode-level Parallelism. For fine-grained in-
ode parallelism, pFSCK uses the superblock information to
identify the total number of inodes in a file system and evenly
divides the inodes across C/R workers. To reduce worker
management costs, we use a thread-pool framework from our
prior work to assign tasks across workers [31].
Functional Parallelism for Reducing Synchronization
Overheads. Only dividing inodes for C/R across workers
is insufficient. To benefit from fine-grained parallelism, reduc-
ing synchronization cost across workers in each pass without
impacting correctness is critical.

pFSCK breaks each C/R pass into four main functional
steps that comprise 95% of the work and reduces synchroniza-
tion across these steps. These steps include (1) file system
metadata checks, (2) global file system metadata update, (3)
accounting, and finally, (4) intermediate result sharing. The
metadata check verifies the integrity of metadata structures
(for example, inode checksums and block references). Next,
the global file system metadata updates include changes to
file system-level bitmaps that maintain the checker’s view of

Structure Role pFSCK’s access
dir_info_list maintains directory infor-

mation/relationships
splits into per-
thread lists

db_list maintains directory
blocks for Pass-2 to
check

splits into per-
thread lists and
merges

inode_used_bitmap tracks valid inodes using locks
inode_dir_bitmap tracks directory inodes using locks
inode_reg_bitmap tracks regular file inodes using locks
block_found_bitmap tracks used data blocks using locks
icount tracks inode reference

counts
using locks

Table 1: Global structures, their role, and access method.

the file system in order to detect inconsistencies. For example,
the block bitmap as shown in Table 1 is marked to track which
block references have been seen to detect duplicate block ref-
erences where more than one inode claims the same block(s).
Third, C/R-level accounting involves updating counters that
track statistics such as file types. Finally, intermediate result
sharing involves creating data structures and lists that hold
information to be processed by the next pass. Such structures
include directory info lists and directory block lists that store
directory information and the location of their blocks so it
can be checked in the directories pass.

While synchronization between file system metadata
checks (step 1) and global metadata update steps (step 2) is
essential, synchronization between the first two steps and the
last two steps, C/R counter/statistics update (step 3) intermedi-
ate result sharing (step 4) can be avoided by allowing threads
to maintain per-thread stats and generate data structures in iso-
lation. The results of steps 3 and 4 can be aggregated before
the next pass, reducing synchronization costs significantly.
Thread Contexts for Isolation. In current C/Rs such as
e2fsck (and xfs_repair), we find significant use of global data
structures inside and across passes. To reduce sharing and in-
crease concurrency, we introduce per-thread contexts similar
to OS thread contexts. These contexts store information that
allow threads to operate in parallel. First, per-thread block
caches, buffers (heap allocations), and iterators of file system
objects allow for parallel file system traversal. Second, per-
thread intermediate data structures and counters are used for
gathering high-level file system state in parallel. For example,
each inode pass (Pass-1) thread has its own db_list (direc-
tory block list) and dir_info list (directory information list)
that gathers information about directories and exports these to
the directory pass (Pass-2) threads for processing. Lastly, per-
thread counters are used to track file type statistics in parallel.
However, we observe that due to frequent access of global
bitmaps across passes (for almost every operation), pFSCK is
forced to use synchronization through locking. While disag-
gregating these bitmaps into per-thread structures is feasible,
it would demand significant changes to the e2fsck framework.
Table 1 shows the shared structures and their role in e2fsck.
Thread Colocation for Improved Locality. To increase lo-
cality and better utilize processor cache state, in each pass,
pFSCK attempts to co-locate threads within the same pass to

USENIX Association 19th USENIX Conference on File and Storage Technologies 117

Inodes Pass Directories Pass

Thread Pool

Delayed Checks

Thread Pool

(a) Data Parallelism

(b) Pipeline Parallelism

(c) Synchronous
Dependent
Checks

File blocks Directory blocks Directory blocks delayed certification

per-pass work queues

per-pass thread pool

Figure 3: Parallelism in pFSCK. (a) Threads within each pass
allows for data to be operate in parallel (data parallelism). (b) Multi-
ple thread pools allows each pass of pFSCK to operate simultanously
(pipeline parallelism). (c) Any dependent checks needed to be car-
ried out synchronously is delayed within its own logical pass.

the same cores and memory sockets to avoid bouncing lock
variables and shared structures across processor caches. To
enable thread colocation, pFSCK maintains the CPU number
each thread has used and a list of cores used by a particular
pass. pFSCK first attempts to place the thread to the previ-
ously used core (if available), and if unavailable, uses other
available cores which were used in the same pass.
Reducing I/O Wait Time with Per-thread Prefetchers
and Cache. Though current C/Rs such as e2fsck cache
and prefetch file system blocks, the caching and prefetch-
ing mechanisms are inflexible and lack thread awareness.
First, e2fsck uses a small, static fully-associative LRU-based
cache (with 8 blocks) and prefetches just inode blocks. E2fsck
does not prefetch directory data blocks, which could be non-
contiguous, unlike inode blocks. Second, because threads ac-
cess blocks at different offsets, sharing a cache across threads
results in conflicting evictions, increasing I/O overheads.

To overcome such limitations, we design and implement a
per-thread caching mechanism to avoid false eviction of cache
entries across threads. For avoiding the non-contiguity prob-
lem of directory blocks, we implement an adaptive prefetch-
ing mechanism (similar to Linux filesystem prefetching) –
decrease prefetching window if previously prefetched direc-
tory blocks are not used due to lack of sequential access.

5.2 Pipeline Parallelism
While data parallelism achieves concurrency for process-

ing file system objects within a pass, fully isolating per-pass
shared data structures and global data structures is not feasible
without substantial changes to either the file system layout
or the C/R. As a result, data parallelism does not fully bene-
fit from increasing the CPU count. As our results show, the
benefits can considerably degrade performance at higher core
counts due to increasing synchronization overheads.

To reduce synchronization time and increase CPU effec-
tiveness, pipeline parallelism breaks the limitation that C/R
passes must be sequentially executed. pFSCK’s pipeline par-
allelism allows a subsequent C/R pass (Passi+1) to start even
before the completion of an earlier pass (Passi) in a pipelined
fashion (i.e., checking directories in directory checking pass

even before the inode checking pass has completed).
5.2.1 Per-Pass Thread Pools and Work Queues.

First, to facilitate concurrent execution of passes, we use
per-pass thread pools. As shown in Figure 3, the inode and
directory checking passes maintain a separate thread pool and
a dedicated work queue filled with file system objects needing
to be checked. As each pass operates, any intermediate work
generated is placed in the next pass’s work queue. For ex-
ample, the inode checking pass, when encountering an inode
representing a directory, queues its blocks to the directory
checking pass’s work queue to enable concurrent C/R.
5.2.2 Delayed Certification for Concurrency.

Allowing multiple passes to run in parallel using pipeline
parallelism requires reordering logical checks for correctness.
For example, with pFSCK’s pipeline parallelism, the directory
data blocks can be checked by the directory checking pass
(Pass-2) in parallel with inode checking pass (Pass-1) check-
ing all the inodes (files and subdirectories) in the directory.
While the two passes can proceed in parallel, a directory can
be marked as consistent only after the inode checking pass
verifies the consistency of its subdirectories and files. There
are two main constraints for certifying a directory by the C/R:
(1) all inodes referenced by the dirents of this directory are
valid, and (2) the parent directory referenced by this directory
is valid.
Providing Ordering Guarantee. To address the challenge
of ordering guarantee, pFSCK delays certain checks until
the prior pipeline pass is complete. For example, the inode
checking pass within the pipeline is responsible for creat-
ing directory structures used in the directory C/R pass. The
directory pass examines subdirectories and checks whether
the subdirectory’s parent (represented by double dot ..) maps
back to the directory. However, because the inode and di-
rectory checking passes run in parallel, not all the inodes of
the subdirectories would have been checked when the parent
directories are checked. For handling the scenarios above,
pFSCK delays certification by encapsulating the relationship
needing to be verified into task structures that are added to
a separate work queue. This task queue is then processed
only after all inodes have been checked (e.g., after the inode
checking pass completes) as shown in Figure 3. Delayed cer-
tifications are infrequent in file-intensive configurations and
frequent in the directory-intensive configuration. pFSCK’s
delayed certification increases concurrency between Pass-1
and Pass-2, consequently improving performance.

To summarize, combining pipeline with data parallelism
reduces I/O wait time and improves pFSCK’s performance
across different file system configurations, as our results show
in Section § 6.

5.3 Dynamic Thread Scheduler
C/R runtime can vary significantly depending on the config-

uration of the file system. For example, C/R on a file system
with a larger ratio of smaller files could result in a substantially

118 19th USENIX Conference on File and Storage Technologies USENIX Association

longer runtime compared to a file system with few-but-larger
files due to more metadata needing to be checked. Similarly,
heterogeneity in terms of inode types (files, directories, links)
can impact runtime, and the exact configuration remains un-
known until the inodes are iterated over in the inode checking
pass (Pass-1). Additionally, each pass within C/R has differing
degrees of access to shared structures. Therefore, statically as-
signing threads across each pass could be ineffective. Hence,
to adapt to file system configurations, pFSCK implements a
C/R-aware scheduler, pFSCK-sched, supported by extending
the thread pools to allow for migration of threads between the
passes. Also, pFSCK-sched maintains an idle thread pool to
hold any threads not scheduled to run for any of the passes.
Thread Assignment and Migration of Worker Threads.
In pFSCK, we enable dynamic assignment of threads across
each pass by implementing a scheduler that actively monitors
progress and migrates threads across the passes. The sched-
uler periodically scans through the work queues of each pass
to identify the work distribution ratio across the pipelined
passes and uses this ratio to assign threads across them.

Figure 4 shows an example of pFSCK-sched across the
first two passes. Initially, all the CPU threads are assigned to
the first pass (inode checking pass) given that pFSCK only
knows total inodes from the file system superblock and not
the types of inodes. When an inode C/R thread identifies a
group of directory inodes, it places the directory inodes and
their corresponding directory blocks to the work queue of
directory C/R pass. If no threads are present in the thread pool
used for the directory pass, threads from the inode pass are
migrated to the directory pass. To calculate the number of
threads to be reassigned, a dedicated scheduler thread finds
the total work to be done across all passes using the following
model.

Let Wtotal be the amount of work needing to be done. Let qi
be the length of the work queue for pass i. Let ni be the number
of discrete elements needing to be processed for each entry
in the work queue. Let wi be some weight that normalizes the
work to be done for each element in pass i. Let C be the core
budget and ti be the number of threads to assign for pass i.

Wtotal =
N

∑
i=0

qiniwi (1)

ti =C ·qiniwi ·
1

Wtotal
(2)

As shown in Equation (1), the total work to be done is a
summation of outstanding work across each pass, which is a
product of the work queue length (qi), the number of objects
encapsulated within each queue entry (ni), and a normalizing
weight (wi). As shown in Equation (2), with the total amount
of work needing to be done, the scheduler can determine
the ideal number of threads to assign to a pass (ti) based on
the total core budget (C) and the relative amount of work
calculated for each pass. Note that the normalizing weights
are essential for accounting for the differences in the time
to process different file types (directories vs. inodes). Our

Inodes Pass Directories Pass

Inode List

Thread Pool Thread Pool

(1) Sample Work Queues (2) Redistribute Threads

n1 n2

Idle Thread
Pool

(3) Take threads from
idle thread pool if

more cores available

Scheduler Thread

per-pass work queues

Figure 4: Dynamic Thread Scheduling. A dedicated scheduler
thread periodically samples work queues among all the passes and redis-
tributes threads based on the proportion of outstanding work.

analysis of different file system configurations (discussed
in § 3) shows that in pFSCK (and in e2fsck), the average CPU
cycles spent on processing one directory is 1.8x - 2.3x higher
than processing an inode, mainly due to directory checksum
calculations. Overall, we find it is beneficial to use higher
weights for directory checking queues.

5.4 System Resource-Aware Scheduling
File system C/Rs could potentially coexist or even share

CPUs with other applications using the same or another file
system (or disk). In the pursuit of exploiting parallelism,
pFSCK must reduce the impact on other applications. To
address this goal, we introduce pFSCK-rsched, a system
resource-aware pFSCK scheduler.
5.4.1 Efficient CPU Sharing

First, we discuss a case where the C/R runs alongside other
applications but performs C/R on a separate, unmounted disk.
To reduce the impact of C/R overheads on other applications,
pFSCK-rsched maintains a scheduler thread. Initially, the
pFSCK-rsched workers are scheduled with SCHED_IDLE
priority that mostly schedules a process on any idle CPUs [6].
As the scheduler periodically runs, pFSCK-rsched first deter-
mines a CPU core budget to identify the maximum number
of threads it could use at any point in time by identifying the
number of CPUs in active use across the system, the num-
ber of idle cores available, and the number of cores used by
pFSCK-rsched. Based on the effective number of cores being
used by pFSCK-rsched, pFSCK-rsched increases pFSCK’s
core budget if it was utilizing less than the available idle cores
or shrinks pFSCK’s core budget if pFSCK uses more than
the idle cores, reducing contention with other applications.
After determining the core budget, the scheduler identifies the
work ratio across the passes using the per-pass work queues
and redistributes an ideal number of threads across each pass.
When adding threads to a pass, threads are taken from the
idle thread pool and assigned to the per-pass thread pool. If
threads need to be removed due to a decrease in the core bud-
get, threads are signaled and reassigned to the idle thread pool.
In § 6, we discuss the performance benefits and implications
of pFSCK-rsched when co-running and sharing CPUs with
another application (RocksDB).

USENIX Association 19th USENIX Conference on File and Storage Technologies 119

5.4.2 Efficient CPU and File System Sharing
Given the renewed focus for supporting online C/R [32],

C/R tools like e2fsck, originally intended for offline use, can
be used online with the help of Linux’s Logical Volume Man-
ager (LVM). LVM’s snapshot feature captures file system state
by employing a copy-on-write approach to preserve the origi-
nal version of modified blocks. [23]. This enables C/R tools
to be used in a proactive manner, scanning for pre-existing
errors without having to bring the system down.

Towards online C/R with LVM, an empty snapshot volume
is first initialized. If any blocks are modified by another appli-
cation, LVM copies the original blocks to the snapshot before
updating the blocks in place on the original volume. When
C/R reads blocks that are found to have been modified, the
reads are redirected to the snapshot which holds the origi-
nal blocks. Reads of unmodified blocks are redirected to the
original volume. While snapshot initialization is inexpensive,
applications incur extra overhead of synchronous data copying
and I/O redirection reducing the available storage bandwidth
for C/R. This is especially the case when file system blocks
are being frequently modified the other application.

In the case of pFSCK, fine-grained parallelism accelerates
online C/R even when applications share the same file system
(and disks). Futher, pFSCK’s resource awareness reduces the
impact on co-running applications by reducing CPU (and I/O
contention), allowing the application to run faster. We further
discuss the benefits of pFSCK for online C/R in § 6.

5.5 Verifying Correctness and Optimizations
Correctness. To ensure the correctness of the C/R, pFSCK
with fine-grained parallelism employs a series of steps. First,
although the checks are done in parallel, an inode is not
marked complete unless prior passes in the pipeline are com-
plete (e.g., a directory inode is marked complete only after all
the child inodes (directory entries) are checked. Second, the
C/R threads synchronize upon detecting errors. The thread
that detects an inconsistency notifies other threads to stall
and attempts to fix errors with (e.g., incorrect inode, blocks
claimed by multiple inodes) or without user input (e.g., in-
consistent bitmap), after which parallel execution is resumed.
While tools such as C/Rs allow partial and full checks and
checkpoint intermediate states, more robust tools could be
added to increase C/R crash-consistency [17].
Optimizations. As additional optimizations to both e2fsck
and pFSCK, we restrict the overheads of language localiza-
tion as discussed in § 3.2, utilize Intel’s hardware accelera-
tion for checksum calculations, as well as improve the cache-
readahead mechanism. We evaluate the benefits of these opti-
mizations in § 6 (referred to as e2fsck-opt in graphs).
pFSCK support for other file systems and C/R tools.
While pFSCK currently extends e2fsck (on Ext file system),
the fine-grained inode-level data and pipeline parallelism and
efficient scheduling can be applied to other C/R tools, such
as xfs_repair and fsck.f2fs that implement multiple passes to

Name Description

e2fsck original FSCK for EXT file systems
e2fsck-opt optimized e2fsck
xfs_repair XFS file system checker
pFSCK proposed file system checker

Table 2: C/R systems evaluated.

Name Description

datapara Only data parallelism enabled

datapara+pipeline-split-equal Pipeline + data parallelism equally
distributing threads across passes

datapara+pipeline-split-optimal Same as above but manually selects
optimal thread assignment

sched Pipeline + data parallelism with dy-
namic thread assignment

rsched Sched configuration with system-
level resource-awareness

Table 3: pFSCK incremental system design

check on files, directories, links, and others. We will explore
designing a generic C/R in our future work.

6 Evaluation
We evaluate pFSCK to answer the following questions:
• Does pFSCK’s data parallelism reduce C/R runtime by

increasing CPU parallelism?
• How effective is pFSCK’s pipeline parallelism in achiev-

ing concurrent execution of C/R passes?
• How effective is pFSCK’s dynamic thread placement for

different file system configurations?
• Can pFSCK’s resource-aware scheduler effectively min-

imize the performance impact on other applications?
• How does pFSCK perform for online C/R?
• How does pFSCK perform in light of file system errors?

6.1 Experimental Setup
We use a machine equipped with a 64-core Dual Intel®

Xeon Gold 5218 running at 2.30GHz, 64GB of DDR memory,
a 1TB NVMe, and a 2TB Micron 5200 SATA SSD running
Ubuntu 18.04.1. We run pFSCK on various file system con-
figurations with varying thread counts. As seen in Table 2,
we compare against vanilla e2fsck, e2fsck-opt (optimized
e2fsck with reduced language localization overheads and In-
tel hardware-accelerated checksumming), and xfs_repair. Ta-
ble 3 shows pFSCK’s incremental design approaches.
File system configurations. The number of files and direc-
tories in a file system can be variable and dependent on appli-
cations, and there is no publicly available data. Our analysis
of workloads like RocksDB (a key-value store), video server,
web server, and mail server (using filebench), and two shared
servers in our organization show that the file count dominate
(99% files to 1% directories). To understand the impact of
pFSCK’s design on file and directory-intensive configurations,
we use a 1TB NVMe with an 840GB file system utilizing 50
million inodes and a 2TB file system on SATA SSD utiliz-
ing 100 million inodes. We evaluate pFSCK’s impact on a
file-intensive (99% files), a medium directory-intensive (25%

120 19th USENIX Conference on File and Storage Technologies USENIX Association

directories), and an extreme directory-intensive (50% directo-
ries) configuration.

6.2 Data Parallelism
To understand the performance improvements and impli-

cations of pFSCK’s fine-grained inode-level data parallelism
that partitions inodes across threads in each pass but running
the passes serially, we evaluate a file-intensive configuration
(in Figure 5a), a directory-intensive configuration with 25%
directories (in Figure 5b), and an extreme directory-intensive
configuration with 50% directories (in Figure 5c). The x-axis
shows four C/R approaches: the vanilla e2fsck, our optimized
e2fsck (e2fsck-opt), xfs_repair with coarse-grained paral-
lelism, and finally, our proposed pFSCK with data parallelism
(pFSCK[datapara]). For xfs_repair and pFSCK[datapara], we
also vary the thread counts from 2 to 16 threads.

File-intensive configuration. First, as shown in Figure 5a,
our optimized e2fsck-opt outperforms the vanilla e2fsck by
optimizing the CRC mechanism and avoiding language lo-
calization overheads. Next, xfs_repair parallelizes C/R in the
granularity of coarse-grained allocation groups, which is inef-
fective. There are 16 allocation groups for our XFS filesystem
configuration (by default). While xfs_repair checks the sanity
of allocation groups in parallel, the directory metadata within
the allocation groups are not checked in parallel. Specifically,
when files are small, xfs_repair cannot check directory entries
and link counts in parallel, with a substantial increase in C/R
time. Besides, varying inode counts across allocations groups
further impact performance (increasing allocation groups did
not improve performance). Both e2fsck and pFSCK outper-
form xfs_repair for all cases. Finally, pFSCK[datapara] with
fine-grained inode-level parallelism, reduces the runtime of
the first pass (inode checking) by 2.1x and directory checking
pass (Pass-2) by 1.8x, resulting in an overall C/R speedup of
1.9x for four threads over the vanilla e2fsck and 1.52x over
e2fsck-opt. Beyond four threads, pFSCK’s data parallelism
scaling is hindered by high serialization and lock contention
to update shared structures such as the used/free block bitmap.

Directory-intensive Configurations. As shown in Fig-
ure 5b and 5c, the trends are similar for the directory-intensive
file system. Even with 50% directories, pFSCK’s Pass-1 and
Pass-2 runtime reduces by 1.8x and 1.3x, respectively. pFSCK
achieves an overall C/R speedup of 1.4x, 1.24x, and 1.8x over
e2fsck, e2fsck-opt, and xfs_repair that does not parallelize
directory metadata checking. For the 25% directory-intensive
configuration, the gains are 2x over e2fsck. However, the syn-
chronization overheads of global structures prevents pFSCK’s
data parallelism from scaling beyond 4 cores.

6.3 Pipeline Parallelism and Scheduling.
Next, we evaluate the benefits of combining data and

pipeline parallelism and the need for a dynamic thread place-
ment for a file-intensive configuration in Figure 6a and two
directory-intensive configurations in Figures 6b and 6c. With
pipeline parallelism, C/R passes run concurrently, and the

threads of each pass add work for the next pass in a producer-
consumer fashion. The x-axis shows the increase in the num-
ber of threads used for the C/R. We compare four cases: (1)
pFSCK[datapara], which only uses data parallelism running
one pass at a time; (2) pFSCK[pipeline-split-equal], which
statically divides an equal number of threads for each of the si-
multaneously executing passes (e.g., two threads are assigned
to the inode checking pass (Pass-1) and two threads to di-
rectory checking pass (Pass-2) in a 4-thread configuration);
(3) pFSCK[pipeline-split-optimal], which represents the best
manually selected thread configuration; and (4) pFSCK-sched,
which employs pFSCK’s dynamic thread scheduler to dynam-
ically assign threads based on the amount of outstanding work
done within each pass. Single-threaded e2fsck and e2fsck-opt
are marked as a baselines. Because e2fsck and pFSCK out-
perform xfs_repair in all cases, we do not show xfs_repair.

File-intensive Configuration. First, unlike the data
parallelism-only approach, the pipeline parallelism approach
improves performance when increasing thread count. Next,
pipeline-split-equal approach splits threads equally across
passes. For low thread counts (2 and 4 threads), the perfor-
mance gains over data parallelism approach is minimal. This
is because, for a file-intensive configuration, most work is
done in the inode checking pass (Pass-1), static and equal
division of threads across passes under-utilizes threads as-
signed in the directory checking pass. Increasing the thread
count (along the x-axis) only marginally improves perfor-
mance by increasing parallelism in the inode checking pass.
In contrast, when employing a manually selected thread con-
figuration using pFSCK’s pipeline-split-optimal and assign-
ing three-fourth of the threads to the inode checking pass,
performance increases by up to 1.3x compared to data par-
allelism only. The concurrent work across passes also re-
duces the synchronization cost of data parallelism scaling
beyond four threads. Finally, pFSCK’s scheduler (pFSCK-
sched) avoids the tedious manual process of optimal thread
placement for different file system configurations by auto-
matically migrating threads based on the relative amount of
outstanding work to be completed across each pass. In fact,
the dynamic thread placement improves performance by 1.1x
compared to pipeline-split-optimal, resulting in an overall
speedup of 2.6x compared to vanilla e2fsck.

Directory-intensive Configurations. Unlike the file-
intensive configuration, for the extreme directory-intensive
configuration (50% directories), both inode and directory
checking passes demand substantial work, resulting in the
need to frequently coordinate across the passes. We observe
that automatic thread placement with pFSCK-sched controls
the number of threads across passes, reducing contention
within each pass while thread migration helps in accelerating
inode checking (Pass-1) without accumulating a substantial
number of directory inodes to be checked (in Pass-2). pFSCK
employs delayed certification of directories (directory with
subdirectory) as discussed in 5.2.2 which limits scalability.

USENIX Association 19th USENIX Conference on File and Storage Technologies 121

569 550 548 564
0
20
40
60
80

100
120

140

2 4 8 16
Threads

160
180

(a) File-intensive FS.

231 212 201 205 215
0

20

40

60

80

100

120

1 2 4 8 16

R
un

 t
im

e
(s

ec
)

Threads

xfs_repair pFSCK[datapara]
efsck efsck -opt

(b) Directory-intensive FS with 25% directory.

393 393 393 393 393
0

50
100
150
200
250
300
350
400
450

1 2 4 8 16

R
un

 t
im

e
(s

ec
)

Threads

(c) Directory-intensive FS with 50% directory.

Figure 5: Data Parallelism impact. The configurations use a total of 50 million inodes.

0

20

40

60

80

100

120

1 2 4 8 16

R
un

 t
im

e
(s

ec
)

Threads
(a) File-intensive FS.

0

20

40

60

80

1 2 4 8 16
Threads

pFSCK[datapara] pFSCK[pipeline-split-equal]
pFSCK[pipeline-split-optimal] pFSCK-sched
efsck efsck -opt

100

120

(b) Directory-intensive FS with 25% directory.

0
50

100
150
200
250
300
350

1 2 4 8 16

R
un

 t
im

e
(s

ec
)

Threads
(c) Directory-intensive FS with 50% directory.

Figure 6: Comparison of pipeline parallelism and scheduler

0

60

120

180

240

300

1 2 4 8 16
Threads

pFSCK[datapara] pFSCK[pipeline-split-equal]
pFSCK[pipeline-split-optimal] efsck
efsck -opt

Figure 7: C/R on 2TB SSD with File-intensive FS.

(a) File-intensive FS (b) Directory-intensive FS

Figure 8: I/O Bandwidth

Overall, the performance improves by up to 2.7x and 1.6x over
e2fsck for 25% and 50% directory-intensive configurations.

Low-bandwidth SSD. Lastly, to understand gains on
slower SATA-based SSDs (350MB/s sequential bandwidth)
for a large 2TB configuration, Figure 7 shows pFSCK per-
formance on a file-intensive configuration. pFSCK shows
speedups of up to 2.1x and 1.73x over vanilla e2fsck and
e2fsck-opt despite the lower bandwidth of SSDs compared to
NVMe. In summary, pFSCK’s pipeline parallelism reduces
serialization bottlenecks of data parallelism, and the dynamic
thread placement reduces work imbalance, leading to signifi-
cant performance gains in fast NVMe and SSD devices.

(a) File-intensive FS (b) Directory-intensive FS

Figure 9: Memory Usage.

6.4 Storage Throughput and Memory Usage
We analyze the effective storage bandwidth use and in-

crease in memory capacity with pFSCK for the file-intensive
and extreme directory-intensive (50% directories) configura-
tions. For brevity, we compare single-threaded e2fsck, e2fsck-
opt, and multi-threaded pFSCK-sched.
6.4.1 Storage Throughput

Figures 8a and 8b show the storage bandwidth utiliza-
tion for file-intensive and directory-intensive configurations
in MB/s. First, our optimized e2fsck (e2fsck-opt) reduces the
overhead between synchronous reads improving bandwidth
utilization by 1.3x over e2fsck. In contrast, pFSCK increases
I/O throughput for the file-intensive configuration by 1.9x
and 2.7x for 8 and 16 threads, respectively, over e2fsck. I/O
throughput utilization for directory-intensive file system im-
proves by 1.7x, showing the benefits of pFSCK to utilize
available disk bandwidth effectively.

The improvement in I/O bandwidth utilization comes from
a combination of an pFSCK’s threading, ability to prefetch
directory blocks, better caching, and scheduling, which can
dynamically migrate threads across passes based on the pend-
ing work. For the file-intensive configuration in Figure 8a, the
scheduler allows threads to read inode blocks in Pass-1 and
migrates extra threads to Pass-2 to read directory blocks in

122 19th USENIX Conference on File and Storage Technologies USENIX Association

parallel, bumping up the bandwidth utilization. In Figure 8b,
the I/O bandwidth utilization is better with most threads oper-
ating in the directory checking pass (Pass-2). However, due to
serializing access to global shared structures (e.g., db_list)
listed in Table 1, I/O bandwidth increase does not translate to
higher performance with increasing thread count.
6.4.2 Memory Usage

In Figure 9, we compare the memory (DRAM) capacity
use. First, for file-intensive configuration in Figure 9a, the
overall memory utilization is below 1GB for all approaches.
Both e2fsck and e2fsck-opt show the same memory usage. Re-
garding e2fsck and e2fsck-opt memory utilization, which also
applies to pFSCK, the memory use stems from data structures
used for tracking directory information such as a db_list
which hold a list of all directory data blocks, dirinfo_list,
which tracks relationships between directories, dx_dirinfo
list which keeps track of all directory HTREE blocks, as well
as a dictionary structure used to verify consistency among
the dirents within a directory. For pFSCK-sched, the memory
usage increases by a nominal 300MB (2.1x). pFSCK’s mem-
ory increase is mainly due to maintaining task queues. Apart
from inode checking tasks for Pass-1, the threads discover
directories and create directory block tasks for Pass-2 threads
to process. Note that each task structure (in the queue entry)
represents a fixed-size range of blocks to process. The queues
are currently dynamically allocated and unrestricted but can
be restricted to reduce memory increase. The range of blocks
each task is assigned can also be increased to reduce the num-
ber of tasks being generated. Consequently, increasing the
thread count does not or marginally increases memory use.

Next, for the directory-intensive configuration in Figure
9b, e2fsck and e2fsck-opt uses 2.6GB of memory. Similar
to the file-intensive configuration, the main source of mem-
ory consumption is from data structures used for tracking
directory information. With an extreme increase in directory
count, the memory consumption of these data structures is
significantly amplified. pFSCK’s memory usage is compara-
ble, only using 3.5GB, resulting in a 1.3x increase. Similar
to the file-intensive configuration, the increase in memory
usage is due to task structures being generated and added to
task queues. With an extreme increase in directory count, the
memory overheads of task structures also increase.

In general, memory usage is a function of file system uti-
lization/configuration and not thread count. We argue that
pFSCK’s performance gains in today’s system outweigh the
nominal memory increase in today’s systems with large mem-
ory capacity. Further, we believe memory use can be reduced
through pFSCK’s code optimizations.

6.5 System Resource-Aware Scheduler
File system C/Rs could run concurrently with other appli-

cations, where the C/R and applications can either operate
on the same or separate file systems while sharing the same
CPUs. To understand the effectiveness of pFSCK’s resource-

(a) Offline C/R. (b) Online C/R.

Figure 10: Impact of resource-aware pFSCK for offline and
online C/R. Results shown for file-intensive configuration.

aware scheduler (pFSCK-rsched) in reducing the impact on
other applications, we pick a popular multi-threaded and per-
sistent I/O-intensive key-value store, RocksDB [4], which is
used as a backend for several real-world applications [22, 43].
We evaluate pFSCK-rsched in an offline setting, where C/R
is performed on a file system separate from the file system
RocksDB is using, and an online setting, where online (live)
C/R is performed on a file system that is concurrently being
updated by RocksDB. For both offline and online settings, we
evaluate the performance of the following cases: (1) e2fsck-
no-cpu-sharing, where RocksDB and the vanilla e2fsck do
not share CPU cores; (2) e2fsck-cpu-sharing, where CPUs are
shared between RocksDB and the vanilla e2fsck; (3) pFSCK-
rsched-no-cpu-sharing, which employs pFSCK-rsched with-
out sharing CPUs with RocksDB; and finally, (4) pFSCK-
rsched-cpu-sharing which employs pFSCK-rsched sharing
CPUs with RocksDB. We run RocksDB with 12 threads and
facilitate CPU sharing by running pFSCK-rsched with 12
threads and restricting the affinity of all threads to 16 cores,
resulting in the overlapping of 8 cores. Similarly, for e2fsck,
we restrict the affinity of all threads to 12 cores, resulting in an
overlap of 1 core. Due to space constraints, we show only the
results for checking a file-intensive file system configuration.

6.5.1 Offline C/R with CPU Sharing.
Figure 10a shows the offline approach performance us-

ing separate file systems for each C/R and RocksDB. The
x-axis shows e2fsck and pFSCK-rsched approaches without
and with CPU sharing. In the y-axis, the results are normal-
ized to the performance of e2fsck running with RocksDB
without sharing CPUs (e2fsck-no-cpu-sharing).

First, when sharing CPUs, the runtime of vanilla e2fsck
and RocksDB is significantly impacted (shown as e2fsck-
cpu-share) compared to e2fsck-no-cpu-share due to fre-
quent context switches which take away effective CPU time
from RockDB; e2fsck’s performance degrades by 1.2x and
RocksDB’s performance degrades by 1.5x compared to the
no-sharing approach. In contrast, with pFSCK’s resource-
aware scheduler, CPU sharing between the pFSCK-rsched
and RocksDB (pFSCK-rsched-cpu-sharing) has minimal im-
pact for both pFSCK and RocksDB. The resource-awareness

USENIX Association 19th USENIX Conference on File and Storage Technologies 123

0
50

100
150
200
250
300
350

10 100 1000 10000 100000

Ru
nt

im
e

(s
ec

)

Block Corruptions

e2fsck e2fsck-opt pFSCK-sched 31
20
31
04
31
09

Figure 11: Repair runtime for varying corruption count.

capability adaptively downscales the number of threads being
utilized to carry out C/R, reducing CPU context switches away
from RocksDB and minimizing related overheads. Athough
pFSCK-rsched and RocksDB intially overlap 8 out of the
16 cores, pFSCK-rsched is able to downscale threading to
around 4-6 threads, allowing RocksDB to consistently utilize
12 out of the total 16 cores. As a result, pFSCK-rsched and
RocksDB show minimal performance degradation of 1.07x
and 1.05x, respectively, compared to the no CPU sharing case.
6.5.2 Online C/R with CPU Sharing.

Figure 10b shows the results when each C/R and RocksDB
share the CPU as well as the file system. As discussed earlier
in 5.4.2, pFSCK utilizes the LVM-based snapshots to capture
file system changes and perform C/R on a stable version of
the file system represented by the snapshot. Similar to offline
C/R evaluation, we normalize the results to the performance
of e2fsck running with RocksDB without sharing CPUs.

First, when overlapping e2fsck and RocksDB, performance
significantly degrades by 1.4x and 1.6x, respectively. The
degradation is mainly due to frequent CPU context switching
between e2fsck and RocksDB. However, this main source of
performance degradation increases the time the snapshot must
remain active, resulting in further performance degradation
due to LVM snapshot overheads. Next, with pFSCK-rsched,
the performance degradation when co-running pFSCK-rsched
with RocksDB is minimal. This is due to pFSCK-rsched’s
resource-aware thread assignment (similar to offline setting)
which mitigates performance impact and context switching
overheads by scaling the number of threads pFSCK uses.
Because performance impact from context switching is mini-
mized, the amount of time the snapshot must active is mini-
mized, mitigating any further performance degradation due
to LVM snapshot overheads. The performance degradation
compared to the baseline (no CPU or file system sharing) for
both pFSCK-rsched and RocksDB is 1.2x. Although higher
than the offline approach, most of it is due to disk sharing and
the resulting LVM snapshotting overheads.
Summary. pFSCK-rsched’s resource awareness effectively
adapts to the number of available CPU cores (and threads) for
C/R and maximizes their utilization for better performance in
both an offline and online setting. The performance impact
on co-running application is also minimized.

6.6 Performance with Errors
To evaluate pFSCK’s performance with file system errors,

we use e2fsprogs’s fuzzing tool, e2fuzz, to introduce random

block corruptions to a file-intensive configuration. In Figure
11, we introduce up to 100K corruptions in the x-axis and
compare e2fsck, e2fsck-opt, and pFSCK-sched that uses eight
threads. Note that prior studies real-world systems show that
the scale of corruptions can be just a few bits or bytes, and
the hardware and software corruptions could significantly
vary, ranging from silent bit corruptions to FTL metadata
corruptions and shorn or incomplete writes [12, 18, 27].

First, even for 100 corruptions, pFSCK-sched speeds up
C/R by up to 2.7x and 1.6x over e2fsck and e2fsck-opt, respec-
tively. However, for 10K corruptions, pFSCK-sched performs
similarly to e2fsck-opt and speeds up C/R by only 1.1x com-
pared to e2fsck. pFSCK’s speedup reduces with increasing
corruption counts because long and serially executed error-
fixing operations start to dominate the overall runtime for all
C/Rs including pFSCK. Further, for pFSCK-sched, we ob-
serve that if the corruption count is greater than 10K, synchro-
nization overheads start to further diminish performance gains
from parallelism. To mitigate diminishing returns from thread
synchronization, pFSCK tracks the number of errors encoun-
tered and reverts to serial checking after discovering a 10K
errors. This allows pFSCK to perform similarly to e2fsck-opt
for higher error counts, experiencing only slight performance
deterioration due to initial thread synchronization. Our fu-
ture work will focus on exploring ways to parallelize fixes to
accelerate C/R for highly corrupted file systems.

7 Conclusion & Future Work
With a goal of accelerating file system checking and re-

pair tools, we propose pFSCK, a parallel C/R tool that ex-
ploits CPU parallelism and the high bandwidth of modern
storage devices to accelerate C/R time without compromis-
ing correctness. pFSCK explores fine-grained parallelism by
assigning threads to inodes, blocks, or directories and effi-
ciently performing C/R using data parallelism within each
pass and pipeline parallelism across multiple passes. In addi-
tion, pFSCK enables efficient thread management techniques
to adapt to varying file system configurations as well as mini-
mize performance impact on other applications. As a result,
pFSCK shows more than 2.6x gains over e2fsck and 1.8x
over xfs_repair that provides coarse-grained parallelism. In
light of pFSCK’s limitations, future work will explore accel-
erating pFSCK for hard disks while mitigating costly seeks
due to random accesses, reducing memory overheads through
more efficient data structures and rate-limiting, and finally
accelerating fixes for disks with higher corruption counts.

Acknowledgements
We thank the anonymous reviewers and Dean Hildebrand

(our shepherd) for their insightful comments and feedback.
We thank the members of Rutgers Systems Lab for their valu-
able input. This material was partially supported by funding
from NSF grant CNS-1910593. We also thank Rutgers Panic
Lab for helping with the storage infrastructure.

124 19th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Disk check takes too long to check. linuxquestions.org. https:

//www.linuxquestions.org/questions/linux-hardware-18/
disk-check-takes-too-long-to-check-510584/.

[2] e2fsck: fsck for ext4. https://linux.die.net/man/8/e2fsck.

[3] e2scrub: online fsck for ext4. https://lwn.net/Articles/
749106/.

[4] Facebook RocksDB. http://rocksdb.org/.

[5] Intel-Micron Memory 3D XPoint. http://intel.ly/1eICR0a.

[6] Linux sched() man page. http://man7.org/linux/man-pages/
man7/sched.7.html.

[7] StackExchange - Extremely long time for an ext4 fsck.
https://unix.stackexchange.com/questions/78785/
extremely-long-time-for-an-ext4-fsck, Mar 2013.

[8] File system check (fsck) is slow and running for a very long time.
https://access.redhat.com/solutions/2210281, Sep 2016.

[9] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gre-
gory R Ganger, and George Amvrosiadis. File systems unfit as dis-
tributed storage backends: lessons from 10 years of ceph evolution.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 353–369, 2019.

[10] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanu-
malayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Correlated crash vulnerabilities. In Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation, OSDI’16, pages 151–167, Berkeley, CA, USA,
2016. USENIX Association.

[11] William (Bill) E. Allcock. Parallel File Systems at HPC Centers: Us-
age,Experiences, and Recommendations. https://www.nersc.gov/
assets/Uploads/W01-DataIntensiveComputingPanel.pdf.

[12] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, Garth R. Goodson, and Bianca Schroeder. An analysis
of data corruption in the storage stack. ACM Trans. Storage, 4(3),
November 2008.

[13] Lakshmi N Bairavasundaram, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, Garth R Goodson, and Bianca Schroeder. An analysis
of data corruption in the storage stack. ACM Transactions on Storage
(TOS), 4(3):8, 2008.

[14] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy,
and Jiri Schindler. An analysis of latent sector errors in disk drives.
Proceedings of the 2007 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems - SIGMETRICS
07, 2007.

[15] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Optimistic crash con-
sistency. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 228–243. ACM, 2013.

[16] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Ben-
jamin, Ashvin Goel, and Angela Demke Brown. Recon: Verifying file
system consistency at runtime. ACM Transactions on Storage (TOS),
8(4):1–29, 2012.

[17] Om Rameshwar Gatla, Muhammad Hameed, Mai Zheng, Viacheslav
Dubeyko, Adam Manzanares, Filip Blagojević, Cyril Guyot, and Robert
Mateescu. Towards robust file system checkers. In 16th USENIX
Conference on File and Storage Technologies (FAST 18), pages 105–
122, Oakland, CA, February 2018. USENIX Association.

[18] John Goerzen. Silent data corruption is real.
https://changelog.complete.org/archives/
9769-silent-data-corruption-is-real/.

[19] Haryadi S Gunawi, Abhishek Rajimwale, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. Sqck: A declarative file system checker.

[20] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Sqck: A declarative file system checker.
In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 131–146, Berkeley, CA,
USA, 2008. USENIX Association.

[21] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher,
Swaminathan Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng,
Nematollah Bidokhti, Caitie McCaffrey, Gary Grider, Parks M. Fields,
Kevin Harms, Robert B. Ross, Andree Jacobson, Robert Ricci, Kirk
Webb, Peter Alvaro, H. Birali Runesha, Mingzhe Hao, and Huaicheng
Li. Fail-slow at scale: Evidence of hardware performance faults in large
production systems. In 16th USENIX Conference on File and Storage
Technologies (FAST 18), pages 1–14, Oakland, CA, 2018. USENIX
Association.

[22] Ethan Hamilton. Rocksdb is eating the
database world. https://rockset.com/blog/
rocksdb-is-eating-the-database-world/.

[23] Michael Hasenstein. The logical volume manager (lvm). White paper,
2001.

[24] Val Henson, Zach Brown, and Arjan van de Ven. Reducing fsck time
for ext2 file systems. 04 2019.

[25] Val Henson, Amit Gud, Arjan van de Ven, and Zach Brown. Chunkfs:
Using divide-and-conquer to improve file system reliability and re-
pair. In Proceedings of the Second Conference on Hot Topics in Sys-
tem Dependability, HotDep’06, pages 7–7, Berkeley, CA, USA, 2006.
USENIX Association.

[26] Val Henson, Arjan van de Ven, Amit Gud, and Zach Brown. Chunkfs:
Using divide-and-conquer to improve file system reliability and repair.
In HotDep, 2006.

[27] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder.
Evaluating file system reliability on solid state drives. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 783–798, Ren-
ton, WA, July 2019. USENIX Association.

[28] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder.
Evaluating file system reliability on solid state drives. In 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), pages
783–798, 2019.

[29] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder.
Evaluating file system reliability on solid state drives. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 783–798, Ren-
ton, WA, July 2019. USENIX Association.

[30] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. Splitfs: reducing software
overhead in file systems for persistent memory. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, pages
494–508, 2019.

[31] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Redesigning lsms for non-
volatile memory with novelsm. In Haryadi S. Gunawi and Ben-
jamin Reed, editors, 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 993–
1005. USENIX Association, 2018.

[32] Ram Kesavan, Harendra Kumar, and Sushrut Bhowmik. WAFL iron:
Repairing live enterprise file systems. In 16th USENIX Conference on
File and Storage Technologies (FAST 18), pages 33–48, Oakland, CA,
February 2018. USENIX Association.

[33] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A Cross Media File System. In
Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, 2017.

[34] Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun Cho.
F2FS: A New File System for Flash Storage. In Proceedings of the
13th USENIX Conference on File and Storage Technologies, FAST’15,
Santa Clara, CA, 2015.

USENIX Association 19th USENIX Conference on File and Storage Technologies 125

https://www.linuxquestions.org/questions/linux-hardware-18/disk-check-takes-too-long-to-check-510584/
https://www.linuxquestions.org/questions/linux-hardware-18/disk-check-takes-too-long-to-check-510584/
https://www.linuxquestions.org/questions/linux-hardware-18/disk-check-takes-too-long-to-check-510584/
https://linux.die.net/man/8/e2fsck
https://lwn.net/Articles/749106/
https://lwn.net/Articles/749106/
http://rocksdb.org/
http://intel.ly/1eICR0a
http://man7.org/linux/man-pages/man7/sched.7.html
http://man7.org/linux/man-pages/man7/sched.7.html
https://unix.stackexchange.com/questions/78785/extremely-long-time-for-an-ext4-fsck
https://unix.stackexchange.com/questions/78785/extremely-long-time-for-an-ext4-fsck
https://access.redhat.com/solutions/2210281
https://www.nersc.gov/assets/Uploads/W01-DataIntensiveComputingPanel.pdf
https://www.nersc.gov/assets/Uploads/W01-DataIntensiveComputingPanel.pdf
https://changelog.complete.org/archives/9769-silent-data-corruption-is-real/
https://changelog.complete.org/archives/9769-silent-data-corruption-is-real/
https://rockset.com/blog/rocksdb-is-eating-the-database-world/
https://rockset.com/blog/rocksdb-is-eating-the-database-world/

[35] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design
of a task parallel library. OOPSLA ’09, page 227–242, New York, NY,
USA, 2009. Association for Computing Machinery.

[36] W. Li, Y. Yang, J. Chen, and D. Yuan. A cost-effective mechanism for
cloud data reliability management based on proactive replica checking.
In 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012), pages 564–571, 2012.

[37] HPC-Users Mailing List. Outages in HPC Systems. https:
//maillists.uci.edu/pipermail/hpc-users/2019-December/
000095.html.

[38] M. Lu, T. Chiueh, and S. Lin. An incremental file system consistency
checker for block-level cdp systems. In 2008 Symposium on Reliable
Distributed Systems, pages 157–162, Oct 2008.

[39] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Marshall Kirk Mckusick. Ffsck: The fast file-system
checker. Trans. Storage, 10(1):2:1–2:28, January 2014.

[40] Marshall K. McKusick. Improving the performance of fsck in freebsd.
;login:, 38(2), 2013.

[41] Marshall Kirk McKusick, Willian N Joy, Samuel J Leffler, and Robert S
Fabry. Fsck- the unix† file system check program. Unix System
Manager’s Manual-4.3 BSD Virtual VAX-11 Version, 1986.

[42] Mtanski. mtanski/xfsprogs github.com/mtanski/xfsprogs/preadv2/repair.
https://github.com/mtanski/xfsprogs/tree/preadv2/
repair, Feb 2015.

[43] Arjun Narayan and Peter Mattis. Why we built cockroachdb
on top of rocksdb. https://www.cockroachlabs.com/blog/
cockroachdb-on-rocksd/.

[44] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A high performance file sys-
tem for non-volatile main memory. In Proceedings of the Eleventh
European Conference on Computer Systems, pages 1–16, 2016.

[45] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. Arachne: Core-aware thread management. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’18, pages 145–160, Berkeley, CA, USA, 2018. USENIX
Association.

[46] Omar Sandoval. A survey of bugs in the Btrfs filesys-
tem. https://courses.cs.washington.edu/courses/cse551/
15sp/projects/osandov.pdf.

[47] Ric Wheeler. fs_mark. https://sourceforge.net/projects/
fsmark/.

[48] Matthew Wilcox and Ross Zwisler. Linux DAX. https://www.
kernel.org/doc/Documentation/filesystems/dax.txt.

[49] Jian Xu and Steven Swanson. Nova: A log-structured file system for
hybrid volatile/non-volatile main memories. In Proceedings of the 14th
Usenix Conference on File and Storage Technologies, FAST’16, Santa
Clara, CA, 2016.

[50] Jian Xu and Steven Swanson. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In Proceedings of the
14th Usenix Conference on File and Storage Technologies, FAST’16,
2016.

[51] Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge, Bill W. Zhao,
and Elizabeth S. Yang. Reliability analysis of ssds under power fault.

ACM Trans. Comput. Syst., 34(4):10:1–10:28, November 2016.

126 19th USENIX Conference on File and Storage Technologies USENIX Association

https://maillists.uci.edu/pipermail/hpc-users/2019-December/000095.html
https://maillists.uci.edu/pipermail/hpc-users/2019-December/000095.html
https://maillists.uci.edu/pipermail/hpc-users/2019-December/000095.html
https://github.com/mtanski/xfsprogs/tree/preadv2/repair
https://github.com/mtanski/xfsprogs/tree/preadv2/repair
https://www.cockroachlabs.com/blog/cockroachdb-on-rocksd/
https://www.cockroachlabs.com/blog/cockroachdb-on-rocksd/
https://courses.cs.washington.edu/courses/cse551/15sp/projects/osandov.pdf
https://courses.cs.washington.edu/courses/cse551/15sp/projects/osandov.pdf
https://sourceforge.net/projects/fsmark/
https://sourceforge.net/projects/fsmark/
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt

Pattern-Guided File Compression with User-Experience Enhancement for
Log-Structured File System on Mobile Devices

Cheng Ji1, Li-Pin Chang2,3, Riwei Pan4, Chao Wu4, Congming Gao5, Liang Shi6, Tei-Wei Kuo,4 and Chun Jason Xue4

1Nanjing University of Science and Technology 2National Chiao Tung University 3National Yang Ming Chiao Tung University

4City University of Hong Kong 5Tsinghua University 6East China Normal University

Abstract

Mobile applications exhibit unique file access patterns, often
involving random accesses of write-mostly files and read-
only files. The high write stress of mobile applications sig-
nificantly impacts on the lifespan of flash-based mobile stor-
age. To reduce write stress and save space without sacrific-
ing user-perceived latency, this study introduces FPC, file
access pattern guided compression. FPC is optimized for the
random-writes and fragmented-reads of mobile applications.
It features dual-mode compression: Foreground compression
handles write-mostly files for write stress reduction, while
background compression packs random-reading file blocks
for boosted read performance. FPC exploits the out-of-place
updating design in F2FS, a log-structured file system for mo-
bile devices, for the best effect of the proposed dual-mode
compression. Experimental results showed that FPC reduced
the volume of total write traffic and executable file size by
26.1% and 23.7% on average, respectively, and improved the
application launching time by up to 14.8%.

1 Introduction

Mobile devices including smartphones, tablets, and wearable
devices are now a necessity in everyone’s daily life. Recent
researches reported that the number of smartphone shipments
surpassed 1.37 billion in 2019 [1] and 86% of them were
based on the Android [2]. Mobile devices employ flash mem-
ory for persistent data storage. While the performance of
mobile processors is improving drastically, the improvement
of mobile storage performance is, however, relatively slow.
Recent studies report that I/O operations on mobile storage
are write-dominant [3–7], and the write pattern is highly
random and synchronous. These write operations are iden-
tified closely related to user-perceived latencies due to the
relatively high write latency of flash memory [8, 9]. In ad-
dition, as flash memory technology is evolving toward high
cell-bit-density at the cost of degraded endurance, the high
write stress negatively impacts on the flash-storage lifespan.

Android-based mobile devices exhibit very distinct file
usage patterns compared with desktop systems: First, mo-
bile applications heavily rely on an embedded database layer,
SQLite, for transactional data management; Second, Android
packs various runtime resources such as executable binaries
and compiled resources into large executable files. We exam-
ined the contents of these files and found that they are highly
compressible. While the database files contribute to a large
portion of the write traffic, executable files are large in size.
Intuitively, existing file compression techniques, such as those
reported in [10–13], can be adopted to reduce write stress
and to save space. However, the existing designs might not be
effective or risk degraded user experience in mobile devices.

Manipulating SQLite databases generates many small file
overwrite and append operations [6, 14]. These small op-
erations are highly fragmented in the storage space and the
cause has been identified related to the file fragmentation
problem [8]. With the fragmented updates, file compression
on top of a conventional in-place-updating file system, like
Ext4 [15], may create many holes in the storage space because
a compressed file block may not fit in its original space after
an update. With the small append operations, file compression
cannot use a large compression window on new data for a
better compression result. Regarding Android executable files,
although they are sequentially written upon installation, they
are subject to small, random read operations during applica-
tion launching. Decompressing file blocks from random file
offsets significantly amplifies the I/O read overhead because
of the larger unit size of block I/O [12, 13]. These unique
file access patterns of database files and executable files in
Android mobile devices are, however, not well studied in prior
file compression work.

We believe that file compression should be judiciously
applied to files based on their access patterns. This study
presents File Pattern-guided Compression (FPC) for mo-
bile devices. FPC features foreground compression and back-
ground compression. Considering the timing overhead of
compression, foreground compression is applied only on the
write-intensive, highly compressible SQLite files. In particu-

USENIX Association 19th USENIX Conference on File and Storage Technologies 127

lar, SQLite journal files are barely read (write-ahead logging
journal) or never read (roll-back journal). For the journal files,
FPC further applies deep compression by packing file-system
metadata with user data and compressing them using a larger
compression window. Executable files, which are also highly
compressible, are subject to small, random reads upon appli-
cation launching. Hence they are not suitable for sequential
compression in the foreground. Instead, this paper proposes
to apply infrequent background compression to re-organize
read-critical blocks of executable files through compression.
As a result, both user-perceived application launching latency
and storage space utilization can be improved.

The effect of the proposed FPC is best achieved by an
implementation on top of a log-structured file system, e.g.,
F2FS [16] for mobile storage. FPC exploits out-of-place up-
dating and reverse mapping, which are existing mechanisms
in F2FS, for foreground compression and critical block re-
organization, respectively. With out-of-place updating, small,
fragmented writes and appends to SQLite files and their an-
cillary file-system metadata can be combined as sequential,
deep compression with a large compression window. With
the reverse mapping of storage addresses to file block offsets,
it is possible to load multiple compressed read-critical blocks
of executable files through a single block I/O request to accel-
erate application launching. In summary, this work makes the
following contributions:

• Proposing a foreground compression method for write
mostly, highly compressible files to improve write stress
and energy consumption of mobile storage;

• Proposing a background compression method that iden-
tifies and re-organizes read-critical blocks in executable
files for fast application launching and space saving;

• Exploiting out-of-place updating and reverse mapping
of F2FS for the best effect of deep, metadata-level file
compression and fast application launching.

2 Background and Motivation

2.1 I/O System and Storage of Mobile Devices

Android is the dominant operating system for mobile devices
today. The Android I/O system consists of host system soft-
ware and a flash storage device. The host software includes
a lightweight database layer, SQLite, for transactional data
management. SQLite operates on top of the file system layer,
where two major options are provided: Ext4 [15], an in-place
updating file system, and F2FS [16], a log-structured file sys-
tem. Because random file writes may unexpectedly increase
the cost of garbage collection of flash storage, F2FS benefits
flash storage by converting random updates into sequential,
out-of-place updates. As out-of-place updates create outdated
data in the storage space, F2FS needs to timely compact valid
data to provide contiguous free space for future sequential
writes.

0%

20%

40%

60%

80%

100%

Write Read Write Read Write Read Write Read Write Read

Facebook Messenger G. Earth Firefox Reddit

1 2 3 4 >4

(a)

1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

C
o

m
p

ressio
n

 A
m

p
lificatio

n
 R

atio
 (C

A
R

)

D
ec

o
m

p
re

ss
io

n
 A

m
p

lif
ic

at
io

n
 R

at
io

 (
D

A
R

)

DAR CAR

(b)

Figure 1: (a) Characterization of file write and read sizes for
mobile applications (unit: page). (b) Low compression effi-
cacy of traditional sequential compression approaches. Com-
pression Amplification Ratio (CAR) and Decompression Am-
plification Ratio (DAR) are presented, respectively.

High Write Stress. Applications heavily rely on the
SQLite journaling mechanism for data integrity guarantee,
producing enormous synchronous, random block writes [6].
The write traffic is further amplified by other components
of the I/O system. Specifically, free-space defragmentation
for F2FS involves many extra data migrations [16], and flash
garbage collection inside mobile storage requires data move-
ments before memory erasing [17]. The multiple levels of
write amplification become even worse when the level of file
system fullness is high. The amplified write traffic noticeably
degrades user-perceived latency [9]. In addition, as modern
flash technology is evolving toward high bit-cell density at
the cost of reduced endurance, e.g., a TLC flash block can
only withstand about 1,000 P/E (program-erase) cycles [18],
the excessive write traffic also poses concerns to the storage
lifespan.

2.2 Pitfalls of File Compression

File compression is expected to save storage space and reduce
the amount of I/O. However, it may not be the case for mobile
storage because of the highly random nature of file reads and
writes of mobile applications. In this section, we demonstrate
the high randomness of read and write under selected popular
applications and show that existing file compression designs
could be harmful to space utilization and read performance.

In Android devices, read traffic and write traffic are mainly

128 19th USENIX Conference on File and Storage Technologies USENIX Association

contributed by executable files and SQLite files, respectively
[3, 14]. Figure 1(a) reports the size distribution of file read
operations on *.apk executable files and that of file write
operations on SQLite files. Results indicate that roughly more
than one half of the write operations to SQLite files were not
larger than 4 pages (16KB). Most of these small writes were
bound for random file offsets. For read operations, nearly
90% of all read operations were not larger than one page in all
applications. The file offsets of these reads were also highly
fragmented.

Many existing compression file systems, e.g., Btrfs [10],
JFFS2 [11] and EROFS [12], allow only compressed file
blocks of consecutive offsets to be stored in the same storage
block. A new storage block is allocated for a compressed file
block if it does not continue the file offset of the last com-
pressed file block. This design, referred as the sequential com-
pression method, can seriously degrade the space utilization
in mobile storage. To assess the severity of the problems, in
Fig 1(b) we report Compression Amplification Ratio (CAR),
which is the ratio of the total number of physical blocks 1

required to store a series of compressed logical blocks with
the sequential compression method to the minimal number of
physical blocks required to store all the compressed logical
blocks. CAR reflects how the sequential compression method
degrades space efficiency on random write through internal
fragmentation. The CAR values indicated that the sequential
compression method incurred more than 40% extra space
requirement for 4 out of the 5 applications.

We then show how application launching suffered from
an amplified read overhead with the sequential compression
method. We employed Decompression Amplification Ratio
(DAR) to show the ratio of the total number of compressed
logical blocks stored in the physical blocks that are read to
launch an application to the total number of compressed logi-
cal blocks that are actually required to launch the application.
For example, DAR is 4 if a physical block stores four com-
pressed logical blocks and only one of them is actually used.
Fig 1(b) shows the DAR values were even higher than the
CAR values because one-page reads dominated the overall
read traffic. The CAR and DAR results showed that the exist-
ing sequential compression method unexpectedly degrades
space utilization and amplifies the read overhead for applica-
tion launching on mobile devices. This underlines the need
for a new space management strategy to cope with the unique
random I/O pattern of mobile applications.

2.3 Benefits of File Compression with LFS
File system compression should achieve a high compres-
sion efficiency (space saving) with a reduced decompression
penalty. It is possible to achieve both by taking advantage
of the file system structure and application behaviors of file

1In the rest of this paper, we refer to blocks in the storage space as physical
blocks and blocks in the file address space as logical blocks.

1 3 5
PBN
100

Old block

(a)

Valid Invalid

Update B3

3

Physical-to-Logical Block Mapping

inode
30
30
30

PBN
100
100
100

PBN
100
101

30101

102

3 5

Physical block

1 2 3 4

1

5 6 ...

...

Se
gm

en
t

LBN
1
3
5
3

3

Inode num
30

103
...

File Space

File System

valid
1
0
1
1

(b)

Figure 2: Updating compressed data with (a) in-place-
updating file system and (b) a log-structured file system.

access. This study is based on the log-structured file system
for mobile storage. Compared with conventional in-place-
updating file systems, e.g., Ext4, LFS is highly friendly to file
compression, as discussed below:

Out-of-Place Updating. Conventional in-place-updating
file systems have a disadvantage of handling compression. In
Figure 2(a), three data blocks are compressed and packed to-
gether into the same physical block (PBN 100). Consider that
B3 is updated. If the new compressed size of B3 is larger than
the old version, it is impossible to overwrite B3 in place. One
solution is to re-write B1, B3, and B5 and repack them tightly
in another free space. Another option is to align compressed
data to predefined boundaries to allow future size changes of
compressed data. However, with both options above, file com-
pression suffers, from either amplified write traffic or internal
fragmentation [19, 20]. By contrast, as shown in Figure 2(b),
LFS appends the compressed B3 to a new block, avoiding
rewriting of existing data and wasting of free space.

Reverse (Physical-to-Logical) Mapping. To support data
migration of space cleaning, LFS, e.g., F2FS, maintains
physical-to-logical block (P2L) mapping. The P2L mapping
is necessary to determine whether a piece of data is valid (and
requires migration) and to update new locations of data during
cleaning. As Figure 2(b) shows, the P2L mapping provides the
inode number and file offset of a compressed logical block
(§ 4.3). Interestingly, file compression can leverage the exist-
ing P2L mapping mechanism for efficient decompression. We
discerned that the launching of mobile applications, whose
latency affects user experience the most [8], generated small,
random reads on executable files (Section 3.3.1). With P2L
mapping, it is possible to compress the file blocks necessary
to application launching and pack them into physical blocks.
This way, fewer block read requests are required to launch an
application, improving the user-perceived latency.

Although the log-structured file system is friendly to com-
pression, prior compression studies paid little attention to the
read/write patterns of mobile systems. This study proposes to
exploit the file access behaviors of mobile applications and the
structure of F2FS to address two major design challenges: 1)
Efficient file compression for write stress reduction and space
saving and 2) Efficient re-organization and decompression of

USENIX Association 19th USENIX Conference on File and Storage Technologies 129

Page
Cache

File
System

90

91

92

93

94

Page

80 81

VFS

Segment Segment Segment

padding80 81

93

2. foreground compression

Page

90 91

5. background compression

92

92 93 94

1. write()

3. flush or fsync 4. call ioctl() 6. compact pages

invalid

valid

79

...

padding

w
rite

80 81

padding

90 91

C
ri
ti
ca
l

C
ri
ti
ca
l

Figure 3: FPC architecture. Steps 1 to 3 show foreground
compression on write-intensive files and Steps 4 to 6 show
background compression/re-arrangement of read-critical data.

executable files for improved user experience.

3 Pattern-Guided File Compression

This section presents the proposed design principle and the
details of foreground and background compression.

3.1 File Access Behaviors of Mobile Apps

We propose categorizing files according to their types of ac-
cess (read or write) and hotness (access frequency): 1) Write-
hot, read-cold files: Roll-back journals (*.db-journal) are a
good fit in this category because they are frequently writ-
ten [21]. However, they are rarely read (except during crash
recovery). SQLite database files are also a good fit because
many mobile applications frequently write SQLite database
files but barely read them [22]. 2) Write-cold, read-hot files:
Executable files fall in this category because they are im-
mutable after installation or update. Android executable files
are large and highly compressible [13]. However, the read
latency of executable files is critical to user experience, so it
is crucial to optimize the decompression overhead.

Both SQLite files and executable files are subject to ran-
dom access: SQLite database files are prone to random up-
dates, while executable files are subject to random reads. Al-
though random updates will be converted into bulk writes
through out-of-place updating, random reads, however, should
be optimized through rearrangement of file blocks. Figure 3
shows the architecture of the proposed File Pattern-guided
Compression approach (FPC). FPC performs foreground
compression on SQLite files for write stress reduction. On the
other hand, executable files are left to background activities
of block re-arrangement and compression for improved user
experience and space saving.

Traditional
compression

1 2

5 page write

1 210

10 11

21

1 2

Our
approach

3 page write 1 page write

No compression

1121

10 11

21

Req 1

Req 2

Req 3

Figure 4: Comparison of traditional sequential compression
approaches and the proposed compression approach. The Log-
ical Block Number (LBN) is shown inside each data block.

3.2 Foreground Compression
This section presents the proposed foreground compression
(FC) solution for write stress reduction. FC is focused on the
compression of write-hot but read-cold files.

3.2.1 Non-Sequential File Block Compression

On-line file compression is a feature of existing file systems
such as Btrfs [10] and JFFS2 [11]. In the prior designs, a
physical block can only store compressed logical blocks of
contiguous file offsets. This is because, first, file writes in
desktop computers and servers are large in size (compared
with mobile devices), so a sequential burst of compressed data
sufficiently utilizes a physical block. Second, file compression
is a separate layer in file system, and therefore compression
of sequential file blocks minimally affects the existing index
scheme of file blocks. This sequential compression method,
which is adopted by Btrfs and JFFS2, results in poor space
utilization in mobile storage, because the major write traffic
contributor SQLite [4, 14] produces many small writes bound
for random file offsets. In this case, a compressed file block
usually demands a new physical block due to the irrelevant
file offset from the prior compressed file block.

Fig. 4 shows the problem of the sequential compression
method. Consider the three pending file write operations on
the left-hand side. Three physical blocks are required for com-
pression because the three file writes do not have sequential
file offsets. Because compression reduces the file block sizes,
these three physical blocks suffer from poor space utilization.
On the contrary, we propose allowing file blocks of irrelevant
file offsets to share the same physical block. As the right-
hand side of Fig. 4 shows, only one physical block is used
and the space utilization is high. However, compression of
non-sequential file blocks is challenging because it increases
the index resolution of file blocks to the sub-block level.

3.2.2 Selective Foreground File Compression

Foreground compression (FC) is performed in real time. Since
unconditional compression risks poor write latency and ex-
tra energy consumption, foreground compression is highly
selective to avoid such a drawback.

130 19th USENIX Conference on File and Storage Technologies USENIX Association

2

3

4

Node Block

No compression Our
approach

432

3
b

lo
ck

1

b
lo

ck

1
 b

lo
ck432

Data Block

Traditional
compression

4 page write 2 page write 1 page write

Figure 5: Comparison of traditional compression approaches
and the proposed metadata-level file compression approach.

Selection of File Types. Since FC is part of the file system,
it can simply ignore writes associated with the file types that
are known to be incompressible, e.g., files with multimedia
extensions *.jpg, *.mp4 and so on. Among all the other file
types, SQLite files have been identified write-intensive and
highly compressible [23]. In this study, compression ratio is
defined as the ratio of the size after compression to that before
compression. The smaller the better. We measured that the
compression ratio of many SQLite files was better (lower)
than 0.2, and compressing these SQLite files could benefit
the write latency. On the other hand, although executable
files are also highly compressible, sequential compression
of executable files will significantly amplify the read over-
head because such files are subject to small, random reads
during application launching. FC leaves executable files to
background compression.

Selection of Page Writes. Although FC can simply com-
press all writes associated with files having a *.db extension,
it is possible that SQLite files are embedded with incompress-
ible contents. For example, the Google Earth app stores map
image tiles in *.db files using the BLOB (binary large ob-
ject) format. A prior study reports that real-time identification
of data compressibility is feasible [24]. Here, FC employs a
sampling technique to quickly identify such incompressible
contents: FC always compresses the first cached file page
of an SQLite file write operation. If the first cached page is
highly compressible, i.e., its data size can be reduced by at
least one half, then FC compresses the rest cached pages of
the write. Otherwise, FC forwards all the cached pages of the
write to the original F2FS write logic.

3.2.3 Metadata-Level File Compression

F2FS stores user data in data blocks and file-system metadata
(e.g., inodes) in node blocks. These two types of blocks are
written to separate free spaces because node blocks are consid-
ered being updated more often. Small, synchronously-written
files will experience a high metadata overhead.

The left-hand side of Fig. 5 shows the space allocation
without file compression. Now, let the file undergo compres-
sion, the middle of Fig. 5 shows that the three data blocks
are packed into a physical block while the uncompressed
node block still occupies a second physical block. In this
study, we propose writing data blocks of a *.db-journal file

and their associated node block to the same segment through
compression. The right-hand side of Fig. 5 shows that only
one physical block is written with this method, while the tra-
ditional compression in the middle requires two. There are
several rationales behind this design: First, the node block
and data blocks of a *.db-journal file share the same lifetime
because a rollback journal is discarded upon a successful
SQLite transaction. Second, rollback journals are write-only
(except during crash recovery) so packing metadata and user
data together would have little impact on read performance.
Although the design described above is based on rollback jour-
naling in DELETE mode, it is also applicable to PERSIST
mode. In PERSIST mode, rollback journals are reused. Like
in DELETE mode, data blocks and the node block of reused
journals are updated through F2FS out-of-place writing, and
they are packed together for compression.

F2FS flushes data blocks before writing node blocks to
avoid reference to uninitialized data. In our method, physical
blocks containing all compressed data blocks are still flushed
first. Let a mixed block be a physical block storing a few com-
pressed data blocks and their associated, compressed node
block. It is possible that upon crash recovery, the compressed
node block in a mixed block is valid but its associated com-
pressed data blocks in the same mixed block contain uninitial-
ized data. To deal with this problem, we propose inserting a
checksum to every mixed block. If a checksum fail is detected
on a mixed block during crash recovery, the compressed node
block in the mixed block is discarded.

3.3 Background Compression

Foreground compression on sequentially-written, random-
read executable files risks degraded application launching
performance. This part investigates the access patterns of
executable files and proposes background compression (BC).

Figure 6: Distribution of read addresses within executable
files during application launching. The X-axis shows the
block offsets relative to the begin of files. Read requests hav-
ing consecutive LBAs are marked in the same color (red and
blue are used alternatively for clear presentation).

USENIX Association 19th USENIX Conference on File and Storage Technologies 131

3.3.1 Highly Random Reads of Executable Files

Executable files, including .apk, .dex, .odex and .oat files,
contribute to a large proportion of storage space [14], and they
are highly compressible. The latencies of reading executable
during application launching are crucial to user experience,
because users have to wait until all necessary executable data
are decompressed and loaded into memory.

We inspected how executable files were read with typi-
cal mobile applications. In order to accurately identify the
required file data, we inserted routines to the Virtual File
System (VFS) to extract related system calls, e.g., instrument-
ing do_mmap function to record reads on memory-mapped
executable files and instrumenting do_generic_file_read
function to extract reads on non-memory-mapped files. The
duration of launching ended when the executable file of the
application did not receive any read for one second.

Figure 6 shows the distributions of read addresses within
the base.apk file, which is the main executable file for Face-
book, Chrome, and Messenger. Results show that read re-
quests of the inspected applications were small and random.
While the executable files were large, only a small portion of
executable file data was actually fetched for launching. For
example, the executable file of Facebook was 80.6 MB, but
only 632 KB of the file was read to launch Facebook. File
pages were fetched through run-time demand paging, but the
address distribution shows that these required pages were not
well organized based on their correlation.

Apk files are actually a package of resource files. These
files contribute a significant portion of read traffic during
application launching, e.g., 49%, 27% and 21% of total read
requests for Facebook, Chrome, Messenger, respectively. The
random reads of apk files had great impacts on application
launching latencies, which will be shown in Section 5. We
de-compiled the Facebook’s base.apk and analyzed which
resource files were actually read for launching. The accessed
resource files were identified by matching the read addresses
and the file offsets of the resource files within the apk. The
base.apk contained 17,439 resource files. Table 1 shows that
only a small subset of the resource files (110 out of 17,439)
were read. These required resource files (*.xml, *.png, etc.)
were dispersed to random locations within the apk and were
all accessed through single-block read requests. These small,
random reads increased the block I/O count and degraded the
user-perceivable application-launching latency.

Table 1: Resource files read from Facebook’s base.apk.

Type .xml .arsc .png .dex others apk metadata

File count 51 1 41 9 8 1

Blocks read 1 32 1 1 1 17

Read critical data Read critical data

Logical file offset

...Storage space

3 blocks

Compress

......

2 blocks

...

3 blocks 2 blocks

Figure 7: Compression of read-critical data in executable files.

3.3.2 Read-Guided File Compression

Decompressing small pieces of data from random file offsets
negatively impacts on read performance. Compression pro-
vides an opportunity of reorganizing necessary file blocks to
reshape the read patterns for better decompression efficiency.

Read-Critical Data Compression: We refer to a piece of
data in an executable file as read-critical data if the data is
required to launch an application. Because of the random
read pattern of application launching, sequential compression
of executable files risks the mixture of read-critical and non-
read-critical data in a physical block. The mixture of data
significantly amplifies application launching time because
non-read-critical data are loaded and decompressed. The up-
per half of Figure 7 illustrates that critical data are scattered
in an executable file. We propose monitoring the read-critical
data set during application launching. Later on, upon requests,
the file system compacts these critical data and compresses
them into file blocks, as shown in the bottom half of Figure 7.
Notice that the compaction changes the storage layout of file
blocks but not the logical order of file blocks.

Compacting and compressing read-critical data avoids to
load and decompress non-read-critical data and thus prevents
decompression from degrading application launching time. It
also complements the existing file pre-fetching mechanism,
which could unexpectedly load non-read-critical data from
sequential file offsets. When reading and decompressing a
piece of read-critical data, the file system also brings the
other read-critical data of the same physical block into the
page cache. The prefetching of read-critical data requires the
physical-to-logical mapping of F2FS (see Section 4.3), which
is a unique feature of log-structure file systems.

Read-Critical Data Identification: The efficacy of the
proposed read-critical data compression is subject to the I/O
pattern of executable files. It has been reported that appli-
cation launching exhibits highly predictable I/O patterns on
desktop computers [25]. This phenomenon is also true for
mobile applications: a cold start process of launching an appli-
cation was tested through the am start command of the adb
shell with the page cache cleared beforehand. We monitored
the file read operations on the file blocks of the base.apk file
of Facebook, Chrome, Messenger, Twitter, Google Earth, and
Firefox for 5 rounds of cold starts. Results show that the set of
file blocks read during the multiple cold starts barely changed
(difference was between 1% to 3%). The read performance of
these file blocks affects the user experience the most because

132 19th USENIX Conference on File and Storage Technologies USENIX Association

the application screen is not fully rendered yet. As the ap-
plications continued to launch after the am start command
returned, a higher degree of variation in the start-up file blocks
was observed as they began to display random advertisements
and splash screens.

Based on the results above, we propose capturing the core
set of the read-critical data, i.e., those shared among different
rounds of application cold starts, for fast application launch.
When an executable file is opened (or memory-mapped), our
method records the offsets of file reads. The proposed design
collects the read offsets for the first three rounds of cold starts
of a new application. After this, the core read-critical data will
be compacted and compressed into a set of physical blocks.
Non-core read-critical data will be compressed to another
set of physical blocks. When the system is lightly loaded,
a resident user-level process invokes an ioctl() with an
argument of an inode number of an executable file, and the
file system begins to compress the read-critical data of the file
in the background. The compression of executable file blocks
is conducted during system idle periods (see Section 4.4).

4 Implementation

This section discusses how to implement the proposed FPC
in a log-structured file system, F2FS, for mobile devices.

4.1 Dynamic Compression Window
A large compression window sufficiently populates a large
dictionary for effective data compression. However, partial
reads in a large chunk of compressed data would induce a
high overhead because the compressed data must be read and
decompressed as a whole. The selection of the compression
window size is based on the following rules: The default size
of the compression window is set to 4 KB to avoid an am-
plified read overhead. Exceptions are as follows: First, for
foreground compression on SQLite journals, the compression
window is large as the block write request. Because these files
are barely read, using a large compression window has little
effect on read performance. Second, background compres-
sion uses 32 pages (128 KB) as the compression window size
for *.dex and *.odex, as mobile applications often performed
bulk, sequential read on such executable files through mmap().
Since a page fault in Linux is handled by fetching a set of 32
pages into the page cache, using a compression window as
large as the pre-paging size effectively improves the compres-
sion ratio without sacrificing the read performance. Due to the
bulk reading, a chunk of compressed data of *.dex and *.odex
files is allowed to be stored across physical block boundaries.

4.2 Sub-Block L2P Mapping
To better accommodate small file reads and writes of mobile
applications, we enhance the mapping process to improve the

PBN 200

LBN flag
10 1
11 1

32 1

idx
1
2

3

10

41 01

Uncompressed block

LBN flagidx

inode

PBN
200
200

200

PBN
201

PBN 201

L2P mapping

cn
t

of
fse

t
of

fse
t

of
fse

t

Header Compressed blocks

...

Figure 8: The extended L2P mapping.

read-write data compression efficacy. Because a compressed
file system stores multiple compressed blocks in a physical
block, it requires logical-to-physical (L2P) mapping at the
sub-block level 2. The existing L2P mapping for F2FS is
managed at the block level using special node blocks inode.
However, the current F2FS inode structure is 4 KB and it
cannot accommodate all the extra metadata for sub-block
indexing. To deal with this problem, our design appends ex-
tra bits to each mapping entry of an inode block: 3 bits for
sub-block indexing and 1 bit as a compression flag. In the
storage space, if a physical block contains compressed blocks,
then the physical block is formatted into a header area and
a compressed block area. A header entry is indexed by the
sub-block number of an inode mapping entry, and the header
entry contains a starting offset (16 bits) of the corresponding
compressed block within the physical block.

Figure 8 shows an example of the extended L2P mapping
and physical block layout. Suppose that a read of the tenth
logical block (LBN 10) of a file will be served. The file system
first locates the inode of the file and reads the LBN-to-PBN
mapping entry for LBN 10. It identifies that the corresponding
physical block PBN 200 is compressed (flag=1) and LBN 100
is the first compressed block (idx=1) in the physical block. Af-
ter reading PBN 200, the file system loads the decompressed
data of LBN 10 into the page cache and completes the read.
It is possible that the header entries of multiple logical blocks
refer to the same compressed block. To distinguish between
logical blocks in the same compressed block, each header
entry contains a logical block sequence number.

Since a physical block contains multiple compressed
blocks, a physical block may be partially invalidated after
write operations. We adopt a Block State Table (BST) to keep
track of the valid/invalid status of compressed blocks in a
physical block. The existing F2FS SIT (Segment Information
Table) stores the valid/invalid status of data at the block level.
Our BST is an extension to the SIT and is protected by the
checkpoint mechanism. Let a physical block contain up to N
compressed blocks. The BST extension uses a counter and
a validity bitmap of the compressed blocks, which require
log2 N and N bits, respectively.

2In this paper, L2P mapping refers to the mapping of a file block offset
(LBN within a file) to a storage address (PBN in storage).

USENIX Association 19th USENIX Conference on File and Storage Technologies 133

P2L mapping

inode
55
55
55

PBN
100
100
100

55101

Physical block

1 2 3 ... 15 16 ...

Segm
ent

LBN
1
3

15
16

Inode 55 File Space

File System

valid
1
1
1
1

1 3

28 ...

55101 28 1

PBN
100
101
102
...

15
2816

de
co

m
pr

es
s

Figure 9: Decompression for read-critical blocks with
physical-to-logical (P2L) mapping.

4.3 Decompression with P2L Mapping
When decompressing a logical block, the file system requires
the inode number and file offset of the block to properly load
the block into the page cache address space. For a file block
that is explicitly requested by a read operation, this informa-
tion is known to the file system upon the request. However, as
shown in Figure 8, when reading the physical block at PBN
200, the file system cannot find such information for the other
two compressed blocks in the physical block. Therefore, the
file system will have to ignore these two compressed blocks,
although they have been brought into memory. Thanks to the
reverse (physical-to-logical) mapping, a unique feature of log-
structured file systems, our design can identify the inode and
file offset of the other two compressed blocks and opportunis-
tically load them into memory. The reverse mapping for F2FS
is provided by the Segment Summary Area (SSA) [16]. The
original purpose of SSA is for the space cleaning procedure
to identify the valid/invalid status and logical block address
of each block in a victim segment.

Figure 9 shows an example of decompressing blocks based
on the P2L mapping. When the first logical block of the file
(LBN 1) is requested, the file system reads the physical block
at PBN 100, decompress the logical block of LBN 1, and loads
it into the page cache. By consulting the reverse mapping,
the file system also decompresses and loads the other two
compressed blocks along with their inode number (55) and
LBNs (3 and 15) into the page cache. Decompression with
P2L mapping is essential to the read-critical data compression
strategy because BC compacts and compresses correlated
executable file blocks into the same physical block.

4.4 Logging and Cleaning
Data Separation. F2FS writes data of different hotness (write
frequency) to separate segments through six logging heads to
improve cleaning efficacy. FPC inherits these logging heads
and employs three new logging heads: The first new log-
ging head is for FC to write compressed read-write files, i.e.,
SQLite files. A node-data-combined compressed block (Sec-
tion 3.2.3) is also written to this segment because the node
block and data blocks of a rollback journal share the same
lifetime. The second is for new, uncompressed executable

files, and the third is used by BC to write compressed exe-
cutable files. New executable files are written to the second
new logging head without compression. During background
compression, executable files are re-organized for read-critical
data and then compressed into the third new logging head.
FPC inherits the original F2FS victim selection policy with
a slight enhancement. A segment of the largest number of
invalid compressed blocks is selected as the victim for space
cleaning. Once a victim segment is selected, only valid com-
pressed blocks in the segment are copied for space cleaning.

On-Demand Background Compression. Since exe-
cutable files do not change after installation or update, back-
ground compression can be executed on demand: As de-
scribed in Section 3.3, a process running in the user space
is responsible for collecting the information of read-critical
blocks. The process begins to profile an application upon
installation or update. For an application under profiling, the
file read operations on its executable file are collected for at
least 5 rounds of launching. When done profiling an appli-
cation, the user process issues an ioctl call with the name
of the executable file of the application to the file system for
background compression. The background compression pro-
cedure is largely based on the data migration method of the
existing segment cleaning procedure of F2FS, but it selects
read-critical data for migration and compression. As reported
in [26], the typical update period of mobile applications is
half a month. In other words, the frequency of background
compression will be very low, minimally impacting the file
system performance and write traffic volume.

4.5 Design Summary

F2FS Modification. Our implementation of FPC requires
enhancements of the F2FS core data structures. The enhance-
ments are described below: 1) File indexing (L2P mapping)
requires to augment each direct pointer in the inode and di-
rect node with additional information, which now may refer
to a compressed block in a physical block. An original di-
rect pointer is of 32 bits, while a new direct pointer adds 1
bit for compression indication and 3 bits as an offset in a
physical block (the compressed block number in a physical
block is no larger than 8). The original inode structure has
an array of 923 direct pointers, and our design replaces them
with an array of 820 upgraded direct pointers. This design
slightly reduces the largest file size from 3.94 TB to 3.50
TB. 2) Reverse (P2L) mapping requires to modify the Seg-
ment Summary Area (SSA). A physical block can contain
multiple compressed blocks, so the structure f2fs_summary
is extended to represent the reverse mapping information of
each compressed block in a physical block. 3) Metadata-level
compression requires one additional bit for each Node Ad-
dress Table (NAT) entry to indicate whether or not a node
block is compressed with data blocks into a physical block.
Our design adds a separate bitmap to NAT for this purpose.

134 19th USENIX Conference on File and Storage Technologies USENIX Association

R/W pattern File
type Compression policy Compression

type
write-intensive,

random-write
db

compression on

non-sequential blocks
FC for

reduced

write stress
(almost)

write-only

db-

journal

large compression window,

metadata-level compression

write-once,

random-read
apk

critical data compaction and

compression
BC for fast

launching

and space

saving
write-once,

seq-read

dex,

odex

large compression window,

across physical block boundary

Figure 10: Summary of compression policies for different
types of files and their read/write patterns.

4) The logging of compressed data requires three extra types
of segment (Section 4.4). The segment numbers of the three
active logging heads (along with those of existing logging
heads) are kept in Checkpoint (CP). 5) Segment cleaning
requires the valid/invalid status of data. This information is
provided by the original Segment Information Table (SIT).
If a physical block contains compressed blocks, our Block
State Table (BST, Section 4.2) uses five bits to represent the
invalid/invalid status of its compressed blocks and three bits
for counting invalid compressed blocks.

Crash Consistency. F2FS employs the checkpoint
scheme [16, 27] to maintain the data consistency in case of
system crashes. The proposed compression solutions extend
a set of core data structures including the summary blocks
of the added compression logging heads, and f2fs_inode and
direct_node node blocks. Since all the involved metadata ex-
tended in the compression designs belong to the data types
that have to be protected by existing F2FS checkpoints, sys-
tem consistency can be maintained by calling the recovery
procedure of F2FS.

Fig. 10 is a summary of the access patterns of file types
and their associated compression policy.

4.6 Overhead Analysis and Discussions

Space overhead. The primary space overhead of FC ap-
proach is related to the Block State Table (BST) for block
state tracking. Besides in the storage space, a copy of the BST
is made in memory for efficient access. For FC, the largest
number of compressed blocks that a physical block can store
is empirically set to 5 for a good balance between the metadata
overhead and compression space reduction. Each BST entry
for a physical block requires 8 extra bits (3 bits for a counter
of invalid compressed blocks and 5 bits for a valid/invalid
bitmap of compressed blocks). For a 16 GB storage space,
the extra DRAM overhead for the counters and bitmaps is
4 MB, which is affordable to modern smartphones. On the
other hand, for the metadata-level file compression, the Node
Address Table (NAT) is enhanced to locate the compressed
node block stored together with the compressed file blocks
by adding a 1-bit flag for each NAT entry. As mentioned in
Section 4.5, a new bitmap of the flag bits is added to the NAT,
and the bitmap requires no more than 0.5 MB storage over-

head for a 16 GB storage device. At last, the checksum stored
in each physical block costs 4 bytes, and 16 GB storage space
introduces a maximal 16 MB space overhead.

General Applicability. It is possible to generalize our
pattern-guided compression for unknown file types. This is
because the proposed method employs only a few simple
properties of file access, including access sequentiality and
read-write tendency, as shown in Fig. 10. The file system can
adopt a profiling module to observe how files are accessed
and apply proper compression strategies accordingly. In par-
ticular, the access pattern discovery mechanism is already part
of the proposed BC design (Section 3.3.2), and the read-write
tendency of new files can be monitored using counters.

Compression Deployment. While compression of user
data is feasible at the application level, this study focuses on a
file-system approach because it enables deep integration with
system-level mechanisms, e.g., prefetching of compressed
blocks in the storage and compressing of file-system metadata,
which are difficult at the application level.

5 Performance Evaluation
5.1 Experimental Setup
We implemented and evaluated the proposed FPC based on
F2FS on a real platform Hikey 960 [28], which is an embed-
ded development board for AOSP. The platform was equipped
with a Kirin 960 8-core ARM processor, 4GB of RAM, and
a 32GB UFS. The Android and Linux kernel versions were
9.0 and 4.9, respectively. FPC employed LZO [29] as the data
compression algorithm. We configured F2FS in the lfs mode
for using out-of-place updating only. This is because, in the
current implementation, F2FS switches to in-place update
when the space utilization is extremely high or when perform-
ing fdatasync() on small files. As mentioned previously,
in-place updates risk severe internal fragmentation and thus
we turned it off for the best effect of FPC. The system-level
energy consumption was measured using the Monsoon power
monitor [30].

FPC was evaluated using a set of popular mobile applica-
tions, including Facebook (FB), FB Messenger (MS), Google
Earth (GE), Firefox(FF), Reddit (RD), Line (LN), Twitter
(TW), Instagram (IG), Wechat (WC) and Chrome (CR). The
evaluation of foreground compression (FC) was based on
the first five applications as they produced a high volume of
SQLite-related writes. The evaluation of background compres-
sion (BC) involved all the applications. The following meth-
ods were evaluated for performance comparison: 1) Base-
line: The original F2FS without any compression. 2) Comp:
F2FS with unconditional compression of incoming data. It
employed a fixed compression window size of 4 KB and al-
lowed only file blocks of sequential file offsets to share the
same physical block. 3) FPC-N: The proposed FPC but with-
out metadata-level compression. 4) FPC: The full-fledged
version of the proposed approach (see Fig. 10). Currently,

USENIX Association 19th USENIX Conference on File and Storage Technologies 135

0

0.2

0.4

0.6

0.8

1

1.2

FB MS EA FF RD Avg.

W
ri

te
 V

o
lu

m
e

Baseline Comp FPC-N FPC

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FB MS EA FF RD Avg.

W
ri

te
 L

at
en

cy

Baseline Comp FPC-N FPC

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FB MS EA FF RD Avg.

En
er

gy
 C

o
n

su
m

p
ti

o
n Baseline Comp FPC-N FPC

(c)

Figure 11: Results of normalized (a) SQLite write volume (b) SQLite write latency and (c) system energy consumption using
different compression approaches.

there is little choice of read-write compression file system
readily available for Android devices. We implemented the
core idea of existing compression file systems in F2FS for
performance comparison. Specifically, Comp employed the
sequential compression method (Section 3.2.1), which is
adopted by Btrfs and JFFS2.

Table 2: Workload characteristics. The percentage reflects the
contribution of SQLite files to the total write traffic.

write count avg. size write contribution compression ratio
FB 3215 39.2 KB 31.6% 0.39
MS 2597 32.4 KB 21.4% 0.25
EA 19919 55.2 KB 99.5% 0.65
FF 17695 33.2 KB 57.8% 0.12
RD 2658 30.5 KB 39.2% 0.40

Because the efficacy of foreground compression (FC) is pri-
marily concerned with the compression ratio of incoming data,
we employed content-accurate trace replay for performance
evaluation of FC: First, we used each mobile application for
30 minutes and recorded their file operations on SQLite files
at the VFS layer. The traces reflected highly common user
scenarios, including viewing online news feeds (FB, FF, RD),
viewing online satellite maps (EA), and sending/receiving text
messages (MG). Each of the recorded operation consisted of
an inode number, a file name, a write time, a file block off-
set, and the data content. The characteristics of the collected
traces can be found in Table 2. Second, a user-level process
was created to replay the file writes on a set of files with their
original SQLite file names, and these writes were captured
and compressed by foreground compression inside of F2FS.

We conducted experiments on background compression
(BC) with the following steps: For each of the listed applica-
tions, we installed an application and performed five times
of cold-start launching (with the page cache cleared). The
read-critical data set of the application’s executable files were
identified by BC during the launching. After this, when the
system was idle, an ioctl request was sent to BC to explicitly
request compression of read-critical data in executable files.

5.2 Evaluation Results
This section presents the evaluation results of 1) foreground
compression, including write volume, write latency, and en-
ergy consumption and 2) background compression, involving

space requirement and application launching time.
Write Volume: Figure 11(a) shows the write-traffic vol-

umes bound for SQLite files of Baseline, Comp, FPC-N, and
FPC. All results are normalized to Baseline. Compared with
Baseline, FPC greatly reduced the SQLite write volume by
47.5%, indicating that foreground compression was highly
effective in terms of write stress reduction. In particular, dur-
ing the 30-minute execution of Facebook, FPC reduced the
SQLite write volume from 123.1 MB to 67.5 MB through fore-
ground compression. FPC also outperformed Comp thanks
to the use of a larger compression window on SQLite files
and the storage of compressed file blocks having random
file offsets in the same physical block. The improvement of
FPC upon FPC-N depends is highly subject to the applica-
tion scenario. Under the FF workload, FPC reduced the write
volume by 5.3% by appending compressed node blocks of
*.db-journal files to their associated compressed data blocks.
Overall, the reduction in SQLite write volume contributed to
a 26.1% reduction in the entire system write volume (from
3044.1 MB to 2250.9 MB). This large reduction is beneficial
to the flash storage lifespan because the wear degree in flash
memory is proportional to the volume of inbound write traffic.

Write Latency: Figure 11(b) shows that FPC reduced the
write latency of SQLite files by 7.1% on average compared
with Baseline. In other words, the benefit of a reduced write
I/O count was larger than the cost of data compression. The
only exception is Google Earth, whose SQLite files contain
a large amount of incompressible multimedia data. Fortu-
nately, many of the incompressible data were not selected for
compression thanks to the compression ratio sampling tech-
nique mentioned in 3.2.2. By contrast, Comp suffered from
the highest write latency because it compressed all incoming
data, including those incompressible ones. To observe how
high is the time overhead of data compression on the CPU,
we measured the CPU utilization of all methods using the
TOP utility during the trace replay. In our experiment, data
compression was affiliated with a specific core. We observed
that the average utilization of the involved core was between
3% and 8% under FPC, while that was between 1% and 2%
under Baseline. In other words, data compression of FPC only
marginally increased the CPU utilization.

Energy Consumption: Energy consumption is a critical

136 19th USENIX Conference on File and Storage Technologies USENIX Association

0

200

400

600

800

1000

1200

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.6 0.8 1

Total W
rite Latency (m

s)

En
er

gy
 C

on
su

m
pt

io
n

(u
J/

KB
)

Compression Ratio

32KB-Energy 128KB-Energy 32KB-Latency 128KB-Latency

Figure 12: Sensitive study of write latency and energy con-
sumption as compression ratio improves. Data are not com-
pressed for compression ratio of 1.

concern for battery-powered mobile devices [31]. File com-
pression takes extra CPU cycles but reduces flash storage
writes. Although file compression induced an extra energy
overhead, Figure 11(c) shows that FPC still achieved a lower
energy consumption for most of the applications compared
with Baseline. In particular, the energy-saving was larger
when SQLite files were highly compressible, which was a
common case among all applications. In particular, the largest
write volume reduction for Firefox also led to the largest en-
ergy saving. FPC slightly increased the energy consumption
of Google Earth. This is again because Google Earth stored in-
compressible multimedia contents in SQLite files and a small
portion of them underwent ineffective data compression.

SQLite Journaling: In our experiments, although the sys-
tem default for SQLite journaling was WAL, we found that
the five applications (in Table 2) operated 23 out of 33 SQLite
files in DELETE mode. In practice, many applications explic-
itly specify a journal mode to override the system default.

A rollback journal in DELETE mode is write-only except
during crash recovery. However, rollback journals in PER-
SIST mode were reused, and reusing a rollback journal re-
quired to read the journal header block. However, due to page
caching, the read barely reached the storage during successive
transactions. For example, RD read only two blocks from its
journal files in a 30-minute session. A similar result was also
reported in [22]. The observation confirmed that rollback
journals are (almost) write only.

Effect of Compression Ratio: An experiment was con-
ducted to understand the trade-off between the cost and ben-
efit of compression as the compression ratio changes. We
created a 100 MB file beforehand and then sequentially over-
wrote the entire file with large (128 KB) and small (32 KB)
file writes. Each file write was followed by an fsync() op-
eration. For each test, the data pattern was pre-generated to
match the desired compression ratio. As shown in Figure 12,
compared with the results without compression (compres-
sion ratio=1), the write latency and total energy consumption
became lower when the compression ratios were not lower
than 0.4 and 0.2, respectively. In other words, when data were
highly compressible, compression benefited both write la-
tency and energy consumption. The result indicates when

data compress reasonably well, the benefit of our foreground
compression design outweighs the cost of compression.

Space Requirement: Typically, executable files require
more storage space than SQLite files. Figure 13(a) shows the
executable file size of each application with the three methods.
With FPC, the total executable file size of all applications was
noticeably reduced from 846 MB to 646 MB (reduced by
23.7%). Interestingly, the size reduction of Facebook with
FPC was 24%, much better than the reduction 8% achieved by
unconditional compression Comp. The reason for the greater
reduction of FPC is that background compression BC used
a larger compression window on read-critical file blocks and
allowed the compressed data to be stored across the physical
block boundaries. By contrast, Comp always used a 4KB
compression window and did not allow the physical block
straddling, incurring a poor space efficacy.

App Launching Time: The application launching time
shown here is the value reported by the activity manager am
called by an adb command from a remote PC [32]. As shown
in Figure 13(b), compared with Baseline, FPC improved the
launching time of applications (except EA and FF, to be ex-
plained later), and the reduction was 5.2% on average. By
contrast, applications with Comp launched even slower than
with Baseline because Comp incurred a high cost of decom-
pression under small, random reads of executable files. FPC
significantly outperformed Comp by 22.3% on average in
terms of the launching time. This is because our BC method
identified read-critical data and then compacted/compressed
them into a few physical blocks, leading to a fewer number of
block read operations to launch applications. As Figure 13(c)
shows, while Comp and Baseline required comparable num-
bers of block read requests to launch an application, FPC
produced much fewer block read requests. In particular, com-
pared with Baseline, FPC reduced the total block read count
from 469 to 386, thus speeding up launching LN by 14.8%.

FPC marginally increased the launching time of EA and
FF (2 out of the 10 applications). As Figure 13(c) shows, EA
required a small number of block reads to launch. We also
discerned that the launching of EA was CPU-intensive, and
therefore the launching of EA did not much benefit from a
reduced I/O count. FF is another case, for which the launching
involved sequential reads mostly. Nevertheless, in summary,
FPC successfully reduced the I/O cost through read-critical
data compression, and the reduction concealed the time over-
head of decompression and accelerated application launching.

We use Decompression Amplification Ratio (DAR), which
has been defined in Section 2.2, to show how much non-read-
critical share the same physical block with read-critical data.
Table 3 shows the DAR values of the 10 applications. The
DAR values of 8 out of the 10 applications were large than
2, indicating that more than one half of a physical block was
occupied by compressed blocks of non-read-critical data. The
DAR values of Firefox (FF) were very low, explaining why
our FPC did not improve the launching time of FF in Fig-

USENIX Association 19th USENIX Conference on File and Storage Technologies 137

1
5
6

9
2

1
4

5
8

1
0
8

1
3
4

8
1

3
8

1
0
5

5
9

8
4
6

1
4
2

8
7 1
4 5
7

9
4

1
2
7

7
0

3
7

9
8

5
4

7
8
0

1
1
4 7
2 1
1

5
3

7
8 1
0
4

5
4

3
1

8
3

4
4 6
4
6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FB MS EA FF RD LN TW IG WC CR Total

Baseline Comp FPC

(a)

0

500

1000

1500

FB MS EA FF RD LN TW IG WC CR

Baseline Comp FPC

(b)

4
9
5

6
0
2

9
8

9
0

7
5
5

4
6
9

4
6
3

1
0
8

5
3
5

4
2
6

4
8
5

5
9
8

9
8

8
9 7
4
7

4
5
7

4
4
9

1
0
1 5
3
3

4
2
0

4
2
7

5
3
4

9
0 8
9

7
1
1

3
8
6 4
0
2

8
5

4
7
7

3
7
9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FB MS EA FF RD LN TW IG WC CR

Baseline Comp FPC

(c)

Figure 13: Results of (a) executable file sizes (unit: MB). (b) application launching time (unit: ms). (c) block read number during
application launching. The values of block read numbers are marked above each bar.

ure 13(b). Overall, most of the profiled applications had high
DAR values, and therefore we believe that small, random
reads on executable files are a common problem of mobile
applications. Provided that the launching process of an appli-
cation is not CPU-intensive, the proposed FPC approach can
help accelerate the launching process.

Table 3: DAR values of 10 mobile apps.
FB MS EA FF RD LN TW CR IG WC

DAR 3.8 3.1 2.5 1 2.1 2.6 2.7 3.2 3.7 1.4

6 Related Work
Host Level Compression: In-place update file systems with
compression support, such as JFFS2 [11], NTFS [33], and
compressed ext2 [34], could suffer from a low space effi-
cacy if the new compressed data size was larger than the
old version. Burrows et al. [19] proposed an on-line data
compression approach by leveraging the out-of-place write
behaviors of a log-structured file system to avoid the above
problem. Compression techniques were also recommended
in log-structured systems, e.g., enterprise storage system Pu-
rity [20] and the database engine Rose [35]. Btrfs [10] was a
B-tree file system with compression support. It sequentially
compressed incoming data in the fixed granularity upon file
updates and then wrote the compressed blocks to a new ex-
tent. However, the above studies paid little attention to the
compression optimization for small file writes, which could
incur a poor compression efficacy for mobile systems.

To reduce read amplification for mobile applications,
Zhang et al. [13] proposed a compression framework based
on the FUSE file system which compressed read-only files
only and required additional decompression hardware. A com-
pressed read-only file system (EROFS) was introduced to save
storage space and improve read performance [12]. It leveraged
the fixed-sized output compression to reduce read amplifica-
tion, but only sequentially compressed data without paying
attention to the unfriendly random reads of mobile applica-
tions that could degrade the decompression efficacy. FPC ex-
ploited the compression-friendly structures of log-structured
file systems. More importantly, FPC took advantage of the
unique file access behaviors of mobile devices and addressed
the impact of decompression on user-perceived latencies.

Device Level Compression: There are several solutions
for device compression. Zhang et al. [36] proposed a device-
side in-place delta compression technique to reduce write
stress on SLC-mode flash blocks. Ji et al. [23] proposed a
firmware-based compression that selectively compressed data
in eMMC devices. Several enterprise storage system vendors
including Nimble [37] and Pure Storage [38] had announced
their compression-enabled enterprise storage devices. Nev-
ertheless, unconditional device-side data compression is not
aware of much useful host information, e.g., the critical reads
associated with executable files, and hence it is difficult to
optimize decompression latency and improve user experience.
Another critical problem of device compression is that re-
cent Android versions have been equipped with block encryp-
tion [39], which renders the encrypted data uncompressible.

7 Conclusion
This paper proposed FPC, a file access pattern guided com-
pression framework, to reduce write stress and save storage
space for mobile devices. First, the compression was per-
formed at the foreground to selectively compress write-mostly,
highly compressible files that produced many small data up-
dates to reduce write stress. Second, background compression
re-grouped and compressed critical blocks in executable files
to reduce the application launching latency and improve space
utilization. The proposed FPC approach was implemented on
a real mobile device and experimental results showed both
the write traffic and the executable file size was substantially
reduced. FPC also reduced the application launching time.

Acknowledgement
We would like to thank our shepherd Youjip Won and the
anonymous reviewers for their valuable comments and guid-
ance. This work is partially supported by the Natural Science
Foundation of Jiangsu Province (BK20200462), Ministry of
Science and Technology of Taiwan (107-2628-E-009-002-
MY3 and 109-2221-E-009-075), Research Grants Council of
the Hong Kong Special Administrative Region, China (Project
No. CityU 11204718 and 11218720), NSFC 62072177, and
Shanghai S&T Project (20ZR1417200).

138 19th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Smartphone os market share.
https://www.idc.com/promo/smartphone-market-
share/, 2018.

[2] Umar Farooq and Zhijia Zhao. Runtimedroid:
Restarting-free runtime change handling for android
apps. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys’18), pages 110–122. ACM, 2018.

[3] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu.
Revisiting storage for smartphones. ACM Transactions
on Storage (TOS), 8(4), 2012.

[4] Wongun Lee, Keonwoo Lee, Hankeun Son, Wook-Hee
Kim, Beomseok Nam, and Youjip Won. WALDIO: elim-
inating the filesystem journaling in resolving the jour-
naling of journal anomaly. In Proceedings of USENIX
ATC, pages 235–247, 2015.

[5] Cheng Ji, Riwei Pan, Li-Pin Chang, Liang Shi, Zongwei
Zhu, Yu Liang, Tei-Wei Kuo, and Jason Chun Xue. In-
spection and characterization of app file usage in mobile
devices. ACM Transactions on Storage (TOS), 16(4),
2020.

[6] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum
Son, and Youjip Won. I/O stack optimization for smart-
phones. In Proceedings of ATC, 2013, pages 309–320,
2013.

[7] Younghwan Go, Nitin Agrawal, Akshat Aranya, and
Cristian Ungureanu. Reliable, consistent, and efficient
data sync for mobile apps. In Proceedings of USENIX
Conference on File and Storage Technologies (FAST 15),
pages 359–372, 2015.

[8] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin
Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and
Jihong Kim. Improving file system performance of mo-
bile storage systems using a decoupled defragmenter. In
Proceedings of Annual Technical Conference (USENIX
ATC 17), pages 759–771. USENIX Association, 2017.

[9] Sangwook Shane Hahn, Sungjin Lee, Inhyuk Yee,
Donguk Ryu, and Jihong Kim. Fasttrack: Foreground
app-aware I/O management for improving user experi-
ence of android smartphones. In Proceedings of Annual
Technical Conference (USENIX ATC 18), pages 15–28.
USENIX Association, 2018.

[10] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):9, 2013.

[11] Jffs2.
http://www.linux-mtd.infradead.org/doc/jffs2.html.

[12] Xiang Gao, Mingkai Dong, Xie Miao, Wei Du, Chao Yu,
and Haibo Chen. EROFS: A compression-friendly read-
only file system for resource-scarce device. In Proceed-
ings of Annual Technical Conference (USENIX ATC).
USENIX Association, 2019.

[13] Xuebin Zhang, Jiangpeng Li, Hao Wang, Danni Xiong,
Jerry Qu, Hyunsuk Shin, Jung Pill Kim, and Tong Zhang.
Realizing transparent os/apps compression in mobile
devices at zero latency overhead. IEEE Transactions on
Computers, 66(7):1188–1199, 2017.

[14] Kisung Lee and Youjip Won. Smart layers and dumb
result: IO characterization of an android-based smart-
phone. In Proceedings of the tenth ACM international
conference on Embedded software (EMSOFT), pages
23–32. ACM, 2012.

[15] S. Bhattacharya A. Dilger A. Tomas A. Mathur, M. Cao
and L. Vivier. The new ext4 filesystem: current status
and future plans. In Proceedings of the Linux Sympo-
sium, pages 21–33. Citeseer, 2007.

[16] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In Proceedings of the USENIX Conference on File
and Storage Technologies (FAST), 2015.

[17] Ming-Chang Yang, Yuan-Hao Chang, Chei-Wei Tsao,
and Chung-Yu Liu. Utilization-aware self-tuning design
for TLC flash storage devices. IEEE Trans. VLSI Syst.,
24(10):3132–3144, 2016.

[18] Samsung Semiconductors. 3D TLC NAND to beat MLC
as top flash storage. EETimes, 2015.

[19] Michael Burrows, Charles Jerian, Butler Lampson, and
Timothy Mann. On-line data compression in a log-
structured file system. In ASPLOS, pages 2–9. Citeseer,
1992.

[20] John Colgrove, John D Davis, John Hayes, Ethan L
Miller, Cary Sandvig, Russell Sears, Ari Tamches, Neil
Vachharajani, and Feng Wang. Purity: Building fast,
highly-available enterprise flash storage from commod-
ity components. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data,
pages 1683–1694. ACM, 2015.

[21] M. Son, J. Ahn, and S. Yoo. Nonvolatile write buffer-
based journaling bypass for storage write reduction in
mobile devices. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(9):1747–
1759, 2018.

USENIX Association 19th USENIX Conference on File and Storage Technologies 139

[22] Taeho Hwang, Myungsik Kim, Seongjin Lee, and Youjip
Won. On the I/O characteristics of the mobile web
browsers. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing (SAC’18), pages 964–
966, 2018.

[23] Cheng Ji, Li-Pin Chang, Liang Shi, Congming Gao,
Chao Wu, Yuangang Wang, and Chun Jason Xue.
Lightweight data compression for mobile flash storage.
ACM Trans. Embed. Comput. Syst., (5s):183:1–183:18,
2017.

[24] Danny Harnik, Ronen Kat, Dmitry Sotnikov, Avishay
Traeger, and Oded Margalit. To zip or not to zip: Ef-
fective resource usage for real-time compression. In
Proceedings of USENIX Conference on File and Stor-
age Technologies (FAST 13), pages 229–241, 2013.

[25] Yongsoo Joo, Junhee Ryu, Sangsoo Park, and Kang G
Shin. Fast: Quick application launch on solid-state
drives. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), pages 259–272,
2011.

[26] Dmitry Garbar. How often should you update your
mobile app?
https://www.apptentive.com/blog/2018/12/27/how-
often-should-you-update-your-mobile-app/, 2018.

[27] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind
Krishnamurthy, Emina Torlak, and Xi Wang. Specify-
ing and checking file system crash-consistency mod-
els. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 83–98, 2016.

[28] Hikey 960.
https://www.96boards.org/product/hikey960/.

[29] LZO real-time data compression library.
http://www.oberhumer.com/opensource/lzo/.

[30] Monsoon power monitor.
http://www.msoon.com/LabEquipment/PowerMonitor/,
2016.

[31] Jayashree Mohan, Dhathri Purohith, Matthew Halpern,
Vijay Chidambaram, and Vijay Janapa Reddi. Storage
on your smartphone uses more energy than you think.
In Proceedings of HotStorage. USENIX Association,
2017.

[32] Android debug bridge (adb).
https://developer.android.com/studio/command-
line/adb.html.

[33] Ntfs compressed files.
http://www.ntfs.com/ntfs-compressed.htm.

[34] e2compr.
http://e2compr.sourceforge.net/.

[35] Russell Sears, Mark Callaghan, and Eric Brewer. Rose:
Compressed, log-structured replication. Proceedings of
the VLDB Endowment, 1(1):526–537, 2008.

[36] Xuebin Zhang, Jiangpeng Li, Hao Wang, Kai Zhao, and
Tong Zhang. Reducing solid-state storage device write
stress through opportunistic in-place delta compression.
In Proceedings of USENIX Conference on File and Stor-
age Technologies (FAST 16), pages 111–124, 2016.

[37] Casl architecture in nimble storage.
http://www.nimblestorage.com/products/architecture.

[38] Flashreduce data reduction in pure storage.
http://www.purestorage.com/flash-
array/flashreduce.html.

[39] Android Encryption.
https://source.android.com/security/encryption/.

140 19th USENIX Conference on File and Storage Technologies USENIX Association

ArchTM: Architecture-Aware, High Performance Transaction

for Persistent Memory

Kai Wu

kwu42@ucmerced.edu

Jie Ren

jren6@ucmerced.edu

Ivy Peng†

peng8@llnl.gov

Dong Li

dli35@ucmerced.edu

University of California, Merced Lawrence Livermore National Laboratory†

Abstract

Failure-atomic transactions are a critical mechanism for ac-

cessing and manipulating data on persistent memory (PM)

with crash consistency. We identify that small random writes

in metadata modifications and locality-oblivious memory al-

location in traditional PM transaction systems mismatch PM

architecture. We present ArchTM, a PM transaction system

based on two design principles: avoiding small writes and

encouraging sequential writes. ArchTM is a variant of copy-

on-write (CoW) system to reduce write traffic to PM. Unlike

conventional CoW schemes, ArchTM reduces metadata modi-

fications through a scalable lookup table on DRAM. ArchTM

introduces an annotation mechanism to ensure crash consis-

tency and a locality-aware data path in memory allocation to

increases coalesable writes inside PM devices. We evaluate

ArchTM against four state-of-the-art transaction systems (one

in PMDK [30], Romulus [21], DUDETM [46], and one from

Oracle [50]). ArchTM outperforms the competitor systems

by 58x, 5x, 3x and 7x on average, using micro-benchmarks

and real-world workloads on real PM.

1 Introduction

Byte-addressable persistent memory (PM) can provide

DRAM-like performance and storage-class capacity. The

state-of-the-art Intel Optane DC PM could implement up to

nine terabytes memory capacity on a single machine with

latency in hundreds of ns [31, 32, 34, 57, 72]. Such high-

performance PM is emerging in datacenters and clouds to

boost performance-critical data-intensive applications, such

as database [9,17,22,28,41,65] and graph workloads [18,25].

Crash consistency is a primary challenge in using PM.

With PM, programs can recover their persistent data on

PM even in the event of crashes. However, such a recov-

ery requires a guarantee that persistent data is in a con-

sistent state, a requirement referred as the crash consis-

tency guarantee. Failure-atomic transactions are a popu-

lar mechanism to ensure crash consistency. Extensive stud-

ies [16, 21, 27, 30, 39, 40, 49–51, 61, 67, 69, 70, 73] have pro-

posed various transaction mechanisms that generally em-

ploy logging-based (undo or redo logging) or Copy-on-Write

(CoW)-based designs.

Existing works optimize PM transactions by reducing data

copying [11,20,51,68] or persistence overhead [20,35,38,43,

56, 62]. They emulate PM based on DRAM with increased

memory latency or reduced bandwidth, but miss PM architec-

ture details. In this study, we focus on the implications of PM

architecture on transaction performance. Our performance

analysis on state-of-the-art PM transaction systems identi-

fies that the PM micro-architecture, such as internal buffers

and data block size, has significant impacts on transaction

performance. The mismatch between the transaction imple-

mentation and PM architecture can cause 3x-58x slowdown,

compared to an architecture-aware implementation.

Performance characterization of PM architecture leads us

to rethink the design of PM transactions. Logging-based trans-

actions have a double write problem because of creating

logs and updating data in-place. The excessive writes to PM

mismatch with poor write performance on PM. CoW-based

transactions avoid this problem, but suffers from performance

overhead due to metadata updates, which causes many small

writes misaligned with PM internal block size.

Therefore, high-performance PM transactions call for new

design principles tailored to the characteristics of the emerg-

ing PM architecture, which is distinctive from conventional

block devices and more than just a slower DRAM. We intro-

duce two design principles customized to PM architecture.

• Avoid small (less than 256 bytes) writes to PM. Small

writes in PM suffer from write amplification because

data in a small write must be aligned with the inter-

nal write block size (256 bytes) in PM, which wastes

memory bandwidth and delays transactions. Our char-

acterization study reveals that in state-of-the-art PM

transaction systems (one in PMDK [30], Romulus [21],

DUDETM [46], and an Oracle transaction system [50]),

more than 78% of data objects are smaller than 64 bytes,

when the transaction systems perform write operations

USENIX Association 19th USENIX Conference on File and Storage Technologies 141

on 512-byte persistent objects. The main source of those

small data objects comes from metadata for transaction

runtime state, memory allocation and object mapping.

• Encourage coalescable writes. Sequential write performs

much faster than random write on PM (e.g., for 64-byte

writes, sequential write is 3.7x faster than random write).

Multiple sequential writes can be coalesced in an internal

buffer of Optane, enabling high performance.

We follow the above principles in ArchTM. ArchTM uses a

CoW-like design to avoid the double write problem in logging-

based transactions. To avoid small writes, ArchTM stores

metadata of memory allocator and data objects on DRAM

to reduce frequent small random writes to PM. However,

such a design suffers from a fundamental tradeoff between

performance and crash consistency. In particular, metadata

on DRAM, although leading to high transaction performance

can be lost when a crash happens, leading to a problem of

identifying crash consistency of data objects.

The above problem is caused by the fact that metadata is the

only connection between the transaction state and data objects

for crash recovery. Such a connection is not PM-oriented.

Removing it causes isolation between transaction state and

data objects. To address this challenge, ArchTM introduces a

lightweight annotation mechanism. This mechanism adds data

object metadata (object ID and size) and transaction ID into

the data object, and adds transaction ID into the transaction

metadata (i.e., the transaction state variable). The transaction

ID is persistent and sets up an alternative connection between

data objects and the transaction state. Using the transaction

ID, the data object ID and size, ArchTM can easily locate

data objects and identify their crash consistency after a crash.

To encourage coalescable writes, ArchTM makes best ef-

forts to allow consecutive memory allocation requests to get

contiguous memory allocations. This strategy is based on the

observation that in a transaction, data objects that are allocated

consecutively are likely to be updated together. For example,

in a key-value store system, memory allocation requests for

a key data object and a value data object associated with the

key often happen together. Writes to the key and value data

objects happen in sequential and continuous order. Hence,

allocating the key and value contiguously in the address space

likely results in coalescable write.

However, to implement the above strategy, we must re-

examine the traditional wisdom for memory allocation. The

existing memory allocators typically use multiple free lists

for each thread. Each free list supports allocation requests

for specific sizes. Such size-class-based memory allocation is

used to reduce memory fragmentation. However, it allocates

noncontiguous memory blocks to consecutive memory alloca-

tion requests if they are fulfilled by multiple free lists. Hence,

there is a fundamental tradeoff between allocation locality

and memory fragmentation.

To break this tradeoff and encourage coalescable writes,

ArchTM uses a single free list and a lightweight online de-

fragmentation mechanism. In particular, ArchTM supports

locality-aware data path using the single free list for alloca-

tion and uses a recycle list to collect and merge freed memory

blocks. For defragmentation, ArchTM aggregates data ob-

jects in highly fragmented memory regions to create large and

contiguous memory blocks.

In summary, the paper makes the following contributions:

• We reveal the performance characterization of realistic

PM hardware and pinpoint the performance problems in

the representative PM transactions. Such problems are

caused by the negligence of the characteristics of PM

architecture in traditional PM transaction designs.

• We identify two fundamental tradeoffs to enable high

performance PM transactions. We introduce a new PM

transaction design, ArchTM, customized to the PM ar-

chitecture and breaking the tradeoffs.

• ArchTM beats state-of-art PM transaction systems

PMDK, Romulus, DUDETM and the Oracle system by

58x, 5x, 3x and 7x on average, using micro-benchmarks

and real-world workloads on PM hardware.

2 Background

2.1 Persistent Memory Transactions

Failure-atomic transactions are a common solution to ensure

crash consistency on PM [16, 21, 27, 30, 39, 40, 49–51, 61,

67, 69, 70, 73]. Updates in a failure-atomic transaction either

all succeed or fail, leaving the data on PM in a consistent

state. We refer to data objects accessed in a transaction as

persistent objects. PM transactions are implemented in two

major paradigms – logging and copy-on-write (CoW).

Logging-based transactions can use either undo-logging

or redo-logging. Both logging approaches must write twice

to update a persistent object, i.e., update the log and then

the data (Figure 1 a and b). This in-place update to the data

could cause concurrent random writes because transactional

workloads could update arbitrary persistent objects.

CoW-based transactions create a new copy of a persistent

object before modifying it (Figure 1 c). All updates are cap-

tured in the new copy, i.e., out-place updates. After persisting

updates in the new copy, the system updates the pointer to the

persistent object to the new copy and discards the old copy.

Hence, CoW transactions write to PM only once. Even when

random persistent objects are updated, persisting their new

copies laid out sequentially still result in sequential writes.

2.2 Memory Management in PM Transac-

tions

In logging or CoW paradigms, logs are inserted and removed,

or copies of persistent objects are created and deleted in each

transaction. Frequent memory allocation and deallocation in

concurrent transactions require scalable solutions. Also, the

142 19th USENIX Conference on File and Storage Technologies USENIX Association

A B

C

A B

LogData

A B

C

B

LogData

A B

C

LogData

1. Copy data to logs

2.Update data in-place

3. Commit

A B

C

A

LogData

A B

C

A B

LogData

A B

C

LogData

1. Write updates to logs

2. Apply logs to the data

3. Commit

1. Create copies of data

B

2. Update the new copies

Data
3. Commit

A

B

ptr (B)

A

ptr (A)

C

ptr (C)

Data

B BA A C

Data

B BA A C

ptr(B)ptr(A) ptr(C)

(a) Undo-logging (b) Redo-logging (c) Copy-on-Write

ptr(B)ptr(A) ptr(C)

Figure 1: Three transaction implementations: undo-logging, redo-

logging, and copy-on-write.

persistence in PM imposes unique requirements of consis-

tency and low fragmentation on memory management.

Scalable memory allocators [14,23,26,64], including state-

of-the-art PM allocators [15, 30, 66], typically implement

thread-local free lists and global free lists. An allocation re-

quest is first tried on the requester thread’s local free list

before being forwarded to the global free list. For a dealloca-

tion request, the freed memory block is added to the requestor

thread’s local free list to avoid synchronization on the global

free list. The existing memory allocators usually predefine

a set of object size classes. For each size class, the alloca-

tor maintains a list of free memory blocks of that size. An

allocation request is fulfilled by the list in the nearest size

class. Memory fragmentation occurs when the selected size

class is larger than the requested size. Unlike volatile memory,

fragmentation on PM has a longer-lasting impact. Volatile

memory may restart the program to diminish fragmentation

while fragmentation on PM persists through restarts. Besides,

a PM allocator needs to ensure its metadata in a consistent

state to avoid data loss and memory leakage after crash.

2.3 Emerging PM Architecture

Emerging persistent memories are byte-addressable, and PM

DIMMs are attached directly to the memory bus, like conven-

tional DRAM DIMMs. Processors can access PM through

load and store instructions. The Intel Optane DC PM repre-

sents state-of-the-art PM hardware [34, 57, 58, 71]. The data

transfer between the processor and PM occurs at the cache

line granularity (64 bytes). The Optane internal transactions,

however, have a granularity of 256 bytes. Write amplification

occurs as a result of the two mismatched transaction sizes.

For instance, updating a cache line (64 bytes) could result

in a 256-byte write inside the Optane media. A combining

buffer of 16KB [34] sits inside each NVDIMM to coalesce

writes. Multiple writes from the processor could be combined

into a single transaction if they occupy a contiguous 256-byte

block.

3 Performance Characterization

We study the performance of PM transactions and Optane PM

to gain insights for our design.

3.1 Transaction Performance Study

We study four representative PM transaction systems:

PMDK [30], Romulus [21], DUDETM [46], and one from Or-

acle [50]. PMDK uses undo-logging, Romulus and DUDETM

use redo-logging, and the Oracle system (denoted as OCoW)

uses CoW. The specification of our Optane platform is in

Section 6. We focus on write operations because they are

the most expensive transaction operation, and writes to PM

are expensive. A write operation in a transaction needs to

update persistent object, log (if logging-based), and metadata.

Figure 2a shows the latency breakdown of a write operation

in PM transactions. We report the performance on small (64-

byte) and large (512-byte) persistent objects. The figure shows

that most time is spent on log updates or metadata updates.

We instrument the APIs used to persist data objects (e.g.,

pmemobj_persist() in PMDK) to study the performance of

write operations. The APIs use the starting address and size

of the data objects as input. Figure 2b reports the distribution

of the persisted data size in transactions that perform write

operations on 512-byte persistent objects. The figure reveals

that more than 78% of persisted objects are smaller than 64

bytes, i.e., a lot of small writes on PM. Furthermore, we study

write amplification, quantified as the ratio between write traf-

fic in PM measured by performance counters and the number

of bytes modified by transactions. Figure 2c reports the write

amplification in transactions that perform write operations on

64- and 512-byte persistent objects. All systems exhibit write

amplification, inflating PM write traffic by 1.8x - 27x.

Performance analysis. We find that the metadata updates

are the primary source of small writes. In general, transaction

systems have four types of metadata: metadata for transaction

runtime, metadata for memory allocation, log metadata, and

metadata for persistent objects. Metadata for transaction run-

time records transaction status, e.g., COMMIT or ABORT,

and transaction IDs. Metadata for memory allocation has in-

formation about memory consumption. Log metadata has

information on logs (e.g., the indexing of log records), and is

unique in logging-based transactions. Metadata for persistent

objects store pointers to the new or old copy of persistent

objects, and is unique in CoW-based transactions. By de-

sign, CoW-based systems have more metadata updates than

logging-based ones. For instance, OCoW has about 270%

more metadata updates than the other three logging-based sys-

tems. For each update, a CoW-based transaction must allocate

a new data copy, remap pointers to the data, and deallocate the

old data copy. This process generates frequent small writes to

metadata for memory allocation and persistent objects.

3.2 Performance Study of PM Writes

We study the write performance on Optane DC PM using a

microbenchmark that performs random and sequential writes.

Each write is followed by cache line flushes to persist to PM.

USENIX Association 19th USENIX Conference on File and Storage Technologies 143

0

0.5

1

1.5

P
M

D
K

R
o

m
u

lu
s

D
U

D
E

T
M

O
C

o
W

P
M

D
K

R
o

m
u

lu
s

D
U

D
E

T
M

O
C

o
W

Persistent object

size: 64B

Persistent object

size: 512B

Tr
a

n
sa

ct
io

n
 l

a
te

n
cy

 (
u

s)

Persistent object update
Metadata update
Log update

(a) Latency breakdown

0%

25%

50%

75%

100%

PMDK Romulus DUDETM OCoW

S
iz

e
 d

is
tr

ib
u

ti
o

n
 o

f
p

e
rs

is
te

d
 o

b
je

c
t

<= 64

> 64

(b) Size distribution

0

3

6

9

PMDK Romulus DUDETM OCoW

W
ri

te
 a

m
p

li
fi

c
a

ti
o

n

Persistent object size: 512B

0

10

20

30

PMDK Romulus DUDETM OCoW

W
ri

te
 a

m
p

li
fi

c
a

ti
o

n

Persistent object size: 64B

Persistent object update

Metadata update

Log update

(c) Write amplification

Figure 2: Performance characterization of write operations in PM transactions.

1 2 3 4 5 6 7 8 9 10 11

of Cache Blocks

0

5

10

15

B
a

n
d

w
id

th
(G

B
/s

)

PM Sequential Write

PM Random Write

(a) PM

1 2 3 4 5 6 7 8 9 10 11

of Cache Blocks

0

10

20

30

40

50

60

B
a
n
d
w

id
th

(G
B

/s
)

DRAM Sequential Write

DRAM Random Write

(b) DRAM

Figure 3: Sequential and random write bandwidth at

different write sizes on PM and DRAM.

Various write sizes, ranging from one to 11 cache lines, are

tested. Figure 3 reports the bandwidth of performing 100M

writes using 24 threads on PM and DRAM. We have the

following observations and insights for high-performance PM

transactions.

Figures 3a and 3b show that write bandwidth of PM is

significantly lower than that of DRAM. On our system, write

bandwidth to DRAM reaches 80 GB/s but only 13 GB/s to

Optane PM. Furthermore, on Optane PM, the peak write

bandwidth is 13 GB/s, 3x lower than the peak read band-

width. These results are consistent with the existing work [34].

Hence, reducing write traffic on PM is critical for high-

performance transactions. The logging-based transaction sys-

tems need to write data twice to update a persistent object,

which causes excessive write traffic.

Figure 3a shows that small random writes on PM perform

worse than sequential writes. When writing only 64 bytes

(Figure 3a), random write merely achieves 25% of the band-

width of sequential write. This performance gap is caused by

the 256-byte Optane internal granularity and write amplifica-

tion, and the gap reduces when the write size increases. The

logging-based transactions update persistent objects in-place.

This could result in random writes, because persistent objects

in a transaction can be randomly distributed on PM. Using

out-place updates, as in CoW-based transactions, can enable

sequential writes because the new copies of persistent objects

are manageable and can be laid out contiguously in PM.

Figure 3a shows that the random writes on PM have perfor-

mance spikes at write sizes that are a multiple of 256 bytes,

e.g., four and eight cache lines. In contrast, random writes

on DRAM (Figure 3b) exhibits no such pattern. Such per-

formance on PM is due to the effect of the write combining

buffer. It buffers and combines 64-bytes stores into a 256-

byte internal store. Small simultaneous writes to contiguous

address space are more likely to be combined into one inter-

nal store than small writes to arbitrary addresses. Therefore,

increasing the probability of concurrent writes to contiguous

address space can increase the opportunity to leverage the

combining buffer hardware to coalesce writes inside the PM.

4 Design Principles and Major Techniques

Driven by the performance characterization and analysis of ex-

isting PM transactions and PM, we introduce two design prin-

ciples and five techniques in ArchTM for high-performance

architecture-aware transactions.

• Avoid small writes on PM.

(1) Logless. ArchTM favors the CoW mechanism to

reduce write traffic to PM.

(2) Minimize metadata modifications on PM with guar-

anteed crash consistency. ArchTM keeps transient meta-

data on DRAM to avoid frequent metadata modifications

on PM. Also, ArchTM introduces an annotation mech-

anism to connect the persistent transaction state with

data objects. From the transaction state of data objects,

ArchTM can detect the consistency of data on PM and

recover from a crash.

(3) Scalable persistent object referencing. ArchTM uses

a scalable object lookup table on DRAM to quickly

locate the latest copies of persistent objects in concurrent

transactions.

• Encourage coalescable writes.

(4) Consecutive allocation requests get contiguous mem-

ory blocks. ArchTM supports a locality-aware data path

for small memory allocations to encourage sequential

writes in transactions.

(5) Avoid memory fragmentation. ArchTM employs a

lightweight online memory defragmentation technique

that examines memory usage by regions and reduces

fragmentation on PM.

4.1 Logless

ArchTM employs a CoW-like mechanism to reduce write

traffic to PM. Upon an update request, ArchTM creates a new

copy of the persistent object and applies updates to the new

copy. The out-of-place update in CoW reduces the number

of PM writes. When committing the new copy to PM, con-

secutive writes into contiguous memory addresses increase

the possibility of writes coalesced at the combining buffer.

However, naively adopting CoW incurs excessive metadata

144 19th USENIX Conference on File and Storage Technologies USENIX Association

updates on PM due to object remapping and allocation man-

agement (Section 3.1). We address this challenge by main-

taining metadata on DRAM.

4.2 Minimize Metadata Modification on PM

ArchTM places the memory allocation metadata on DRAM.

It does not record memory allocation and reclamation into

logs on PM as in previous PM transaction systems [19, 21,

30, 66, 69]. Also, ArchTM avoids modifying the persistent

object metadata on PM by using an object lookup table on

DRAM. This lookup table is used to locate the latest copy of

a persistent object quickly. Existing CoW-based implementa-

tions [50] must modify the persistent object metadata on PM

to update the pointer to the object to the new copy (Figure 1.c).

With these metadata in DRAM, ArchTM reduces small PM

writes and accelerates the lookup, but cannot ensure crash

consistency. ArchTM introduces an annotation mechanism to

guarantee crash consistency.

Annotation. ArchTM annotates a transaction by adding

a transaction ID into the transaction metadata (the transac-

tion state variable). The embedded transaction ID is per-

sisted immediately when the transaction state changes to start.

ArchTM also annotates a persistent object by adding the ob-

ject information, i.e., object ID, object size, and transaction

ID, into the object header on PM when the object is created.

During the recovery from a crash, ArchTM uses the object

ID and size to identify each persistent object on PM. Then,

ArchTM uses the annotated transaction ID to identify the most

recent copy of a persistent object, recycle the stale copies, and

discard uncommitted modifications.

4.3 Scalable Object Referencing

ArchTM uses an object lookup table to find the critical infor-

mation, such as the location of the latest copy of a persistent

object. The table is indexed by persistent object IDs. When

a persistent object is allocated, the allocator thread gets an

object ID and populates the corresponding entry in the lookup

table. Multiple threads can reference persistent objects from

the table concurrently and efficiently because DRAM sup-

ports higher bandwidth than PM.

The object lookup table is essential for high-performance

transactions. Compared to decentralized object referenc-

ing [40, 50], the object lookup table in ArchTM resides on a

contiguous DRAM space, which brings convenience for man-

agement (e.g., checkpointing) and migration. If the DRAM

space is insufficient to store the whole lookup table, the

spilling part of the table is placed on PM. Compared with

general concurrent index data structures, such as hash tables,

our object lookup table is easy to implement and has no syn-

chronization overhead. The competition between threads to

get an entry from the lookup table cannot happen, because

threads are assigned with disjoint sets of object IDs and hence

update disjoint sets of table entries. The object lookup table

can find the object metadata in one step because it uses the

object ID as the index of the table, which differs from other

indexes (e.g., hash table and B-trees) that require additional

calculations or queries to find object metadata.

4.4 Contiguous Memory Allocations

ArchTM customizes memory allocation and reclamation for

transactional workloads on PM to maximize the possibility of

sequential writes. Small allocations are the main optimization

focus because sequential writes benefit small objects more

than large objects (See Figure 3a). In ArchTM, there are two

data paths for persistent object allocation and reclamation: (1)

a regular data path for large allocations and reclamations, simi-

lar to existing allocators like JEMalloc [23]; and (2) a locality-

aware data path for small allocations. The latter optimizes

through a single free list and global recycling procedure.

A single free list is used in ArchTM for allocating objects

of various sizes. Existing approaches [14,15,23,26,30,64,66]

use multiple free lists, each for a different allocation size.

Multiple free lists could cause consecutive allocation requests

of different sizes to go to different free lists. Consequently,

those requests get noncontiguous memory allocations, and

writing to them leads to nonsequential writes to PM. Instead,

using a single list of freed segments in sorted order would

encourage consecutive requests to get sequential allocations.

To maximize concurrency, ArchTM assigns each thread with

a dedicated portion from the global free list (Section 5.1).

Recycle and merge memory blocks globally. Current ap-

proaches [14, 15, 23, 30, 64, 66] return freed memory blocks

to thread-local free lists directly. This procedure avoids syn-

chronization on managing a global free list but may harm

the locality of freed memory blocks. Free memory blocks in

a free list may be noncontiguous so that consecutive alloca-

tion requests get noncontiguous allocations. ArchTM runs a

helper thread to collect and merge freed blocks from threads.

These freed blocks are sorted and merged into a global recycle

list before returning them to the global free list. The global

recycling procedure does not happen in the critical path and

does not affect the efficiency of memory deallocation.

4.5 Reduce Memory Fragmentation

Using a single free list for various allocation sizes could result

in memory fragmentation. ArchTM uses a 64-byte size class

in the memory allocator. An allocation smaller than the size

class gets rounded up. We choose this size class to avoid false

sharing in cache lines.

ArchTM introduces an online defragmentation mechanism

to reduce memory fragmentation. The mechanism monitors

the memory usage of the persistent object pool in the back-

ground to identify underutilized memory regions. During the

memory allocation, this mechanism dynamically aggregates

USENIX Association 19th USENIX Conference on File and Storage Technologies 145

Persistent Memory

User DataMetadata

TxID State CommitID

DRAM

Global single free list

Global recycle list

Root

object
Tx state

variable(s)
… Obj-Copy .. Free memoryObj-Copy

Tx-private

write-set(s)

Writernew old

ObjID ObjSize TxID Data

CHKP CHKP-diff

Object lookup

table entry allocator

Global IDs list

…
Thread-private deallocation list(s)

Thread-private allocation list(s)

Size class-

based free

list(s)

…

Regular

data path

Locality-aware

data path

Small

object?

Allocation

request

Yes No

Free memoryObj-Copy

Thread-private

IDs list(s)
…

Lock

.. ..

Regular data path areaLocality-aware data path area

Object lookup table

…

Persistent object allocator

Figure 4: Major data structures in ArchTM

persistent objects distributed in the underutilized memory re-

gions to improve memory usage. The online defragmentation

mechanism is a user-space solution that can be enabled or

disabled. It requires no modifications to operating systems

as required by existing solutions [52]. Also, the user-space

solution is more flexible than offline static solutions [59] and

can react to changes in the application during execution.

5 ArchTM Implementation

We describe our implementation based on Section 4.

5.1 Data Structures

Persistent Data Structures on PM. ArchTM maintains a

persistent memory pool partitioned into metadata and user

data areas. As depicted in Figure 4, the metadata area stores a

root object, a list of transaction state variables, a checkpoint

field (CHKP), and a checkpoint-diff field (CHKP-diff).

The list of transaction state variables records the state

of each ongoing transaction. Each variable encodes trans-

action state and ID, and commit ID. We use the transaction

start timestamp as transaction ID, and the transaction com-

mit timestamp as commit ID. They are global timestamps

captured at the beginning and end of a transaction. ArchTM

uses hardware clock (rdtscp in x86 architectures [6, 36]) and

prevents the constant skew of the hardware clock among pro-

cessors by the ORDO primitive [36] to ensure correct ordering

of transactions. The transaction state indicates the progress of

a transaction, e.g., BEGIN, COMMITTED, END or ABORT.

CHKP stores a persistent checkpoint of the object lookup

table to speedup recovery (Section 5.6). CHKP-diff records

the list of memory blocks (named memory segments) pre-

allocated to each thread (Section 5.4-Allocation). CHKP-diff

is useful to track working objects before the next checkpoint.

It is implemented as an array of elements containing three

fields: ID of ongoing transactions for which the segment is

fetched, the segment start address and size.

The user data area stores persistent objects. Each object

has an object header and data. The header contains object ID

and size, and transaction ID. The user data area is divided

into a regular data path area for large object allocations and a

locality-aware data path area for small object allocations.

Transient Data Structures on DRAM ArchTM main-

tains an object lookup table and a hash set per transaction.

The object lookup table is a one-dimensional array mapping

a persistent object ID to a persistent object on PM. Each PM

object has an entry in the table. An entry has four fields, i.e., a

pointer to the latest copy (new), a pointer to the old copy (old),

a variable (named writer) storing the pointer of the transac-

tion state variable of the ongoing transaction that modifies the

latest copy, and a write lock associated with the writer to co-

ordinate parallel transactions. The hash set (named write-set)

is used to collect the IDs of all persistent objects modified

by a thread in an active transaction. Before committing a

transaction, all objects in the hash set must be persisted.

ArchTM manages metadata for two allocators on DRAM.

The first allocator allocates an entry in the object lookup table

when a persistent object is created. This allocator maintains

a list of free IDs for persistent objects (named ID list) per

core. A persistent object ID is the index of an entry in the

object lookup table. When the allocator allocates an entry, it

gets an object ID from the ID list. When a persistent object is

freed, its object ID is returned to the ID list. We reuse IDs for

persistent objects to avoid the explosion of IDs. New IDs are

created only when the ID list is empty.

The second allocator allocates persistent objects. It reuses

the metadata structures in JEMalloc [23] for the regular data

path but adds significant extensions to optimize small writes

to PM (Section 4). For the locality-aware data path, ArchTM

maintains a global free list and a global recycle list. The global

free list contains memory blocks available for allocations. To

ensure sequentially when multiple threads access the global

free list, ArchTM uses a write lock on the global free list.

To mitigate contention on the global free list, each thread

maintains a thread-private allocation list, which is a portion

from the global free list. Only when a thread exhausts its

allocation list will the thread access the global free list to get a

new portion. Therefore, synchronization on the global free list

is infrequent. The global recycle list collects memory blocks

freed by all threads. The allocator manages a deallocation list

per thread to collect deallocated memory blocks. Blocks from

these thread-local deallocation lists are gathered, sorted, and

merged into the global recycle list. Memory management is

described in detail in Section 5.4.

5.2 Background Threads

Background threads are helper threads transparent to the appli-

cation. ArchTM uses two background threads to manage the

PM pool at runtime – the garbage collection (GC) manager

and the fragmentation manager. The GC manager recycles

freed persistent objects. The fragmentation manager examines

memory usage by regions and aggregates memory blocks for

defragmentation (see Section 5.4).

146 19th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 1 Start, read, and write operations.

1: function APT_TX_BEGIN

2: volatile T xID = GLOBALTIMESTAMP()
3: T xState.ATOMIC_STORE(T xID,BEGIN)
4: Fence()
5: end function

6:
7: function APT_TX_READ(TxState, objID)

8: ob j = ob jLookupTable[ob jID]
9: if ob j.new == NULL then return ob j.old

10: end if

11: if ob j.writer→ T xID == T xState.T xID then return ob j.new

12: end if

13: if ob j.writer→ State==COMMIT T ED and ob j.writer→CommitID<=
T xState.T xID then return ob j.new

14: end if

15: return ob j.old

16: end function

17:
18: function APT_TX_WRITE(TxState, objID)

19: ob j← ob jLookupTable[ob jID]
20: if ob j.new! = NULL and ob j.writer→ T xID == T xState.T xID then

21: return ob j.new

22: end if

23: if LOCK(ob j.writer) then

24: ob j.writer = &T xState

25: ob j.new = ALLOC(ob j.old)
26: else ABORT_AND_RETRY()

27: end if

28: ob j.new = DUPLICATE(ob j.old)
29: ob j.new.header.txID = T xState.T xID

30: # append the object to write-set

31: write_set.insert(ob jID)
32: return ob j.new

33: end function

5.3 Transaction Operations

ArchTM supports five core operations to begin, read, write,

commit, and postcommit in a transaction. ArchTM provides

snapshot isolation [8, 13] similar to existing work [12, 27, 45,

48, 55, 63] and industrial production database systems [2–5, 7,

53]. We illustrate the operations in Algorithms 1 and 2.

APT_TX_BEGIN starts a transaction and assigns a unique

ID (T xID) based on the global timestamp (Alg. 1 Line 2)

to the transaction. A transaction state variable (T xState) is

created and stored in the metadata area on PM. T xState is

a combination of the T xID, state and transaction commit

ID (CommitID). At the transaction beginning, ArchTM adds

T xID and the state BEGIN into T xState by an atomic write.

APT_TX_READ returns a pointer to a copy of the persistent

object with (ob jID). If the object is not being updated by any

transactions (Alg. 1 Line 9), the pointer to the old copy is

returned. If the object is being updated by the current transac-

tion (Alg. 1 Line 11) or a transaction committed before the

current transaction starts (Alg. 1 Line 13), the pointer to the

new copy is returned. Otherwise, ArchTM returns the pointer

of the old copy. The whole process is lock-free.

APT_TX_WRITE returns a pointer to the persistent object

ob jID ready for update. If the persistent object already has a

new copy and the most recent update to the copy is performed

by the current transaction, the pointer to the new copy is

returned (Alg. 1 Lines 20-22). If the persistent object does

not have a new copy, the application thread allocates a one,

Algorithm 2 Commit and post-commit operations.

1: function APT_TX_ON_COMMIT(TxState)

2: if EMPTY(write_set) then return

3: end if # read-only tx

4: for each ob j ∈ write_set do FLUSH(ob j.new)

5: end for Fence() # persist all modified objects

6: volatile CommitID = GLOBALTIMESTAMP()
7: T xState.ATOMIC_STORE(COMMIT T ED,CommitID)
8: Fence()
9: APT_TX_POST_COMMIT(TxState)

10: end function

11:
12: function APT_TX_POST_COMMIT(TxState)

13: for each tx ∈ Ongoing_T Xs do

14: if tx.T xID < T xState.CommitID then WAIT_FOR(tx)

15: end if

16: end for

17: while ob j← write_set.pop() do

18: FREE(ob j.old) # append to the reclaim list

19: ob j.old = ob j.new

20: ob j.new = NULL

21: ob j.writer = NULL

22: UNLOCK(ob j.writer)

23: end while

24: T xState.ATOMIC_STORE(END, INF)
25: Fence()
26: end function

acquires the write lock of the writer of the object (Alg. 1 Line

23), duplicates the old copy to the new one, and then updates

the new copy. The application thread also inserts the object ID

into the write-set. If the application thread fails to obtain the

write lock of the object, APT_TX_WRITE aborts and retries

in a new transaction.

APT_TX_ON_COMMIT commits a transaction. If the trans-

action is read-only, no persistent operations are performed.

Otherwise, ArchTM persists the modified objects recorded in

the write-set to PM (Alg. 2 Lines 4-5). After that, ArchTM

gets a global timestamp as CommitID and updates the state

to COMMITTED with CommitID in the transaction state

variable by an atomic write.

APT_TX_POST_COMMIT cleans up a committed transac-

tion. First, it checks whether there is any ongoing transaction

that starts before the current transaction is fully committed

(Alg. 2 Lines 13-16). It reclaims the old copy (i.e., putting

the old copy in the thread-private deallocation list) after the

earlier transactions are fully committed. This ensures that the

old copy of the persistent object is no longer required in any

ongoing transaction. Afterwards, ArchTM sets the new copy

as the old copy and sets the new copy as NULL. Finally, it

resets and unlocks the writer of modified objects. ArchTM

also updates and persists the transaction state to END and

CommitID to INF .

5.4 Memory Management for Transactions

ArchTM uses a customized persistent object allocator. De-

pending on the size of an allocation request, ArchTM chooses

the locality-aware data path for small allocations and use the

regular data path for the others. We describe the locality-aware

data path in this Section.

USENIX Association 19th USENIX Conference on File and Storage Technologies 147

Allocation. When a thread attempts to allocate a persistent

object, ArchTM searches through the thread’s private allo-

cation list to locate the first memory block larger than the

requested size. If no block is found, ArchTM fetches freed

memory blocks from the global free list to refill the allocation

list. Each fetch takes a large and fixed-size memory segment

to avoid frequent contention on the global free list. The fetch-

ing history is stored and persisted in CHKP-diff. Each fetching

event in CHKP-diff contains the IDs of ongoing transactions,

where the segment is fetched from, the segment start address,

and the segment size. If ArchTM cannot find free memory

blocks from the global free list, ArchTM replenishes memory

blocks from the global recycle list to the global free list.

Deallocation (garbage collection). When a thread deallo-

cates a persistent object, the object is ready for GC because

no other transactions are accessing the object (Alg. 2 Lines

13-16). The deallocated object is added to the thread’s pri-

vate deallocation list. In the background, the GC manager

periodically collects freed objects from threads to the global

recycle list, during which freed blocks are zeroed. Synchro-

nization between application threads and the GC manager

is rare because an application thread only updates the head

while the GC manager only updates the tail of a deallocation

list. The global recycle list is sorted to speed up search dur-

ing allocation and fragmentation ratio computation during

defragmentation. Sorting is inexpensive because when freed

memory blocks are added to the global recycle list, they are

already mostly sorted.

Defragmentation. ArchTM implements an online defrag-

mentation mechanism to improve the memory usage of the

global recycle list. The mechanism works at the granularity

of memory regions (4KB). The defragmentation manager

monitors the fragmentation ratio (defined as the ratio of used

memory to 4KB) of each memory region in the global recy-

cle list. A memory region with a fragmentation ratio greater

than f (f is 50% in our evaluation) is deemed underutilized.

ArchTM aggregates persistent objects in underutilized regions

and migrates them to a newly allocated memory region. For

migration, the defragmentation manager internally creates

a “mock” write transaction to ensure the atomicity of data

migration and correctness. At the end of the “mock” write

transaction, the migrated objects in the original location will

be reclaimed through the deallocation process.

5.5 Recovery Management

ArchTM follows a two-step recovery process to resume the

program from a crash.

1) Detect uncommitted transactions: This is implemented

by checking the state of each transaction state variable on

PM. If a state is neither COMMITTED nor END, ArchTM

inserts the transaction ID of the uncommitted transaction into

a temporary buffer (named uncommittedT xIDs).

2) Rebuild object lookup table: ArchTM creates a new

object lookup table on DRAM (described in Section 5.1) and

loads the object information to the new table. The loading

process is similar to processing write operations, with the

difference that the object information is retrieved from PM

instead of the user request. In particular, ArchTM scans the

user data area on PM to find persistent objects and inserts their

location information (i.e., pointers to the objects on PM) into

the lookup table. ArchTM puts the location information of

each persistent object in the lookup table based on the object

ID which indicates where the location information is in the

original lookup table. To identify an object on PM, ArchTM

relies on the object header annotated in each persistent object.

The header contains the object ID and object size, which is

used to isolate persistent objects from each other on PM.

ArchTM must eliminate object copies in uncommitted

transactions. If the transaction ID of an object copy is found

in uncommittedT xIDs, the object copy is discarded, and its

memory space is reclaimed.

Since ArchTM does not invalidate the memory blocks of a

freed object copy until the memory manager recycles them to

the global recycle list, a persistent object may have multiple

copies in the PM pool. Therefore, ArchTM must identify the

latest copy and discards the others. When ArchTM reads a

persistent object from PM and finds that the object already

exists in the object lookup table, ArchTM compares the trans-

action IDs annotated in these two copies and only keeps the

latest one. The mapping information in the object lookup

table is then updated, and the old copy is reclaimed.

Crash consistency is ensured because (1) all modifications

in uncommitted transactions are discarded, (2) all modifica-

tions in a committed transaction are persisted, and (3) only the

latest committed copy of a persistent object is retained. All

uncommitted transactions are captured in the transaction state

variables stored in PM, and all object copies with a transaction

ID in these uncommitted transactions are discarded during

recovery. A transaction is only marked committed after all

modified persistent objects in this transaction (collected in

write-set, (Alg. 1 Line 31)) are persisted (Alg. 2 Lines 4-5).

ArchTM identifies the latest committed copy of an object by

transaction IDs, which by design guarantees that a transaction

ID is no earlier than the commit ID of another transaction if

they update the same object (Alg. 1 Lines 23-27).

5.6 Reduction of Recovery Time

The recovery process may take a long time if a large number

of persistent objects exist on PM because ArchTM must scan

the entire user data area to locate objects and rebuild the

object lookup table. The recovery can take as long as tens of

minutes on PM with TBs of capacity.

We reduce the recovery time by incorporating an incremen-

tal checkpoint technique into ArchTM. In particular, ArchTM

periodically copies the modifications of the object lookup ta-

ble since the last checkpoint to PM, such that ArchTM builds

148 19th USENIX Conference on File and Storage Technologies USENIX Association

a checkpoint of the object lookup table on PM. When restart-

ing from a crash, ArchTM uses the checkpoint to resume the

object lookup table, instead of building it from scratch.

ArchTM uses the following method to detect modifications

of the lookup table since the last checkpoint. After taking an

incremental checkpoint, ArchTM temporarily blocks all trans-

actions, sets all pages of the object lookup table on DRAM

as read-only by enabling write protection, and then resumes

the transactions. Any following writes to those pages will

trigger a write-protection page fault, indicating that the page

is modified. ArchTM records the faulted pages for the next in-

cremental checkpoint. After a page fault is triggered, the page

is not write-protected, and there will be no more page faults.

At the time of incremental checkpoint, only those modified

pages are copied from DRAM to PM.

Using a persistent checkpoint of the object lookup table for

recovery is not enough to reduce recovery time, because after

a crash, the updates on object metadata since the last check-

point are lost. To solve this problem, the persistent object

allocator in ArchTM records the fetching history of memory

segments in CHCP-diff (Section 5.4-Allocation), and those

PM segments contain the modifications of persistent objects

since the last checkpoint. ArchTM scans those modified seg-

ments to find missing updates as Section 5.5. Note that page

information collected from the above page fault mechanism

cannot be used to locate missing segments, because it is on

DRAM and gets lost after crash. The page information is only

used to implement incremental checkpoint. Overall, ArchTM

uses a combination of the checkpoint of the object lookup

table and the fetching history of memory segments in CHCP-

diff to quickly restore the object lookup table.

6 Evaluation

We use an Intel Purley platform that has 2nd Gen

Intel R© Xeon R© Scalable processor, 32KB L1 caches, 1MB

L2 caches, and a shared 35MB L3 cache. The memory sub-

system consists of 12 DRAM DIMMs and PM DIMMs, pro-

viding a total of 192 GB DRAM and 1.5 TB PM. We com-

pare ArchTM with four state-of-the-art transaction systems:

PMDK [30], Romulus [21], DudeTM [46], and OCoW [50].

PMDK uses libpmemobj v1.7. Libpmemobj does not support

isolation, so we use a readers-writer lock to protect a transac-

tion from concurrent accesses. Romulus uses RomulusLR for

the best performance, and DudeTM uses the default persistent

scheduler. We set the checkpoint frequency in ArchTM to 30

seconds, and the size of the pre-allocated PM segment to two

GB. The granularity of memory regions for defragmentation

(Section 5.4) is 4KB.

6.1 Micro-benchmarks

Hash tables and red-black trees are two important concurrent

data structures widely used in database workloads [24, 37, 44,

60]. We evaluate hash tables and red-black trees with three

.0M

4.0M

8.0M

12.0M

1 8 16 24 32 40 48

T
X

/s
e

c

of App threads

PMDK OCoW

Romulus DUDETM

ArchTM

(a) 80% update

.0M

6.0M

12.0M

18.0M

1 8 16 24 32 40 48

T
X

/s
e

c

of App threads

PMDK OCoW

Romulus DUDETM

ArchTM

(b) 50% update

.0M

50.0M

100.0M

150.0M

1 8 16 24 32 40 48

T
X

/s
e

c

of App threads

PMDK OCoW

Romulus DUDETM

ArchTM

(c) 5% update

Figure 5: Performance and scalability of hash table.

.0M

.5M

1.0M

1.5M

1 8 16 24 32 40 48

T
X

/s
e

c

of App threads

PMDK OCoW

Romulus DUDETM

ArchTM

(a) 80% update

.0M

.7M

1.4M

2.1M

1 8 16 24 32 40 48

T
X

/s
e

c

of App threads

PMDK OCoW

Romulus DUDETM

ArchTM

(b) 50% update

.0M

4.0M

8.0M

12.0M

1 8 16 24 32 40 48

T
X

/s
e

c

of App threads

PMDK OCoW

Romulus DUDETM

ArchTM

(c) 5% update

Figure 6: Performance and scalability of red-black trees.

update rates (5%, 50%, and 80%) similar to [21,27,40,61,74].

Each transaction operation randomly accesses a key-value

pair to read or update. Each key-value pair uses an 8-byte key

and 16-byte value. Figure 5 and 6 present the performance

and scalability results.

Hash table. The experiments use a hash table of 10K buck-

ets, each as a single linked list. The hash table is initialized

with 100K key-value pairs. ArchTM outperforms the other

systems by 10x, 12x and 22x on average at 80%, 50%, and 5%

update rates respectively (Figure 5). ArchTM demonstrates

high scalability as the concurrency in applications increases

to the maximum. In contrast, Romulus stops scaling, and

DUDETM and OCoW have performance degradation when

the application uses more than 16 threads.

In write-intensive workloads (Figures 5a and 5b), the se-

quential write technique contributes significant improvement

at low application concurrency. When the number of applica-

tion threads continues increasing, contention on the Optane

media outweighs the write amplification. Other optimizations

in ArchTM, such as the transient metadata on DRAM, start

coping with this new bottleneck, and sustain performance

scaling. In a read-intensive workload (Figure 5c), ArchTM

achieves nearly linear speedup through scalable object refer-

encing on DRAM and lock-free read operations.

Romulus scales well when the concurrency is low (i.e., 1-8

threads) for write-intensive workloads. At high concurrency,

its single-threaded write operations become a performance

bottleneck. DUDETM cannot consume volatile logs from

DRAM to PM in time, causing long delays. OCoW has fre-

quent metadata updates on PM for object remapping, allo-

cation, reclamation, thereby reducing the overall throughput.

PMDK shows the worst performance because it uses read-

write locks extensively for logging and memory allocation.

USENIX Association 19th USENIX Conference on File and Storage Technologies 149

Red-black tree. In this experiment, the red-black trees are

initialized with one million key-value pairs. ArchTM outper-

forms the other systems by 7x-13x on average. It exhibits

near-linear scalability as the number of threads increases for

the read-intensive workloads (Figure 6c).

We notice that all three workloads have performance fluc-

tuation at about 28 application threads, likely caused by the

high contention on the Optane media. This contention point

arrives later than that in the hash table, because each update

in the red-black tree needs to search longer than in the hash

table, reducing its write intensity.

PMDK, OCoW, Romulus, and DUDETM have lower scal-

ability in the red-black tree than in the hash table. In write-

intensive workloads (Figures 6a and 6b), the performance

in these systems either fails to scale or even degrade when

the concurrency increases. They suffer from the expensive

synchronization [27, 40]. The lock-free operations and scal-

able object referencing in ArchTM avoid this contention and

enables high performance at high concurrency.

6.2 Real World Workloads

We run TPC-C [42] and TATP [54]) against PMEMKV [1].

PMEMKV is a in-memory key-value store developed by Intel.

In this experiment, we use its cmap storage engine.

TPC-C. We run the new-order transaction test, where each

application thread works on its corresponding warehouse and

executes new order transactions. This workload has a 100%

update rate. On average, each transaction inserts more than

ten new objects into different tables and modifies more than

ten existing objects. ArchTM significantly outperforms others

by 10x, 9x, and 5x on average (Figure 7a). PMDK is more

than 100 times slower than others when more than 12 threads

are used. The performance of ArchTM scales up quickly to

24 application threads and then slightly declines due to write

contention on the Optane media. DUDETM only scales up to

eight threads because its performance is limited by centralized

persistent logs. Once the background thread cannot flush the

log buffer to PM in time, the application threads are delayed.

TATP. TATP is widely used for online transaction process-

ing. ArchTM outperforms DUDETM, Romulus, OCoW and

PMDK by 2x, 6x, 5x, and 13x, respectively. For evaluation, we

implement three read-only and three read-write transactions

similar to [27, 46]. The transactions in TATP are less write-

intensive than the TPC-C test. Therefore, ArchTM achieves

performance scaling up to the maximum application threads.

Since TATP has less write traffic than TPC-C, DUDETM

sustains performance at 16 threads and beyond.

We quantify the contribution from our design techniques

to performance improvement. We separate techniques into

logless, minimized metadata modification on PM (MMDPM),

and contiguous memory allocation (CMAlloction). Figure 7b

compares the performance using different techniques when

running TPC-C with 24 application threads. In this test, We

0

5

10

15

0 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(M

tp
s)

of App Threads

TATP

0

80

160

240

0 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(K

tp
s)

of App Threads

TPC-C

PMDK OCoW

Romulus DUDETM

ArchTM

(a) Throughput

0

6

12

18

PMDK Romulus DUDETM OCoW ArchTM

W
ri

te
 a

m
p

lif
ic

at
io

n

TPC-C write amplification

Persistent object update

Metadata update

Log update

0

100

200

300

Logless Logless +

MMDPM

Logless +

MMDPM +

CMAllocation

Th
ro

u
gh

p
u

t
(K

tp
s)

TPC-C Throughput w. different

optimizations of ArchTM

(b) Detailed Performance Analy-

sis on TPC-C

Figure 7: Real-world workloads with PMEMKV.

use DUDETM as the baseline, and its throughput is 37 Ktps.

Minimized metadata modification on PM contributes the most

(66%) performance improvement. The logless design and the

contiguous memory allocation technique contribute 18% and

16% performance improvement, respectively. Using the same

test configuration (Figure 7b-bottom), we quantify the write

amplification in the five systems. The write amplification

in ArchTM is only 2.03. ArchTM has 3x to 8x lower write

amplification than the other systems.

6.3 Performance Analysis

Online defragmentation. We evaluate the online defrag-

mentation technique by quantifying the system throughput

and memory fragmentation rate in TPC-C and TATP against

PMEMKV. Each test uses 24 application threads. We com-

pare the performance of ArchTM with and without online

defragmentation (denoted as w.df and w.o.df in Figure 8),

with four other PM systems.

The two ArchTM-based systems outperform other systems

by 12x and 3x on average on TPC-C and TATP, respectively.

The online defragmentation in ArchTM reduces memory frag-

mentation from 58% to 69% with only 3% overhead on sys-

tem throughput on TPC-C. TATP is less write-intensive than

TPC-C, and therefore no noticeable performance loss is ob-

served from the online defragmentation. Figure 8b reports

the memory fragmentation rate of all systems. The memory

fragmentation rate of the ArchTM with online defragmen-

tation is 4%, 9%, 3%, and 5% lower than PMDK, OCOW,

Romulus, and DUDETM respectively. ArchTM with online

defragmentation is 14% lower that without it, demonstrating

the necessity of using our online defragmentation.

Contiguous memory Allocation. We evaluate the effec-

tiveness of contiguous memory allocation (CMAllocation)

in ArchTM. For comparison, we port ArchTM to use three

state-of-the-art allocators, i.e., JEMalloc [23], PM allocator

in PMDK [30], and Makalu [15]). Figure 8c reports the sys-

tem throughput when ArchTM is equipped with the different

allocators in TPC-C and TATP against PMEMKV.

The CMAllocation-based system achieves 9% and 6%

150 19th USENIX Conference on File and Storage Technologies USENIX Association

0

4

8

12

0

80

160

240

TPC-C TATP

T
h

ro
u

g
h

p
u

t
(M

tp
s)

T
h

ro
u

g
h

p
u

t
(K

tp
s)

PMDK OCoW

Romulus DUDETM

ArchTM(w. df) ArchTM(w.o df)

b
e

tt
e

r

b
e

tt
e

r

(a) Impact of online

defragmenation.

0%

25%

50%

75%

100%

TPC-C TATP
F

ra
g

m
e

n
ta

ti
o

n
 r

a
te

PMDK OCoW

Romulus DUDETM

ArchTM(w. df) ArchTM(w.o df)

b
e

tt
e

r
(b) Memory fragmen-

tation.

0

2.5

5

7.5

10

0

60

120

180

240

TPC-C TATP

T
h

ro
u

g
h

p
u

t
(M

tp
s)

T
h

ro
u

g
h

p
u

t
(K

tp
s)

CMAllocation

PMDK-allocator

JEMalloc
Makalu

b
e

tt
e

r

b
e

tt
e

r

(c) Improvment from

CMAlloction.

Figure 8: Evaluate the effectiveness of online defragmenation and

contiguous memory allocation.

higher throughput than JEMalloc-based system on TPC-C

and TATP, respectively. It also offers 20% and 18% higher

throughout than PMDK- and Maruku-based systems. The

customized locality-aware data path enables CMAllocation

to encourage sequential writes on PM for better performance.

In the PMDK and Maruku allocators, the poor scalability and

frequent metadata updates become the bottleneck.

Checkpoint and Recovery Time. The checkpoint fre-

quency trades off system throughput with recovery time. We

vary the frequency from one second to 60 seconds in TPC-C

against PMEMKV. We compare the system throughput with

and without checkpoints, and find that checkpoints impose

11% overhead at the highest checkpoint frequency (i.e., one

second). At a moderate checkpoint frequency, e.g., 30 seconds,

the throughput loss diminishes to less than 1%.

We trigger a random crash after the program runs two

minutes and then time the recovery. As expected, the recovery

time increases linearly as the checkpoint frequency decreases.

For the 30 GB workload set of TPC-C, ArchTM recovers the

system in eight seconds at a checkpoint interval of 30 seconds

and the object lookup table consumes 5.6 GB DRAM. For

the same experiment, the other four systems recover faster

than ArchTM. The overhead in recovery in ArchTM comes

from scanning the PM data area because ArchTM needs to

identify updates since the last checkpoint before the crash

to rebuild the object lookup table. ArchTM trades a slightly

longer recovery time for better runtime performance based

on the assumption that crashes in the production environment

are infrequent [10].

Transaction abort rate. Transaction aborts occur when

a transaction tries to get the write lock of the writer of a

persistent object but fails. We measure the abort rate. With 24

threads running highly write-intensive workloads with 80%

update rate using the hash table and red-black tree, the abort

rate is 1% and 2% on average, respectively. With 24 threads

running the TPC-C and TATP, the abort rate is 2% and 2% on

average, respectively. In general, the abort rate is very low.

7 Related Work

Undo-logging based PM transactions. Intel’s PMDK [30]

(libpmemobj) and NV-Heap [19] use undo-logging to log per-

sistent objects on PM for crash recovery. Atlas [16] also uses

undo-logging. It provides compiler and runtime supports to

instrument writes to PM. JUSTDO logging [33] implements

an Atlas-like log management system designed for machines

with persistent caches. It stores the program counter and re-

sumes the execution of critical sections from the same point

where a crash happens. iDO [47] optimizes JUSTDO logging

by avoiding logging each persistent store. Specifically, iDO

divides the critical section into several idempotent code re-

gions and only logs live program states at the beginning of

each idempotent region within the critical section.

Redo-logging based PM transactions. NVthreads [29]

supports redo-logging for multi-threaded C/C++ programs. It

logs dirty pages tracked by the OS page protection between

critical sections. DUDETM [46] uses shadow DRAM to de-

couple transaction updates and redo-logging. It leverages a

background thread to copy and persist the modifications in

redo logs to hide the logging overhead. Romulus [21] and

Pisces [27] use variants of redo-logging. They both keep two

copies of the data and replicate updates from one copy to the

other to ensure crash consistency. Romulus uses a volatile log

to record memory locations modified during a transaction to

improve the performance of data copy. Pisces targets read-

most workloads and explores snapshot isolation to ensure

lock-free read operations.

CoW-based PM transactions. CDDS [68], BPFS [20],

and multi-version concurrency control based transactions

(e.g., TimeStone [40]) create a new copy and apply updates

to the new copy to avoid writing log records.

The above logging-based and CoW-based works opti-

mize PM transactions by reducing data replication or persis-

tence overhead. In contrast, ArchTM introduces architecture-

awareness to adapt the transaction system to leverage the

micro-architecture (i.e., internal buffer and data size block) on

the PM hardware. With the architecture-awareness, ArchTM

improves the efficiency of PM writes by avoiding small writes

and encouraging coalescable writes.

8 Conclusions

Enabling high-performance transactions is critical for leverag-

ing persistent memory for data-intensive applications. We

reveal performance problems in common transaction im-

plementations on real PM hardware and highlight the im-

portance of considering PM architecture characteristics for

transaction performance. In this paper, we present ArchTM,

an architecture-aware PM transaction system. On average,

ArchTM outperforms the state-of-the-art PM transaction sys-

tems (PMDK, Romulus, DudeTM, and the Oracle system) by

58x, 5x, 3x, and 7x respectively.

Acknowledgment. This work was partially supported by U.S. National

Science Foundation (CNS-1617967, CCF-1553645 and CCF1718194). This research

was supported by the Exascale Computing Project (17-SC-20-SC). LLNL-CONF-

808913. We thank our shepherd, Natacha Crook and anonymous reviewers for their

constructive comments and suggestions.

USENIX Association 19th USENIX Conference on File and Storage Technologies 151

References

[1] Key/value datastore for persistent memory. https://github.com/pmem/

pmemkv.

[2] mongoDB. https://www.mongodb.com/.

[3] MySQL. https://www.mysql.com/.

[4] Oracle. www.oracle.com.

[5] PostgreSQL. https://www.postgresql.org/.

[6] Rdtscp — read time-stamp counter and processor id. www.felixcloutier.com/

x86/rdtscp.

[7] Redis. https://redis.io/.

[8] A. Adya. Weak consistency: A generalized theory and optimistic implementa-

tions for distributed transactions. Technical report, USA, 1999.

[9] Aerospike. Building Real-Time Database at Petabyte Scale. https://www.

aerospike.com/partners/intel-optane/.

[10] M. Alshboul, J. Tuck, and Y. Solihin. Lazy Persistency: A High-Performing

and Write-Efficient Software Persistency Technique. In 2018 ACM/IEEE 45th

Annual International Symposium on Computer Architecture, June 2018.

[11] Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-behind logging. Proc.

VLDB Endow., 10(4):337–348, November 2016.

[12] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,

and Ion Stoica. Feral concurrency control: An empirical investigation of modern

application integrity. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’15, 2015.

[13] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and

Patrick O’Neil. A critique of ansi sql isolation levels. In Proceedings of the

1995 ACM SIGMOD International Conference on Management of Data, SIG-

MOD ’95, 1995.

[14] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wil-

son. Hoard: A scalable memory allocator for multithreaded applications. In

Proceedings of the Ninth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS IX, 2000.

[15] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. Makalu: Fast

recoverable allocation of non-volatile memory. SIGPLAN Not., 51(10):677–694,

October 2016.

[16] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging

Locks for Non-volatile Memory Consistency. In Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Systems Languages

& Applications, 2014.

[17] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu.

Flatstore: An efficient log-structured key-value storage engine for persistent

memory. In Proceedings of the Twenty-Fifth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS

’20, 2020.

[18] Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren. Atmem: Adaptive

data placement in graph applications on heterogeneous memories. In Proceed-

ings of the 18th ACM/IEEE International Symposium on Code Generation and

Optimization, CGO 2020, 2020.

[19] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K.

Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making Persistent Objects

Fast and Safe with Next-generation, Non-volatile Memories. In Proceedings of

the Sixteenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, 2011.

[20] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-

jamin Lee, Doug Burger, and Derrick Coetzee. Better I/O Through Byte-

addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22Nd Sym-

posium on Operating Systems Principles, 2009.

[21] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: Efficient algo-

rithms for persistent transactional memory. In Proceedings of the 30th on Sympo-

sium on Parallelism in Algorithms and Architectures, SPAA ’18, page 271–282,

New York, NY, USA, 2018. Association for Computing Machinery.

[22] Christian Craft. Persistent Memory Primer. https://blogs.oracle.com/

database/persistent-memory-primer.

[23] Jason Evans. A scalable concurrent malloc (3) implementation for freebsd. Tech-

nical report, 2006. http://jemalloc.net/.

[24] H. Garcia-Molina and K. Salem. Main memory database systems: an overview.

IEEE Transactions on Knowledge and Data Engineering, 4(6):509–516, 1992.

[25] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pin-

gali. Single machine graph analytics on massive datasets using intel optane dc

persistent memory. Proc. VLDB Endow., 13(10):1304–1318, April 2020.

[26] Wolfram Gloger. Wolfram Gloger’s malloc. http://www.malloc.de/en/.

[27] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing

Guan, and Haibo Chen. Pisces: A scalable and efficient persistent transactional

memory. In 2019 USENIX Annual Technical Conference (USENIX ATC 19),

2019.

[28] Eric Hanson. How to Use MemSQL with Intel’s Optane Persistent Mem-

ory. https://www.memsql.com/blog/how_to_use_memsql_with_intels_

optane_persistent_memory.

[29] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and

Patrick Eugster. Nvthreads: Practical persistence for multi-threaded applications.

In Proceedings of the Twelfth European Conference on Computer Systems, pages

468–482. ACM, 2017.

[30] Intel. Persistent Memory Development Kit. https://pmem.io/.

[31] Intel. ntel R© OptaneTM Persistent Memory 200 Series Delivers on Av-

erage 25% More Bandwidth with up to 4.5 TB Total Memory per

Socket. https://newsroom.intel.com/wp-content/uploads/sites/11/

2020/06/Optane-Mem-200-Series-Product-Brief.pdf.

[32] Intel. Revolutionizing Memory and Storage. https://www.

intel.com/content/www/us/en/architecture-and-technology/

intel-optane-technology.html.

[33] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent

memory updates via justdo logging. ACM SIGARCH Computer Architecture

News, 44(2):427–442, 2016.

[34] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman

Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor,

Jishen Zhao, and Steven Swanson. Basic performance measurements of the intel

optane DC persistent memory module. CoRR, abs/1903.05714, 2019.

[35] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. Efficient Persist

Barriers for Multicores. In International Symposium on Microarchitecture, 2015.

[36] Sanidhya Kashyap, Changwoo Min, Kangnyeon Kim, and Taesoo Kim. A scal-

able ordering primitive for multicore machines. In Proceedings of the Thirteenth

EuroSys Conference, EuroSys ’18, 2018.

[37] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and

Parthasarathy Ranganathan. Meet the walkers: Accelerating index traversals for

in-memory databases. In Proceedings of the 46th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, MICRO-46, 2013.

[38] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen, and

T. F. Wenisch. Delegated Persist Ordering. In 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture, 2016.

[39] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch.

High-Performance Transactions for Persistent Memories. In Proceedings of the

Twenty-First International Conference on Architectural Support for Program-

ming Languages and Operating Systems, 2016.

[40] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri,

Changwoo Min, and Sudarsun Kannan. Durable transactional memory can scale

with timestone. In Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’20, 2020.

[41] Redis Labs. Redis Enterprise on Intel R© OptaneTM DC Persistent Memory

Offers Cost-Effective Scaling to Petabytes. https://redislabs.com/press/

redis_enterprise_intel_optane_dc_persistent_memory_offers_

cost_effective_scaling_petabytes_2.

152 19th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
https://www.mongodb.com/
https://www.mysql.com/
www.oracle.com
https://www.postgresql.org/
www.felixcloutier.com/x86/rdtscp
www.felixcloutier.com/x86/rdtscp
https://redis.io/
https://www.aerospike.com/partners/intel-optane/
https://www.aerospike.com/partners/intel-optane/
https://blogs.oracle.com/database/persistent-memory-primer
https://blogs.oracle.com/database/persistent-memory-primer
http://www.malloc.de/en/
https://www.memsql.com/blog/how_to_use_memsql_with_intels_optane_persistent_memory
https://www.memsql.com/blog/how_to_use_memsql_with_intels_optane_persistent_memory
https://pmem.io/
https://newsroom.intel.com/wp-content/uploads/sites/11/2020/06/Optane-Mem-200-Series-Product-Brief.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2020/06/Optane-Mem-200-Series-Product-Brief.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://redislabs.com/press/redis_enterprise_intel_optane_dc_persistent_memory_offers_cost_effective_scaling_petabytes_2
https://redislabs.com/press/redis_enterprise_intel_optane_dc_persistent_memory_offers_cost_effective_scaling_petabytes_2
https://redislabs.com/press/redis_enterprise_intel_optane_dc_persistent_memory_offers_cost_effective_scaling_petabytes_2

[42] Scott T. Leutenegger and Daniel Dias. A Modeling Study of the TPC-C Bench-

mark. In SIGMOD Record, 1993.

[43] P. Li, D. R. Chakrabarti, C. Ding, and L. Yuan. Adaptive software caching for

efficient nvram data persistence. In 2017 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS), 2017.

[44] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. Cicada: Depend-

ably fast multi-core in-memory transactions. In Semih Salihoglu, Wenchao Zhou,

Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM

International Conference on Management of Data, SIGMOD Conference 2017,

Chicago, IL, USA, May 14-19, 2017, 2017.

[45] Heiner Litz, David Cheriton, Amin Firoozshahian, Omid Azizi, and John P.

Stevenson. Si-tm: Reducing transactional memory abort rates through snapshot

isolation. SIGPLAN Not., 49(4):383–398, February 2014.

[46] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu,

Weimin Zheng, and Jinglei Ren. Dudetm: Building durable transactions with

decoupling for persistent memory. In Proceedings of the Twenty-Second Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’17, 2017.

[47] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung. ido:

Compiler-directed failure atomicity for nonvolatile memory. In 2018 51st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018.

[48] S. Lu, A. Bernstein, and P. Lewis. Correct execution of transactions at differ-

ent isolation levels. IEEE Transactions on Knowledge and Data Engineering,

16(9):1070–1081, 2004.

[49] Y. Lu, J. Shu, L. Sun, and O. Mutlu. Loose-Ordering Consistency for Persistent

Memory. In IEEE 32nd International Conference on Computer Design, 2014.

[50] Virendra J. Marathe, Achin Mishra, Amee Trivedi, Yihe Huang, Faisal Zaghloul,

Sanidhya Kashyap, Margo Seltzer, Tim Harris, Steve Byan, Bill Bridge, and

Dave Dice. Persistent memory transactions. CoRR, abs/1804.00701, 2018.

[51] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou,

Ramnatthan Alagappan, Karin Strauss, and Steven Swanson. Atomic In-place

Updates for Non-volatile Main Memories with Kamino-Tx. In Proceedings of

the Twelfth European Conference on Computer Systems, 2017.

[52] Theodore Michailidis, Alex Delis, and Mema Roussopoulos. Mega: Overcoming

traditional problems with os huge page management. In Proceedings of the 12th

ACM International Conference on Systems and Storage, SYSTOR ’19, 2019.

[53] Microsoft. Snapshot Isolation in SQL Server. https://docs.

microsoft.com/en-us/dotnet/framework/data/adonet/sql/

snapshot-isolation-in-sql-server.

[54] Simo Neuvonen, Antoni Wolski, Markku manner, and Vilho Raatikka. Tele-

com Application Transaction Processing Benchmark . http://tatpbenchmark.

sourceforge.net/.

[55] Lois Orosa and Rodolfo Azevedo. Logsi-htm: Log based snapshot isolation in

hardware transactional memory. 07 2015.

[56] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory Persistency. In

Proceeding of the 41st Annual International Symposium on Computer Architecu-

ture, 2014.

[57] I. Peng, K. Wu, J. Ren, D. Li, and M. Gokhale. Demystifying the performance

of hpc scientific applications on nvm-based memory systems. In 2020 IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pages

916–925, 2020.

[58] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. System evaluation of the intel

optane byte-addressable NVM. In Proceedings of the International Symposium

on Memory Systems. ACM, 2019.

[59] Bobby Powers, David Tench, Emery D. Berger, and Andrew McGregor. Mesh:

Compacting memory management for c/c++ applications. In Proceedings of

the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2019, 2019.

[60] L. Qiaoyu, L. Jianwei, and X. Yubin. Performance analysis of data organization

of the real-time memory database based on red-black tree. In 2010 International

Conference on Computing, Control and Industrial Engineering, 2010.

[61] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen. Onefile:

A wait-free persistent transactional memory. In 49th Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks, DSN 2019, Portland,

OR, USA, June 24-27, 2019, 2019.

[62] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu. ThyNVM: Enabling

Software-transparent Crash Consistency in Persistent Memory Systems. In 2015

48th Annual IEEE/ACM International Symposium on Microarchitecture, 2015.

[63] Torvald Riegel, Christof Fetzer, , and Pascal Felber. Snapshot isolation for soft-

ware transactional memory. In First ACM SIGPLAN Workshop on Languages,

Compilers, and Hardware Support for Transactional Computing, TRANS-

ACT’06, 2006.

[64] Paul Menage Sanjay Ghemawat. TCMalloc: Thread-Caching Malloc. http:

//goog-perftools.sourceforge.net/doc/.

[65] SAP. Realize the Promise of In-Memory Computing. https://discover.sap.

com/sap-hana-dc-persistent-memorynew/en-us/index.html.

[66] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and Hasso Plattner.

nvm malloc: Memory allocation for nvram. In ADMS@VLDB, 2015.

[67] H. Shu, H. Chen, H. Liu, Y. Lu, Q. Hu, and J. Shu. Empirical Study of Trans-

actional Management for Persistent Memory. In 2018 IEEE 7th Non-Volatile

Memory Systems and Applications Symposium, 2018.

[68] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.

Campbell. Consistent and durable data structures for non-volatile byte-

addressable memory. In Proceedings of the 9th USENIX Conference on File

and Stroage Technologies, FAST’11, page 5, USA, 2011. USENIX Association.

[69] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight

persistent memory. In Proceedings of the Sixteenth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS, 2011.

[70] H. Wan, Y. Lu, Y. Xu, and J. Shu. Empirical Study of Redo and Undo Logging

in Persistent Memory. In 5th Non-Volatile Memory Systems and Applications

Symposium, 2016.

[71] Kai Wu, Ivy Peng, Jie Ren, and Dong Li. Ribbon: High performance cache

line flushing for persistent memory. In Proceedings of the ACM International

Conference on Parallel Architectures and Compilation Techniques, PACT ’20,

2020.

[72] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swan-

son. An empirical guide to the behavior and use of scalable persistent memory. In

18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX

Association, 2020.

[73] P. Zardoshti, T. Zhou, Y. Liu, and M. Spear. Optimizing persistent memory

transactions. In 2019 28th International Conference on Parallel Architectures

and Compilation Techniques (PACT), 2019.

[74] Pengfei Zuo, Yu Hua, and Jie Wu. Level hashing: A high-performance and

flexible-resizing persistent hashing index structure. ACM Trans. Storage, 2019.

USENIX Association 19th USENIX Conference on File and Storage Technologies 153

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server
http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/
http://goog-perftools.sourceforge.net/doc/
http://goog-perftools.sourceforge.net/doc/
https://discover.sap.com/sap-hana-dc-persistent-memorynew/en-us/index.html
https://discover.sap.com/sap-hana-dc-persistent-memorynew/en-us/index.html

SPHT: Scalable Persistent Hardware Transactions

Daniel Castro∗, Alexandro Baldassin†, João Barreto∗, Paolo Romano∗
∗INESC-ID & Instituto Superior Técnico †UNESP - Universidade Estadual Paulista

Abstract
With the emergence of byte-addressable Persistent Memory
(PM), a number of works have recently addressed the problem
of how to implement persistent transactional memory using
off-the-shelf hardware transactional memory systems.

Using Intel Optane DC PM, we show, for the first time in
the literature, experimental results highlighting several scala-
bility bottlenecks of state of the art approaches, which so far
have only been evaluated via PM emulation.

We tackle these limitations by proposing SPHT (Scalable
Persistent Hardware Transactions), an innovative Persistent
Transactional Memory that exploits a set of novel mechanisms
aimed at enhancing scalability both during transaction pro-
cessing and recovery. We show that SPHT enhances through-
put by up to 2.6× on STAMP and achieves speedups of up to
2.8× in the log replay phase vs. state of the art solutions.

1 Introduction

The emerging byte-addressable Persistent Memory (PM) is
poised to be the next revolution in computing architecture.
In contrast to DRAM, PM has lower energy consumption,
higher density and retains its contents even when powered
off. Nearly one decade after the first research papers started
investigating PM, typically resorting to inaccurate software-
based emulations/simulations, the first DIMMs of PM are
finally commercially available [23]. This constitutes a notable
opportunity to validate, with real PM hardware, the efficiency
of the PM-related methods that have been proposed so far.

Along this research avenue, this paper focuses on one prob-
lem that has received significant attention in the recent lit-
erature: how to implement Persistent Transactional Memory
(PTM) in commodity systems equipped with PM and Hard-
ware Transactional Memory (HTM).

HTM implements in hardware [19, 21, 32] the abstraction
of Transactional Memory (TM), an alternative to lock-based
synchronization that can significantly simplify the develop-
ment of concurrent applications [34]. Due to its hardware

nature, HTM avoids the overhead imposed by software-based
TM implementations. However, the reliance of commodity
HTM implementations on CPU caches raises a crucial prob-
lem when applications access data stored in PM from within
a HTM transaction. Since CPU caches are volatile in today’s
systems, HTM implementations do not guarantee that the ef-
fects of a hardware transaction are atomically transposed to
PM when the transaction commits — although such effects
are immediately visible to subsequent transactions.

To tackle this issue, recent proposals [4, 14, 15, 28] rely
on a set of software-based extensions that, conceptually, are
based on Write Ahead Logging (WAL) schemes [31]: first
they log modifications and only then they modify the actual
data. However, implementing a WAL scheme on commod-
ity HTM raises several challenges. The fact that commercial
HTMs deterministically abort transactions that try to persist
the cached logs in PM is an impediment to reuse classical
DBMS solutions [31]. Instead, logs need to be flushed out-
side of the transaction boundaries. This essentially decouples
transaction isolation – as provided by the HTM’s concurrency
control – from transaction durability – as ensured by WAL.

This decoupling introduces a second challenge: PTM im-
plementations need to ensure that the order by which the
effects of a transactions become visible is consistent with the
order by which it is persisted.

Existing solutions for commodity HTM cope with this
challenge by introducing a sequential phase in the critical exe-
cution path of the commit logic. To circumvent this limitation,
several solutions allow transactions that commit in HTM to
externalize their results before their durability is ensured.

Unfortunately, this approach relaxes correctness, since it
no longer guarantees immediate durability [26]. This is a fun-
damental limitation for applications that, after committing a
transaction, can trigger externally visible actions. An exter-
nal entity might observe actions that causally depend on a
transaction whose writes to PM may not be recovered after a
crash (under such relaxed PTMs). To cope with this, applica-
tions are extended with intricate compensation logic, which,
we argue, is at odds with the original simplicity of transac-

USENIX Association 19th USENIX Conference on File and Storage Technologies 155

T3 returns

flush

commit
marker

Thr0 Thr1 Thr2 Thr3
T0 starts T1 starts T2 starts

T2 returns

T3 starts

T1 returns

flush
commit
marker

TS=115

Tx. exec.

TS=110

flush
commit
marker

Tx exec.

wait
prev. tx

flush
logs

T0 returns

flush
commit
marker

wait pr tx

TS=100
Tx. exec.

TS=105

Tx. exec.

flush
logs

flush
logs flush

logs

wait
prev. tx

wait
prev. tx

(a) NV-HTM

flush
logs

wait global
marker

wait
global
marker

Thr0 Thr1 Thr2 Thr3
T0 starts

T0 returns

T1 starts

T1 returns

T2 starts

T2 returns

T3 starts

T3 returns

TS=115TS=110TS=105
flush
logs

wait pr tx
CAS

Tx. exec. Tx. exec. Tx. exec.

flush
global
marker

CAS

wait pr tx

TS=100
Tx. exec.

flush
logs

wait
global
marker

wait pr txwait pr tx

flush
logs

(b) SPHT

Figure 1: (a) The main scalability limitation of NV-HTM [4]:
the commit marker is updated in a decentralized but sequential
way. (b) How SPHT avoids this limitation (see §3.1).

tional memory. We aim to avoid the pitfalls of relaxed PTM,
by providing a PTM for commodity HTM/PM that ensures
immediate durability while achieving high scalability.

As a first contribution, we experimentally evaluate the
cost of ensuring immediate durability with today’s state of
the art PTMs in a real system equipped with HTM (Intel
TSX) and PM (Intel Optane DC PM). We implement 6 PTM
systems (disabling their relaxed durability optimizations) and
experimentally evaluated them in STAMP [6] and TPC-C [37].
To the best of our knowledge, this represents the first study to
evaluate PTMs on a real PM/HTM-equipped system.

As a second contribution, we address the question of
whether immediate durability can scale on commodity HTM.
We devise novel scalable techniques to address the limitations
of existing PTMs, which we incorporated in SPHT (Scalable
Persistent Hardware Transactions). In a nutshell, SPHT in-
troduces a new commit logic that considerably mitigates the
scalability bottlenecks of previous alternatives, providing up
to 2.6×/2.2× speedups at 64 threads in, resp., STAMP/TPC-
C. Moreover, SPHT introduces a novel approach to log re-
play that employs cross-transaction log linking and a NUMA-
aware parallel background replayer. In large persistent heaps,
the proposed approach achieves gains of 2.8×.

The remainder of the paper is organized as follows. §2
provides background on PTM, highlighting the scalability
issues of previous solutions. §3 presents SPHT, which we
evaluate in §4 against other 5 state of the art PTMs. Finally,
§5 concludes the paper.

2 Background on PTM

Various works have investigated how to implement PTM sys-
tems. Existing solutions differ by the durability semantics
they offer, the nature (hardware and/or software) of the mech-
anisms they adopt and in some key design dimensions.

Durability semantics. Some PTMs consider “classic” strong
guarantees, i.e., if a transaction T returns successfully from its
commit call, then T shall be recovered upon a crash and any
transaction whose effects T observed shall also be recovered.

We use the term “immediate durability” [26] to refer to the
above guarantees, although other papers call it “immediate
persistence” [14] or “durable linearizability” [22].

Relaxed durability semantics, which other systems [14, 15,
22, 28] have considered, only ensure that the recovered state
is equivalent to one produced by the sequential execution of a
subset of the committed transactions. As such, these systems
can fail to recover transactions that successfully returned from
the commit call, e.g., because a crash occurs briefly after that.
Intuitively, implementations that rely on relaxed durability
semantics have higher throughput for two main reasons: (i)
they require a less strict synchronization among concurrent
transactions in their commit phase; and, (ii) they allow for
removing the costs incurred to ensure durability out of the
critical path of execution of the transaction commit logic.

However, when applications do require stricter semantics,
programmers are faced with additional complexity: having
to develop compensation logic or to manually specify for
which sub-transactions immediate durability should be guar-
anteed [15]. The focus of this work is on immediate durability
(despite some tested systems supporting relaxed durability).
Next we discuss how systems ensure such semantics.

Software vs hardware implementations. The first PTM pro-
posals relied on software mechanisms [8, 38]. These ini-
tial works paved the way for the following generations of
software-based PTM implementations [9, 10, 20, 25–27, 29,
30, 41]. Essentially, these proposals extend different software
transactional memory (STM) algorithms with logging and
recovery mechanisms to ensure durability.

With the introduction of HTM support in mainstream
CPUs [17, 33], a second wave of proposals has focused on
how to enable the execution of hardware transactions (i.e.,
transactions executed using HTM) on PM. Due to its hard-
ware nature, HTM avoids the notorious instrumentation costs
of STM, which can impose significant overhead especially
in applications with short-lived transactions [13]. In exist-
ing HTM systems, though, committed transactions are not
guaranteed to be atomically persisted, as some of their writes
may be lingering in the cache and not have been applied to
PM. Further, commodity HTMs do not allow persisting the
cached logs to PM within the hardware transaction context.
This prevents the use of classical WAL schemes (conceptually
at the basis of existing software-based PTMs), which assume
that logs are always persisted before application data is.

Some works tackled these issues by proposing ad hoc hard-
ware extensions [1,3,16,24,40]. As such, these solutions can-
not be used with existing off-the-shelf systems. More recent
works have overcome this shortcoming by proposing software-
based approaches that operate on top of unmodified com-
modity HTM. The most notable examples are DudeTM [28],

156 19th USENIX Conference on File and Storage Technologies USENIX Association

cc-HTM [15], NV-HTM [4] and Crafty [14]. All these so-
lutions implement some form of WAL on top of HTM. For
improved throughput, the log is typically implemented as a
set of per-thread logs in PM1.

Enforcing the WAL rule. Existing PTMs for commodity
HTM rely on two main alternative strategies to enforce the
WAL rule, i.e., ensure that the log of a transaction is persisted
before any of its changes is applied to persistent data.

A first approach, adopted by DudeTM and NV-HTM, is to
have hardware transactions access a volatile “shadow” copy
of the persistent snapshot.

A second option is non-destructive undo logging, as pro-
posed in Crafty [14]. In this approach, transactions execute
directly in PM, with their writes tracked in a persistent undo
log and a volatile redo log. To ensure the WAL rule, every
write issued in an HTM transaction is undone before com-
mit, which guarantees that the transaction does not alter the
PTM’s state. Next the undo log is persisted and only then the
transaction’s writes can be applied to PM.

In both strategies, after committing in HTM, the generated
log(s) are flushed to PM in two steps. First, a commit marker
is appended to the log. This marker defines the transaction
as durable and includes a timestamp that is used to order
durable transactions. Next, each logged write is replayed, in
timestamp order, on the target memory location in PM.

The choice between shadow copy or non-destructive undo
logging strongly impacts the available solution space. As we
show next, the state of the art systems that implement the
above approaches suffer from severe scalability limitations.

Ordering transactions in the logs. One key issue is how to
establish the replay order of update transactions in the logs.
Existing proposals opt for logical or physical timestamps.

In the first alternative a global logical clock is incremented
before each transaction commit and is later appended to the
redo log. This type of clocks are likely to become a contention
point at high thread counts (§4), hindering scalability by gen-
erating frequent spurious aborts. DudeTM employs logical
timestamps and, thus, suffers from the above limitation. An
additional scalability issue of DudeTM is that its volatile per-
thread redo-log has to be processed, copied and flushed by
auxiliary thread(s) to a centralized redo-log in PM, incurring
relevant synchronization costs.

In contrast, physical timestamps can be acquired at low la-
tency and with no synchronization via, e.g., the x86 RDTSCP
instruction. cc-HTM, NV-HTM and Crafty exploit this mech-
anism. To ensure that the state recovered after a crash is con-
sistent, though, these systems require ensuring an additional
property: before a transaction T with timestamp T S can ap-
pend its commit marker to the log, any other committed trans-
action T ′ with timestamp T S′ < T S must be already marked
as committed in the log. In fact, if this property were violated,

1With the exception of DudeTM, which maintains per-thread logs in
volatile memory, whose entries are later flushed to log(s) in PM.

upon recovery, T ′ may not be replayed, whereas T will - this
would yield an inconsistent state in case T had observed some
write of T ′ (since T logically depends on T ′).

Fig 1a illustrates the scheme employed by NV-HTM. An
inherently sequential phase in the commit logic ultimately
bounds the maximum system throughput to the rate at which
commit markers can be persisted in the log. Considering that
flushes incur a higher latency in PM than in DRAM [23], this
scheme can severely hinder scalability.

Besides the above issue, Crafty adopts a non-destructive
undo logging scheme, which incurs additional problems. Af-
ter flushing the undo log of an HTM transaction T (recall that
this is done outside the scope of T , after its commit), Crafty
starts a new HTM transaction that atomically: (1) checks if a
global clock has changed since T ’s first execution; and (2) in
the negative case, replays T ’s redo log in PM and updates the
global clock. If the global clock is found to have increased
(i.e., any concurrent transaction did commit), the whole trans-
action logic of T is re-executed: if T produces the same writes
as in its first execution, T is marked as durable; else, T ’s undo
log is discarded and the whole process is restarted.

This approach has two main limitations: (1) the update
of the global clock is likely to generate contention at high
thread counts, causing frequent transaction re-executions; (2)
executing twice a transaction not only introduces overhead,
but also increases the likelihood of conflicts by extending the
period of time during which transactions execute concurrently.

Log replay. Another key design choice is how to replay the
writes in the redo log on PM, while respecting the timestamp
order. With the exception of Crafty, log replay occurs only
after the transaction(s) being replayed is already durable (as
ensured by the persistent redo log). Therefore, the application
threads do not need to wait for this phase in order to continue,
which can be performed in background. However, there are
two relevant exceptions where the progress of the application
is affected by the log replay. The first one is upon recovery,
where a stable snapshot is rebuilt from the persistent logs.
The second one is during transaction processing: once the
available log space is exhausted, the application threads have
to wait for the log replay to reclaim log space. The efficiency
of the log replay process is, thus, of paramount importance.

All the analysed solutions (but Crafty) adopt a non-scalable
log replay mechanism: they sequentially replay the logs via
a single background thread. Moreover, the efficiency of the
replay phase in existing systems decreases as the number of
threads processing transactions grows. The larger the thread
count, in fact, the larger the number of per-thread logs that
need to be examined in the replay phase to determine which
transaction (from some per-thread log) should be replayed
next, according to the timestamp order.

Summary. Table 1 summarizes the main scalability limita-
tions of state of the art solutions. As we show in the remain-
der of the paper, SPHT avoids all of them. Regarding the

USENIX Association 19th USENIX Conference on File and Storage Technologies 157

DudeTM cc-HTM NV-HTM Crafty SPHT
Global clock

updated by txs Y N N Y N

Extended tx
vulnerability window N N N Y N

Sequential mechanism
to ensure durability N Y Y Y N

Sequential
Log Replay Y Y Y N N

Table 1: Summary of the factors limiting the scalability of pro-
posed PTM implementations for commodity HTM (assuming
their operation with immediate durability semantic).

scalability challenges associated with orderly redo logging,
SPHT addresses them by introducing a novel, highly scalable
commit protocol (§3.1) that amortizes the cost of ensuring
immediate durability across multiple concurrent transactions.
SPHT’s design avoids spurious aborts due to the access to
shared metadata from within hardware transactions [28] or to
the need to execute a transaction twice [14]. Concerning log
replay, SPHT overcomes the scalability limitations of existing
solutions by introducing a mechanism for NUMA-aware par-
allel log replaying (§3.3) as well as a “log linking” technique
(§3.2) that spares replayers from the cost of scanning every
thread’s log to determine the transaction replay order.

3 SPHT

SPHT assumes a system in which PM is exposed to applica-
tions by means of persistent heaps. A persistent heap is cre-
ated by using the operating system (OS) support to memory-
map the persistent data, stored in a PM-aware file system, into
the application address space [36]. SPHT exposes a classic
transaction demarcation API and transparently exploits the
underlying HTM support along with a novel software-based
scheme to ensure immediate durability.

Fig 2 illustrate SPHT’s architecture, which includes two
main processes: the Transaction Executor (TE), which runs
the TM-based parallel application, and the Log Replayer
(LR). Transactions are executed by multiple worker threads
spawned by the TE process. The TE process also mmaps a
persistent heap into its address space using the OS Copy-on-
Write (CoW) option. This option creates a shadow copy of
the persistent heap shared by all worker threads, which serves
as a working snapshot (WS) that transactions access directly.
Updates to the WS are not immediately propagated to the
persistent heap. Thus, the updates generated by committed
HTM transactions are still volatile.

Like most systems analysed in §2, each worker thread has
a private durable redo log that it uses to track the updates
performed by each transaction. Once a transaction commits,
its updates may still reside in the cache. Thus, the redo log
needs to be explicitly forced to persistent memory after the
HTM commit. At that point, a timestamped commit marker
declares the transaction as durable. We discuss how SPHT
implements this mechanism in a highly scalable way in §3.1.

Figure 2: High level view of SPHT architecture.

Since transactions work on a shadow volatile working snap-
shot, the persistent heap is kept up to date by eventually re-
playing the redo logs. To handle this, the LR process mmaps
the persistent heap into its address space, but in a shared (in-
stead of private) state. As such, the LR can directly write to
the persistent heap. As mentioned in §2, the LR process takes
advantage of two novel ideas to ensure high scalability of log
replay. First, it relies on a novel log linking mechanism that
spares the replayer threads from the cost of having to deter-
mine which transaction should be replayed next. We present
this mechanism in §3.2. Second, the log replay is parallelized
in a NUMA-aware fashion, as detailed in §3.3.

3.1 Transaction processing and durability
The key idea that SPHT exploits to overcome the scalabil-
ity limitations of state of the art solutions is to mitigate the
cost of ensuring immediate durability by amortizing it across
multiple transaction commits. SPHT’s design is based on the
observation that, at high thread count, a large number of trans-
actions is likely to be concurrently trying to commit. SPHT
exploits this observation by ensuring the immediate durabil-
ity of all of them via a single update of a persistent global
marker, noted pmarker, which stores the timestamp of the
most recent durable transaction. This approach is similar in
spirit to the group commit mechanism used in DBMSs [12],
which in SPHT we customize to make use of HTM and PM.

Fig 1b illustrates the idea at the basis of the proposed mech-
anism, by considering the same execution used to illustrate
the scalability limitations of NV-HTM (in Fig 1a). Similarly
to NV-HTM, SPHT relies on physicals clocks to establish
the order by which transactions are replayed. After an HTM
commit, SPHT allows the threads to flush their logs out of
order (i.e., without any inter-thread synchronization). As dis-
cussed in §2, there is a key issue with prior proposals based
on physical timestamps (e.g., NV-HTM). The issue is that the
log of a transaction T , after being flushed to PM, cannot be
marked as durable just yet. In fact, there may exist some other
transaction T ′ with a smaller timestamp and still not marked
as durable, whose effects T may have observed.

SPHT copes with this issue as follows: each thread exter-
nalizes a timestamp vts in volatile memory that contains the

158 19th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 1 SPHT- Base algorithm
Shared Volatile Variables

1: vts[N], vmarked[N], visU pd[N]

Persistent Variables
2: pwriteLog[N], pmarker

Thread Local Volatile Variables
3: vts′, vskipCAS
4: function BEGINTX
5: visU pd[myTid]← FALSE
6: vskipCAS← FALSE
7: UNSETPERSBIT(vts[myTid]) . Logs are not persistent
8: vts[myTid]← RDTSCP . lower bound of final ts
9: HTM_BEGIN . begin hw tx

10: function WRITE(addr, val)
11: logWrite(addr, val) . log to PM, no flush
12: ∗addr← val . execute write
13: function COMMITTX
14: vts′← RDTSCP . store physical clock to local var.
15: HTM_COMMIT . commit hw transaction
16: vts[myTid]← ts′ . Externalize the final timestamp
17: if isReadOnly then . Read-only txs...
18: SETPERSBIT(vts[myTid])unblock the others
19: returnand return immediately
20: visU pd[myTid]← TRUE . Mark as update tx
21: logCommit(pwriteLog[myTid], ts′) . Flush tx log.
22: SETPERSBIT(vts[myTid]) . Signal logs are durable
23: WAITPRECEDINGTXS
24: UPDATEMARKER

25: function WAITPRECEDINGTXS
26: for t ∈ [0..N−1] do
27: . Wait until prec. txs have flushed their logs
28: while vts[t]< vts[myTid] ∧ ¬ISPERSBIT(vts[t]) wait
29: . If any update tx with large ts exists...
30: if vts[t]> vts[myTid]∧ visU pd[t] then
31: vskipCAS← TRUE . this tx can skip the CAS
32: function UPDATEMARKER
33: . Is it needed to and am I responsible for updating pmarker?
34: if pmarker < vts[myTid]∧¬vskipCAS then
35: val← pmarker
36: while val < vts[myTid] do
37: val← CAS(pmarker, val, vts[myTid])
38: if (CAS was successful) then
39: flush(pmarker)
40: vmarked[myTid]← vts[myTid] . Signals pmarker is flushed.
41: return
42: while TRUE do . Wait till flush of pmarker
43: for t ∈ [0..N−1] dois complete
44: if vmarked[t]≥ vts[myTid] then return

following information: (i) the timestamp of the last transac-
tion; and, (ii) whether the log of the last transaction is per-
sistent (isPers bit). After flushing its logs, T advertises to all
other threads its completion by setting the isPers bit in its vts.
T then enters a wait phase during which T scans the times-
tamps of the other worker threads with a two-fold purpose:
(i) ensuring that any transaction with a smaller timestamp has
finalized persisting its own logs; (ii) determining which is
the transaction with the largest timestamp, among the ones
currently in the commit phase.

The former condition guarantees that T can be safely
marked as durable, by updating (and flushing) the global
marker (pmarker). The latter condition enhances efficiency
by exploiting, opportunistically, the presence of other con-
current transactions to reduce the number of updates (and
flushes) of pmarker. Specifically, if T detects a transaction
T ′ with a larger timestamp, T avoids updating pmarker, as
T ′ will do so. When T ′ updates pmarker, the durability of T

is also implicitly ensured, since T ′ will store in pmarker its
own timestamp, which is larger than the one of T and, as such,
ensures also the durability of T .

This mechanism is not exempt from critical races. In fact,
two transactions may assume to have the largest timestamp
and attempt to update concurrently pmarker. We tackle this
issue by manipulating pmarker via a Compare-and-Swap
(CAS) instruction. Fig 1b illustrates an example execution.
Transactions T0 and T1 detect the presence of T2 and/or T3
and delegate to them the update of the global marker. T2 and
T3 compete via a CAS to update pmarker. Assuming that T3
succeeds, T3 flushes pmarker, thus ensuring the durability of
the 4 transactions. As shown in Fig 1, not only SPHT reduces
the number of synchronous updates of the commit marker
with respect to solutions like NV-HTM (reducing the pressure
on the bandwidth-constrained PM [23]), but it also allows
multiple transactions to be marked as durable in parallel.

Note that, if no concurrent transaction is detected after
flushing the logs, the proposed solution has a cost similar to
NV-HTM, as both require synchronously updating a commit
marker. In the case of SPHT, though, a single global marker is
updated, whereas in NV-HTM, each thread appends a commit
marker to its own log. Because of this, SPHT uses a more
expensive operation (i.e., a CAS) to update the global marker.
As we will show in §4, though, this cost is largely outweighed
by the scalability benefits that the SPHT’s scheme enables.
It is also worth pointing out that this design tends to mini-
mize the chance that multiple transactions contend to CAS the
global marker. In fact, pmarker is only updated by a transac-
tion that detects to have the largest timestamp. Thus, most of
the CAS operations are uncontended and, therefore, introduce
relatively low overhead in modern processors [35].

Pseudo-code. The above scheme is formalized in Alg 1. For
simplicity, memory and persist barriers are omitted in the
pseudo-code and are discussed below. First, all loads/stores
to shared variables abide by C/C++ acquire/release seman-
tics. Second, we use synchronous flushes (CLWB followed by
SFENCE) in logCommit (l.21) and flush (l.39).

DATA STRUCTURES. We mark volatile data structures with
a superscript v (v) and persistent variables with a superscript
p (p) for clarity. SPHT maintains two persistent data struc-
tures: (i) per-thread redo-logs (pwriteLog[N]); and, (ii) a
global marker (pmarker), which stores the timestamp (physi-
cal clock) of the most recently durably commmitted transac-
tion, i.e., guaranteed to be replayed in case of a crash.

Each thread t (of the N available in the system) also uses
the following global volatile data structures: (i) the timestamp
of the last (or current) transaction T executed by t (vts[N]); (ii)
the isPers flag, implemented by reserving a bit in vts[t], which
serves to notify whether t has (synchronously) flushed the logs
of T to PM; (iii) the last timestamp t wrote to and flushed in
pmarker (vmarked[N]); and, (iv) a flag that advertises whether
T is an update transaction (visU pd[N]).

USENIX Association 19th USENIX Conference on File and Storage Technologies 159

The logs are per-thread circular buffers containing an or-
dered sequence of transactions. Each logged transaction is a
sequence of (i) 〈addr,val〉 pairs (i.e., the transaction’s write
set) followed by (ii) a timestamp that serves also as an end de-
limiter. The timestamp is distinguishable from an address by
setting its first bit to 1. For simplicity, we omit the metadata
used to track the log’s start and end.

BEGIN TRANSACTION. Before a thread t starts a hardware
transaction T (via HTM_BEGIN, line 9), t stores the current
value of the physical clock (obtained via RDTSC) in its vts
variable and sets its isPers bit to 0. It also sets its visU pd
variable to false, which informs other threads that T is not
guaranteed to be an update transaction, yet.

It should be noted that, at this stage, the timestamp adver-
tised in vts represents a lower bound estimate on the final
timestamp (i.e., the one establishing the durability order) that
T will obtain right before committing (via HTM_COMMIT,
l.15). This mechanism ensures the visibility of T throughout
its execution to other concurrent threads.

WRITE INSTRUMENTATION. SPHT logs the writes (Alg 1,
l.10) in PM via the logWrite primitive. Logging a write con-
sists in appending a pair 〈addr,val〉 at the tail of the log.

COMMIT PHASE. Before committing the hardware transac-
tion via HTM_COMMIT (Alg 1, l.15), the final timestamp is
obtained by reading the physical clock and storing it in a lo-
cal variable (vts′). This timestamp is only advertised in the
shared variable vts after HTM commits. The latter, in fact,
is accessed non-transactionally by concurrent threads (in the
WAITPRECEDINGTXS function) and updating it from within
the hardware transaction would induce (spurious) aborts.

Read-only transactions, which produce no log, can return
immediately. Before, though, they set isPers to 1, which, as
we will see, unblocks concurrent threads that may be waiting.

Update transactions, instead, append their timestamp to
the log and flush it (via the logCommit primitive). Next, they
advertise that they are update transactions and that they are
durable by setting their visU pd and isPers flags, respectively.

Next, in WAITPRECEDINGTXS, T examines the timestamps
of every concurrent transaction and waits until the ones with
a smaller timestamp have finished flushing their logs (l.28).
At this point it is safe to update the global marker with the
timestamp of T . However, to enhance efficiency, in l.30, T
determines whether there is an update transaction with a larger
timestamp, say T ′. In this case, when T ′ updates the global
marker with its own timestamp, it also ensures the durability
of T . Hence, T omits the updating of the global marker, sets
the vskipCAS flag and just waits until a timestamp larger than
its own has been persisted in the global marker.

Finally, the transaction executes UPDATEMARKER. Here,
it verifies if the global marker does not yet ensure its own
durability (pmarker <v ts[myTid]) and if it cannot count on
other transactions with larger timestamp to update pmarker
(vskipCAS is false): in such a case, the transaction attempts to

CAS pmarker (l.37) to the value of its vts, until a timestamp
larger than or equal to its own is present.

If T successfully executes its CAS, T ensures that the write
it performed is persisted by flushing pmarker (l.39). T adver-
tises that pmarker is flushed by writing its vts in its vmarked
variable. After that, T returns.

If T fails the CAS, T needs to wait until it observes a value
in the vmarked array that is larger than its timestamp: this
guarantees that some thread must have CASed and flushed a
value in pmarker that also ensures T ’s durability.

SINGLE GLOBAL LOCK (SGL). HTM is a best effort syn-
chronization mechanism that, to ensure progress, normally
relies on pessimistic fall-back path (e.g., activated if the trans-
action fails repeatedly to commit in hardware) based on a
Single Global Lock (SGL). When this mode is activated, any
concurrent hardware transaction is immediately aborted. How-
ever, in SPHT, if a thread activates the SGL path, there may
still be transactions that have already completed executing in
HTM, but are still in their commit phase (e.g., flushing their
logs). To guarantee correct synchronization with these trans-
actions, the SGL path ensures the durability of its updates by
using the same logic of HTM transactions.

Correctness arguments. We prove the correctness of SPHT
by showing that it satisfies two properties (which were already
used to define NV-HTM’s correctness criteria [4]): (C1) the
timestamps obtained during transaction execution reflect the
HTM commit order2; (C2) if a transaction T returns from a
commit call to the application, the effects of T and of every
committed transaction that precedes T in the HTM serializa-
tion order, are guaranteed to be durable.

SPHT and NV-HTM share the same timestamping scheme,
which was already proved to ensure property C1 [4]. Thus, in
the following, we focus on proving that SPHT ensures C2.

If a transaction T , executing at thread t, returns successfully
from its commit call to the application then: (i) the log of
t necessarily includes T , including its final commit marker
(Alg 1 l.21); (ii) pmarker persists a value larger or equal than
the timestamp of T (vts[tT]), since either T set pmarker to
vts[tT] (l.38-40) or some other concurrent transaction T ′ s.t.
vts[t ′T ′]>

vts[tT] updated and flushed pmarker (l.42-44).
These conditions ensure that upon recovery T will be re-

played. It is only left to prove that, if T returns from its commit
call, any committed transaction T ′, s.t. vts[t ′T ′]<

vts[tT], will
also be replayed. This is guaranteed since, before returning
from its commit call, T ensures that any thread that may be
executing a transaction T ′ with a smaller timestamp has set
isPers (l.22). Hence, the log of the thread that executed T ′

necessarily includes T ′, with its final commit marker, which,
together with the condition pmarker ≥ vts[tT] > vts[t ′T ′], en-
sures that T ′ will also be replayed.

2More formally, if a transaction T with a timestamp ts conflicts with T ′

with ts′, and ts < ts′, then T is serialized by HTM before T ′.

160 19th USENIX Conference on File and Storage Technologies USENIX Association

3.2 Linking transactions in the log

The algorithm presented in the previous section (similarly to
other solutions [4, 14, 15, 28]) requires replayers to scan the
whole set of per-thread logs to determine the transaction that
should be replayed next. This can have a significant impact
on the log replay performance (up to 3.5× slowdown, §4),
especially in systems where a large number of threads can
process transactions (since each thread maintains its own log).

SPHT tackles this issue by extending the transactions’ log
with an additional entry that is used to store a pointer to the
beginning of the next transaction in the replay order. Transac-
tions update this pointer during their commit stage.

Let us denote with Ti the i-th transaction in replay order
and assume that transactions are replayed from the oldest to
the most recent one. In a nutshell, once transaction Ti has
committed in hardware and established its final (physical
clock based) timestamp, it needs to determine the identity of
transaction Ti-1, and update the link slot in the log of Ti-1 with
a pointer to (the start of) Ti’s log.

Unfortunately, extending the algorithm presented in §3.1
to allow Ti to determine the identity of Ti-1 is not trivial. The
key problem is that, when transaction Ti reaches its commit
phase, the thread that committed Ti-1, denoted tTi-1 , may have
already started a new transaction and overwritten its times-
tamp vts[tTi-1]. This makes it impossible for Ti to determine
the identity of Ti-1 by inspecting the vts array.

To address this issue, SPHT tracks also the metadata of
the previous transaction processed by each thread. This is
sufficient since we ensure that if Ti has not determined the
identity of Ti-1 yet, then tTi-1 will be able to start at most one
new transaction. To ensure this property, Ti scans the metadata
of the other threads and establishes its predecessor before
setting its isPers. Recall that this scheme allows Ti to prevent
transactions with larger timestamps from completing their
commit phase. Thus, it prevents tTi-1 from committing any
transaction that tTi-1 started after committing Ti-1.

During this scanning phase, Ti discriminates between (con-
current) transactions with smaller timestamps that have their
isPers set to 1 or 0. Transactions with isPers set to 1 already
established their final vts, so their timestamp can immediately
be analyzed to determine if any of them may be Ti’s prede-
cessor. Further, Ti does not need to wait for these transactions
before moving on with UPDATEMARKER.

Transactions with smaller timestamps that have their isPers
set to 0, though, prevent Ti from executing UPDATEMARKER.
Ti tracks these transactions in precT Xs, a set that will be con-
sulted during Ti’s wait phase. Before starting to wait, Ti sets
isPers to 1 to unblock transactions with larger timestamps.

Next, the algorithm proceeds similarly to the base version.
Namely, Ti waits for all transactions in precT Xs (i.e., that
may precede Ti) and then executes the update marker logic.
The key difference is that, in the wait phase, once Ti can
determine the final timestamp for a transaction Tj, it also

verifies whether Tj might be its preceding transaction. This is
achieved by checking whether Tj has the largest timestamp
among the transactions that precede Ti (i.e., Tj = Ti-1). Finally,
before returning from the commit call, Ti updates the link slot
of Ti-1 to point to the start of Ti’s log.

Pseudo-code. The pseudo-code formalizing the proposed
mechanism is reported in Alg 2. The lines of code that are
unchanged with respect to Alg 1 are coloured in brown. For
space constraints we have to omit the correctness proof for
Alg 2, which can be found in our technical report [5].

Algorithm 2 SPHT- Forward linking.
Additional Shared Volatile Variables:

1: vlogPos[N], v prevLogPos[N], v prevT s[N]

Additional Thread Local Volatile Variables
2: v pT s, v pLogPos, v pT hread, v precT Xs
3: function BEGINTX
4: visU pd[myTid]← FALSE ; vskipCAS← FALSE ;
5: atomic do . vectorial instr stores multiple fields
6: vlogPos[myTid]← myLinkSlot . flags link pos for the next tx
7: UNSETPERSBIT(vts[myTid])
8: vts[myTid]← RDTSCP

9: HTM_BEGIN

10: function COMMITTX
11: ts′← RDTSCP ; HTM_COMMIT
12: ∗ vlogPos[myTid]← ts′ . flags stable ts in own log
13: vts[myTid]← ts′
14: if isReadOnly then
15: SETPERSBIT(vts[myTid])
16: return
17: visU pd[myTid]← TRUE ;
18: logCommit(pwriteLog[myTid], ts′)
19: SCANOTHERS . estimate prev & unstable txs
20: SETPERSBIT(vts[myTid]) . next tx can write in link
21: WAITUNSTABLETXS . discover prev tx
22: UPDATEMARKER
23: ∗ v pLogPos← myLinkSlot . link prev tx to my log
24: atomic do . keep track of this tx
25: v prevLogPos[myTid]← vlogPos[myTid]
26: v prevT s[myTid]← vts[myTid]

27: function SCANOTHERS . estimate preceding TXs
28: v pT hread← myTid . init search with own prev. tx
29: v pT s← v prevT s[myTid] ; v pLogPos← v prevLogPos[myTid] ;
30: for t ∈ [0..N−1] do
31: atomic do . for each t take a snapshot using a...
32: tmpLogPos← vlogPos[t] vectorial load
33: tmpPrevLogPos← v prevLogPos[t]
34: tmpT s← vts[t]
35: tmpPrevT s← v prevT s[t]
36: if tmpT s < vts[myTid] then . search preceding txs
37: if ISPERSBIT(tmpT s) then . search stable txs
38: if tmpT s > v pT s then
39: v pT s← tmpT s ; v pT hread← t ;
40: v pLogPos← tmpLogPos
41: continue
42: else . prec. tx in t that is still running
43: append(v precT Xs, 〈t, tmpLogPos〉)
44: if tmpPrevT s < vts[myTid] ∧ tmpPrevT s > v pT s then
45: v pT hread← t . search preceding txs
46: v pT s← tmpPrevT s
47: v pLogPos← tmpPrevLogPos

48: function WAITPRECEDINGTXS
49: for 〈t, vlogPos[t]〉 ∈ precT Xs do
50: while vts[t]< vts[myTid] ∧ ¬ISPERSBIT(vts[t]) wait
51: if ISTS(∗vlogPos[t])∧∗vlogPos[t]< vts[myTid]∧∗vlogPos[t]> v pT s then
52: 〈v pT s, v pT hread〉 ← 〈∗ vlogPos[t], t〉
53: v pLogPos← vlogPos[t]
54: if vts[t]> vts[myTid]∧ visU pd[t] then
55: vskipCAS← TRUE

USENIX Association 19th USENIX Conference on File and Storage Technologies 161

ATOMIC ACCESS TO METADATA. In the scanning phase
(SCANOTHERS , l.27), Ti needs to obtain a consistent snapshot
of the metadata of every other thread. This was not an issue
in Alg 1, since the per-thread metadata that Ti had to observe
was just the timestamp and isPers, which are stored within
then same single memory word. Alg 2, though, requires Ti
to atomically observe a larger set of metadata, i.e., the times-
tamp (included isPers) and the position in the log of the last
two transactions processed by each thread, which amounts
to 32 bytes. To cope with this issue, we store these metadata
contiguously in (volatile) memory and read/write them using
vectorial instructions (i.e., x86 AVX), which in recent CPUs
guarantee atomic multi-word manipulations [39].

TRACKING THE PRECEDING TRANSACTION. As discussed
above, in SCANOTHERS, by setting its isPers to 0 (l.7), Ti
prevents thread tTi−1 from completing the commit of its next
transaction. As soon as Ti sets its isPers to 1, though, tTi−1

can commit a possibly unbounded number of transactions
and, by the time Ti accesses tTi−1’s metadata, in WAITPRE-
CEDINGTXS, the information regarding Ti−1’s timestamp and
log pointer may have been already overwritten. We address
this issue as follows: (i) once a thread establishes the final
timestamp for a transaction Ti, it stores T ’s timestamp also
in the link slot of Ti’s log, so that this information remains
accessible to the thread that executes Ti+1 even after isPers
of Ti+1 is set (which, as mentioned, allows tTi to commit an
arbitrary number of transactions); (ii) in SCANOTHERS, when
Ti detects a transaction Tj with a smaller timestamp and isPers
set to 0, Ti stores in precT Xs both the identifier of the thread
tTj and the position of Tj in tTj ’s log; (iii) in WAITPRECED-
INGTXS, Ti can then access the timestamp of Tj in tTj ’s log
via the pointer stored in precT Xs.

Note that, when a transaction Ti executes WAITPRECED-
INGTXS, it can include in precT Xs transactions that have
a smaller timestamp but are not Ti’s immediate predecessor.
Denote such a transaction as Tj. By the time Ti inspects the
link slot in their log via the vlogPos pointer (l.51), the link slot
may have been already updated by Tj’s immediate successor
(i.e., Tj+1). In this case, Ti must safely detect that Tj cannot be
its own predecessor. This is achieved by exploiting the fact
that whenever a transaction timestamp is stored in the link
slot (l.12), its first bit (which, recall, we use to encode isPers)
is always set to 0. So, in order to tell whether the link slot
is storing a timestamp or a pointer (ISTS() primitive, l.51),
we always set to 1 the first bit of any pointer that we store in
the log (and reset it 0 during the reply). This is safe since in
typical architectures the first bits of an address in user-space
is always guaranteed to be zero, but alternative approaches
should be used if SPHT were to be used within the kernel.

Backward linking. The proposed technique can be adapted
straightforwardly to link transactions in “backward” order,
i.e., from the most recent to the oldest one. This enables
techniques for filtering duplicate writes [4] by replaying the

logs backwards and applying only the the most recent write
to each memory position. Backward linking can be achieved
by adapting the above logic so to have Ti store into its own
log a reference to the start of Ti-1’s log.

3.3 NUMA-Aware Parallel Log Replay
The LR makes use of a snapshot in PM and the per-thread logs
to produce a fresher persistent snapshot. The last transaction
to be considered for replay, say Ti, is the one, among the
transactions in the log, to have the largest timestamp that
is also smaller than or equal to the persistent global marker
(pmarker). Any transaction more recent than the pmarker is
guaranteed to not have returned from the commit call. Thus,
it can be safely discarded. Using a single threaded replayer,
it suffices to apply the modifications by following the links
stored in the logs (see §3.2). Before pruning the log, to ensure
the durability of the replayed writes, SPHT calls the x86
WBINVD instruction, which efficiently drains the caches.

The key problem to enable parallel replay in the LR is
how to ensure that the order by which writes are replayed
by multiple concurrent replayers respects the sequential or-
der established in the logs. SPHT circumvents the usage of
additional synchronization among different replayer threads
by ensuring that their writes target disjoint memory regions.
This sharding makes the replay completely parallel and spares
threads from enforcing a specific write order.

Fig 3 illustrates the concept, by showing two replayer
threads that navigate through the (decentralized) log following
the linking information. For illustration purposes, we consider
a simplistic sharding policy, which assigns responsibility of
even/odd addresses to replayer threads 0 and 1, respectively.

In reality, SPHT uses a more sophisticated policy, which
aims at pursuing four goals: (i) minimize overhead for the re-
player; (ii) balance load among different threads; (iii) promote
cache locality; and, (iv) take advantage of NUMA systems.

Specifically, SPHT shards the transactional heap in con-
tiguous chunks of configurable size, which are strided across
a fixed number of parallel replayers. This allows for mapping
a given memory address to the corresponding replayer thread
via an efficient hash function that simply inspects the most
significant part of the address.

Arguably, using small chunks can benefit load balancing:
by interleaving in a fine-grained way the regions that each
replayer thread is responsible for, it is less likely that a single
frequently accessed memory region is assigned exclusively
to a single thread (which may generate load imbalances and
hamper the global efficiency of the parallel replay process).
We observed that chunks with a granularity close to the cache
line size generate excessive cache traffic, leading to poor
replay performance. This led us to opt for a granularity of
4KB (typical size of pages mapped in DRAM).

As mentioned, one of the design goals of the SPHT’s re-
play logic is to take advantage of the asymmetry of modern

162 19th USENIX Conference on File and Storage Technologies USENIX Association

...
Rep0 Rep1

Log0 W1 W2 W4 W8 W9

Log1 ...W3 W7 W5 W6

T0

T1 T2

T3 ...
First TX

Last TX

W1 W2

W4
W7 W6

W8

W3

W5

W9

D
ur

ab
le

 d
at

a

Figure 3: Parallel log replay. The notation Wi denotes a write
to address i. Rep0 and Rep1 are responsible for odd/even
addresses respectively.

NUMA systems, where accesses to local memory regions
experience lower latency and higher throughput than accesses
to memory regions hosted by a remote node. We exploit this
feature by scattering (i.e., pinning) in round robin the set of
replayers across the available NUMA nodes and making each
replayer responsible of applying only the writes that target an
address in their local NUMA node. To this end, we developed
a simple NUMA-aware memory allocator that organizes the
transactional heap into N different arenas, one for each of
the N available NUMA nodes. During transaction processing,
the allocation of memory regions across NUMA nodes uses
a simple round robin policy to balance memory usage (but
clearly alternative policies could be used [11, 18, 42]). This
custom memory allocator ensures that the arenas associated
with each NUMA node are placed at known address ranges.
This allows the replayer threads to detect in a precise and effi-
cient way whether any memory address in the log is mapped
to their local NUMA node.

Note that, although this approach requires all replayers to
scan the whole log, it is effective for two reasons: (i) since re-
players execute at roughly the same speed and issue repeated
read requests for the same log regions close in time, these
reads are likely to be served from the CPU caches (as we
will experimentally confirm in Section 4.2); (ii) PM’s per-
formance is asymmetric (read bandwidth is ~3× larger than
write bandwidth [23]) hence the main bottleneck of the replay
process is the apply phase, rather than log scanning.

Finally, this sharding scheme can be used in conjunction
with duplicate filtering schemes [4], e.g., which scan the logs
from the most recent to the oldest entry to avoid replaying
duplicate writes to the same memory position. In this case,
the key issue to address is how to ensure that the tracking
of duplicate writes remains correct despite the existence of
multiple concurrent replayers. In order to avoid costly syn-
chronization among replayers, SPHT avoids using shared data
structures to filter duplicates (e.g., thread-safe set implementa-
tions). Conversely, each replayer thread r maintains a volatile
bitmap that only tracks writes to memory regions that r is
responsible for (each bit of the bitmap tracking writes to a 8
bytes in PM, i.e., the granularity of each write in the log).

4 Experimental Evaluation

Our experiments seek answers to the following main ques-
tions: (i) how severe are the scalability limitations of state of
the art solutions mentioned in §2 when evaluated on a real PM
system (§4.1 and §4.2)? (ii) what are the performance benefits
of SPHT’s commit logic (§4.1)? (iii) what are the gains of the
linking technique during log replay (§4.2) and what are the
costs it introduces during transaction processing (§4.1)? (iv)
how scalable is the parallel replay technique (§4.2)?

Experimental settings. We conducted all experiments in
a dual-socket Intel Xeon Gold 5218 CPU (16 Cores / 32
Threads) equipped with 128GB of DRAM and 512GB of In-
tel Optane DC PM (4× 128GB). The PM is configured in
“App mode” [23] using 2 namespaces and interleaved access.
The presented results are the average of 10 runs.

We consider 8 different PTMs, whose implementation we
make publicly available3: SPHT-NL (no linking), SPHT-
FL (forward linking), SPHT-BL (backward linking), NV-
HTM [4], DudeTM [28], Crafty [14], cc-HTM [15] and
PSTM [38]. PSTM is a software TM that extends TinySTM
with durable transactions using Mnemosyne’s [38] algorithm.
For fairness, we implemented all systems in §2 in a com-
mon framework and all of them provide immediate durability.
Checkpointing is disabled during transaction processing for
all solutions that accumulate logs4. The HTM solutions fall
back to SGL after 10 retries.

4.1 Transaction processing
We evaluate the performance of SPHT using the STAMP [6]
benchmark suite and TPC-C [37]. STAMP was already used
to evaluate several prior related solutions [4, 14, 15], since
it encompasses transactional applications that, although not
originally proposed for PM, would transparently benefit from
PM to attain crash-tolerance and/or have access to larger
heaps. TPC-C is widely used to benchmark database systems.

4.1.1 STAMP

STAMP includes 8 benchmarks, but we do not consider Bayes,
as it is known to generate unstable performance results [7]. We
consider the standard low contention workloads for Vacation
and Kmeans. We also configured Kmeans to generate an
additional workload with lower contention (KMEANS_VLOW),
thus enabling the PTMs to achieve higher scalability levels.

Fig 4a reports throughput as a function of the number of
worker threads. The top row contains low contention work-
loads (VACATION_LOW, SSCA2 and KMEANS_VLOW). The
second row contains contention-prone workloads (INTRUDER,
KMEANS_LOW and GENOME). And the bottom row have

3bitbucket.org/daniel_castro1993/spht
4cc-HTM has to activate checkpointing upon completing each transaction

in order to comply with immediate durability (see transaction barrier in [15]).

USENIX Association 19th USENIX Conference on File and Storage Technologies 163

bitbucket.org/daniel_castro1993/spht

(a) Throughput.

(b) Probability of different outcomes for a transaction.

(c) Transaction time breakdown.
Figure 4: STAMP [6] using standard (++) parameters: (a) throughput; (b) probability for a transaction to commit or abort in
HTM, or enter the SGL; (c) breakdown of time spent: in SGL, commits in HTM, aborts in HTM, and in the commit phase.

workloads that are notoriously unsuited for HTM (YADA and
LABYRINTH), since their long transactions have a memory
footprint that often exceeds the CPU cache capacity.

Low contention benchmarks. SPHT achieves the largest
gains with respect to the considered baselines in VACA-
TION_LOW, where it scales up to 64 threads (with a small
drop at 33 threads, when we start activating threads on the
second socket [2]). At the maximum thread count, SPHT is
2.6× faster than NV-HTM (the second best solution). This
can be explained by analyzing the data in Fig 4c, which re-
ports a breakdown of the percentage of time spent by each
solution in different activities: at 64 threads, NV-HTM spends
significantly more time in the commit phase than SPHT, 76%
vs 62%. As a consequence, the ratio between the time spent
processing transactions and the time spent committing is ~2×
higher for SPHT (~60% vs ~30%). Analogous considerations
apply to cc-HTM, which spends almost 95% of time in the
commit phase starting at 32 threads, when the single back-
ground applier thread becomes the system’s bottleneck.

Analyzing the data in Fig 4b, which reports the probability
for a transaction to abort, commit in HTM or by using the
SGL, we notice that the HTM-based solutions suffer from
a non-negligible abort probability even when using a single
thread. We verified that this is the case also for non-durable
HTM. The reason is that the memory footprint of some trans-
actions exceed the HTM capacity. As the thread count grows,
though, Crafty and DudeTM experience a much higher abort
rate than SPHT. In Crafty’s case, rolling back the transac-

tion and replaying it afterwards (and using a conservative
mechanism to detect conflicts in between these phases [14])
leads to higher conflict rates than with the SPHT’s variants.
In DudeTM’s case, the global serialization clock imposes
spurious conflicts, which are amplified at high thread counts.

SPHT-FL and SPHT-BL remain the most competitive solu-
tions at high thread count, although they impose an overhead
of up to around 25% in VACATION_LOW as well as in SSCA2
w.r.t. the no linking version. It should be noted, however, that
the overhead incurred by the linking mechanism is at most
5% in all the other benchmarks. In KMEAN_VLOW, though,
the linking variants actually outperform SPHT-NL. The ex-
planation for this behaviour is that the additional operations
performed by the linking variants in the commit phase serve
as a back-off mechanism, reducing the overall contention. Al-
though not shown in Fig 4b for space constraints, the abort
rate with KMEANS_VLOW at 64 threads is 79%, 45% and 43%
for SPHT-NL, SPHT-FL and SPHT-BL, respectively.

Finally, at high thread count, the gains of the SPHT variants
w.r.t. existing solutions tend to reduce in KMEANS_VLOW,
as this benchmarks generates higher contention than VACA-
TION_LOW and SSCA2. Still, at 64 thread the SPHT variants
achieve ~30% higher throughput than the best baseline (NV-
HTM) and ~5× speed-ups w.r.t. the remaining ones.

Contention-prone benchmarks. These benchmarks scala-
bility is inherently limited by their contention prone nature:
above a given number of threads the likelihood of conflicts be-
tween transactions grows close to 1 and throughput is severely

164 19th USENIX Conference on File and Storage Technologies USENIX Association

hampered in all solutions. Yet, it is worth noting that, in IN-
TRUDER and KMEANS_LOW, all the SPHT variants do scale
to a large number of threads and achieve significant speed-ups
w.r.t. all other solutions: e.g., SPHT achieves a peak through-
put that is ~30% higher than the most competitive baseline,
i.e., NV-HTM, scaling up to 24 threads.

HTM-unfriendly workloads. Finally, in LABYRINTH and
YADA, as expected, PSTM outperforms all the HTM-based
solutions, including SPHT. That is not surprising given that
these benchmarks generate large and contention prone trans-
actions, which do not lend themselves to be effectively par-
allelized using HTM. It is also unsurprising that most of the
HTM-based solutions achieve similar performance in these
HTM-unfriendly workloads, where a significant fraction of
the transactions has to be committed using the SGL (in which
case all the tested solutions tend to follow a very similar
behavior). The only exception being Crafty, which incurs a
much larger overhead than the other HTM-based solutions,
due to the large abort costs that it incurs in these workloads.

4.1.2 TPC-C

We implemented three transactions of the TPC-C benchmark,
namely Payment, New-Order and Delivery, and report the re-
sults in Fig 5. All solutions suffer a throughput drop when
they enter hyper-threading after 16 threads, which we do not
observe in STAMP. After that drop, SPHT and its linking
variants are the only solutions capable of scaling up to 48
threads. As in KMEANS, the backoff introduced by the linking
mechanism allows SPHT-FL and SPHT-BL to reduce abort
rates (bottom plot of Fig 5). NV-HTM stops scaling above
8 threads, although achieving abort rates that are compara-
ble to or lower than SPHT’s. This suggests that NV-HTM
is being bottle-necked by its sequential commit mechanism.
DudeTM exhibits the same issues as in VACATION_LOW: after
12 threads the global clock creates spurious aborts that hinder
throughput (as shown, e.g., at 16 threads). cc-HTM’s back-
ground thread limits its scalability beyond 8 threads. Crafty’s
non-destructive undo logging scheme also imposes higher
abort rates than NV-HTM and SPHT.

4.2 Log replay
We evaluate the two main novel techniques at the basis of
the proposed log replay scheme: (i) linking transactions in
the log and (ii) using multiple parallel replayers. For space
constraints, we cannot explicitly evaluate the gains deriving
from our NUMA-aware design, which, however, we use in all
the experiments discussed next. Overall, in the tested system,
our NUMA-aware design doubles the bandwidth available to
the replayer threads, which is key to increase scalability.

The efficiency of these mechanisms is affected by a number
of variables including: (i) the heap size; (ii) the average num-
ber of writes per transaction; (iii) the use of filtering technique

Figure 5: TPC-C using 32 warehouses, 95% Payment, 2%
New Order, 3% Delivery transactions.

Figure 6: Performance benefits of linking.

and the level of duplicates in the log.
We explore those parameters with a synthetic benchmark

in which transactions access the persistent heap uniformly at
random, generating a configurable number of writes in each
transaction. Once the benchmark completes, the LR fully
replays the produced logs and we evaluate its throughput in
terms of number of logged writes replayed per second. In the
following, we set the number of worker threads to 64, each
producing one log (i.e., total of 64 logs to replay).

Linking. Fig 6 shows the relative gain in log processing
throughput stemming from linking with respect to a classi-
cal solution [4, 28], called sorting, where the replay order is
established by analyzing all the per-thread logs. In this exper-
iment, the logs contain a total of 10M transactions. We vary
on the x-axis the heap size and consider 4 scenarios in which:
(i) transactions issue either 1 or 5 writes; (ii) replayer uses
either 1 or 8 threads. Linking provides the largest benefits for
small heaps (up to 3.5× speed-ups below 4MB). For large
heaps, the gains of linking tend to reduce, but remain still
solid (~50%) with 8 parallel replayers and 1 W/TX.

These result can be explained by considering that the heap
size affects the locality of the writes issued in the replay phase

USENIX Association 19th USENIX Conference on File and Storage Technologies 165

Figure 7: Speedup of parallel replay for 1MB and 512MB
heap. The no-filter approach is compared with filtering for
two levels of duplicates in the log: 20% and 80%.

and to what extent this write traffic can be served within the
CPU cache (22MB in our case): if the writes can be replayed
in cache, their relative cost decreases, amplifying the gains
stemming from using an efficient mechanism to determine
which transaction to replay next. Analogously, the number
of writes per transaction affects the relative frequency of use
linking and sorting. In fact, we see that generally the fewer
the writes per transaction, the larger the gains of linking5.

Parallel replay. Next, in Fig 7 we study how varying the
degree of parallelism affects the speed-ups achievable w.r.t.
sequential replay. We consider in this study also a version
of the log replay that exploits the backward filtering tech-
nique [4], and use our synthetic benchmark to generate logs
with 20% and 80% of duplicate writes.

The right plot, which considers a 512MB heap, shows peak
gains of up to 2.8×. The use of filtering favours the scalability
of the parallel replay technique and the maximum speed-ups
are obtained for 20% of duplicates. This can be explained by
considering that filtering reduces the write traffic towards PM,
which represents the bottleneck in the no-filter scenario. For
the case of 80% duplicates, though, filtering also reduces sub-
stantially the amount of writes that are effectively generated
during the replay process. Accordingly, this reduces also the
opportunities from benefiting from the proposed parallel log
replay, which explains why the absolute speedups decrease
as the duplicates’ level grows from 20% to 80%.

With small heaps of 1MB (left plot), the efficiency of the
parallel log replay degrades significantly. Only for the case
of filtering with 20% of duplicates we observe speedups of
~20% (at 8 threads). In the other considered scenarios, paral-
lelism ends up hindering performance. This can be explained
by considering that writes to such a small heap are served
entirely in the processor’s cache and that the existence of a
(possibly large) number of replayers intensively updating such
a small working set is likely to generate strong contention
and interference in the cache subsystem. Although this result
pinpoints a limitation of the proposed technique, we argue
that most applications that make use of large scale multicore

5Except for the case of 1 thread and heaps smaller than 8MB, arguably
due to caching effects.

Figure 8: Log replay in VACATION_LOW and GENOME.
replayers 1 2 4 8 16

VACATION_LOW
8.64%
(±0.03)

6.32%
(±0.01)

5.81%
(±0.03)

5.20%
(±0.02)

4.75%
(±0.01)

GENOME
8.85%
(±0.04)

5.76%
(±0.05)

4.99%
(±0.06)

4.26%
(±0.03)

3.82%
(±0.05)

Table 2: L1 cache misses in the replay phase using linking.

machines and PM will likely adopt much larger heaps.
Next we evaluate the joint use of parallel replay and link-

ing, this time using realistic benchmarks, namely, VACA-
TION_LOW and GENOME (shown in Fig 8). The proposed
parallel log replay scheme has better throughput when com-
pared to a conventional sorting approach, yielding ~1.3× and
~2.1× peak speedup, resp., for VACATION_LOW and GENOME
at 16 threads. The joint use of linking further amplifies the
speedups of parallel replay by an additional 35%, demonstrat-
ing how these two techniques can be effectively employed in
synergy to accelerate the log replay process.

Finally in table Table 2 we report the L1 cache misses
when varying the number of replayers from 1 to 16. We can
observe that the cache misses decrease as the parallelism
increases. This is expected, since all the replaying threads
scan the whole log (i.e., generate the same stream of read
accesses), confirming that this cost is amortized by an increase
in the cache hits as the thread count increases.

5 Conclusions

This paper pinpointed several scalability limitations that affect
existing PTM systems for off-the-shelf HTM. We tackled
these limitations by proposing SPHT, a novel PTM system
that integrates a number of innovative techniques targeting
both the transaction processing and the log replay phases.

We evaluated SPHT in a system equipped with Intel Optane
DC PM and compared it against other 5 state of the art PTM
systems that had been so far only evaluated via emulation.
SPHT achieves of up to 2.6× throughput gains during trans-
action processing, when compared to the most competitive
baseline, accelerating log replay by up to 2.8×.

Acknowledgments

This work was partially supported by FCT (UIDB
/50021/2020), FAPESP (2018/15519-5, 2019/10471-7) and
EU’s H2020 R&I programme (EPEEC project, GA 801051).

166 19th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Hillel Avni and Trevor Brown. Persistent hybrid transac-
tional memory for databases. Proceedings of the VLDB
Endowment, 10:409–420, Nov 2016.

[2] Trevor Brown, Alex Kogan, Yossi Lev, and Victor
Luchangco. Investigating the performance of hardware
transactions on a multi-socket machine. In Proceedings
of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA’16, page 121–132, New
York, NY, USA, 2016. Association for Computing Ma-
chinery.

[3] M. Cai, C. C. Coats, and J. Huang. Hoop: Efficient
hardware-assisted out-of-place update for non-volatile
memory. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages
584–596, 2020.

[4] Daniel Castro, Paolo Romano, and João Barreto. Hard-
ware transactional memory meets memory persistency.
Journal of Parallel and Distributed Computing, 130:63–
79, 2019.

[5] Daniel Castro, Paolo Romano, João Barreto, and Alexan-
dro Baldassin. Scalable persistent hardware transactions.
Technical Report 1, INESC-ID, January 2021.

[6] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and
K. Olukotun. Stamp: Stanford transactional applica-
tions for multi-processing. In 2008 IEEE International
Symposium on Workload Characterization, pages 35–46,
Seattle, WA, USA, 2008. IEEE.

[7] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst,
Michael Hohmuth, Martin Pohlack, Christof Fetzer, Mar-
tin Nowack, Torvald Riegel, Pascal Felber, Patrick Mar-
lier, and Etienne Rivière. Evaluation of amd’s ad-
vanced synchronization facility within a complete trans-
actional memory stack. In Proceedings of the 5th Eu-
ropean Conference on Computer Systems, pages 27–40,
Paris,France, 2010. ACM.

[8] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making Persistent Objects
Fast and Safe with Next-Generation, Non-Volatile Mem-
ories. Proceedings of the sixteenth international con-
ference on Architectural support for programming lan-
guages and operating systems - ASPLOS’11, 47(4):105–
118, jun 2011.

[9] Andreia Correia, Pascal Felber, and Pedro Ramalhete.
Romulus: Efficient algorithms for persistent transac-
tional memory. In Proceedings of the 30th on Sym-
posium on Parallelism in Algorithms and Architectures -

SPAA’18, pages 271–282, Vienna, Austria, 2018. ACM
Press.

[10] Andreia Correia, Pascal Felber, and Pedro Ramalhete.
Persistent memory and the rise of universal construc-
tions. In Proceedings of the Fifteenth European Con-
ference on Computer Systems, EuroSys ’20, New York,
NY, USA, 2020. Association for Computing Machinery.

[11] Mohammad Dashti, Alexandra Fedorova, Justin Fun-
ston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers,
Vivien Quema, and Mark Roth. Traffic management: A
holistic approach to memory placement on numa sys-
tems. SIGARCH Comput. Archit. News, 41(1):381–394,
March 2013.

[12] David J DeWitt, Randy H Katz, Frank Olken, Leonard D
Shapiro, Michael R Stonebraker, and David A. Wood.
Implementation techniques for main memory database
systems. SIGMOD Rec., 14(2):1–8, June 1984.

[13] Nuno Diegues, Paolo Romano, and Luís Rodrigues.
Virtues and limitations of commodity hardware transac-
tional memory. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation,
PACT ’14, page 3–14, New York, NY, USA, 2014. As-
sociation for Computing Machinery.

[14] Kaan Genç, Michael D. Bond, and Guoqing Harry Xu.
Crafty: Efficient, htm-compatible persistent transactions.
In 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation - PLDI 2020,
London, UK, 2020. ACM.

[15] Ellis Giles, Kshitij Doshi, and Peter Varman. Contin-
uous checkpointing of htm transactions in nvm. In
Proceedings of the 2017 ACM SIGPLAN International
Symposium on Memory Management - ISMM’17, pages
70–81, Barcelona, Spain, 2017. ACM Press.

[16] Ellis Giles, Kshitij Doshi, and Peter Varman. Hardware
Transactional Persistent Memory. In Proceedings of the
International Symposium on Memory Systems, MEM-
SYS’18, pages 190–205, Alexandria, Virginia, USA, Oc-
tober 2018. ACM.

[17] Bhavishya Goel, Ruben Titos-Gil, Anurag Negi, Sally A.
McKee, and Per Stenstrom. Performance and Energy
Analysis of the Restricted Transactional Memory Im-
plementation on Haswell. In IEEE, editor, 2014 IEEE
28th International Parallel and Distributed Processing
Symposium, pages 615–624, Phoenix, AZ, may 2014.
IEEE.

[18] D. Gureya, J. Neto, R. Karimi, J. Barreto, P. Bhatotia,
V. Quema, R. Rodrigues, P. Romano, and V. Vlassov.
Bandwidth-aware page placement in numa. In 34th

USENIX Association 19th USENIX Conference on File and Storage Technologies 167

IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2020), IPDPS’20, New Orleans,
Louisiana USA, 2020. IEEE.

[19] Maurice Herlihy and J. Eliot B. Moss. Transactional
memory: Architectural support for lock-free data struc-
tures. SIGARCH Comput. Archit. News, 21(2):289–300,
May 1993.

[20] Jian Huang, Karsten Schwan, and Moinuddin K.
Qureshi. NVRAM-aware logging in transaction systems.
Proceedings of the VLDB Endowment, 8(4):389–400,
2014.

[21] Intel Corporation. Desktop 4th Generation Intel Core
Processor Family (Revision 028). Technical report, Intel
Corporation, 2015.

[22] Joseph Izraelevitz, Hammurabi Mendes, and Michael L
Scott. Linearizability of persistent memory objects un-
der a full-system-crash failure model. In International
Symposium on Distributed Computing, pages 313–327,
Paris, France, 2016. Springer.

[23] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic performance measurements of
the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019.

[24] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis
Viglas. Dhtm: Durable hardware transactional memory.
In 45th Annual International Symposium on Computer
Architecture - ISCA’18, pages 452–465, Los Angeles,
CA, USA, June 2018. ACM.

[25] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen,
and Thomas F Wenisch. High-performance transactions
for persistent memories. In Proceedings of the twenty
first international conference on Architectural support
for programming languages and operating systems - AS-
PLOS’16, volume 51, pages 399–411, Atlanta, Georgia,
USA, 2016. ACM.

[26] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xin-
wei Fu, Anthony Demeri, Changwoo Min, and Sudar-
sun Kannan. Durable transactional memory can scale
with TimeStone. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 335–349, New York, NY, USA, 2020.
Association for Computing Machinery.

[27] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xin-
wei Fu, Anthony Demeri, Changwoo Min, and Sudarsun
Kannan. Durable transactional memory can scale with

timestone. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’20,
page 335–349, New York, NY, USA, 2020. Association
for Computing Machinery.

[28] Mengxing Liu, Mingxing Zhang, Kang Chen, and Xue-
hai Qian. Dudetm: Building durable transactions with
decoupling for persistent memory. In Proceedings of the
22nd International Conference on Architectural Support
for Programming Languages and Operating Systems -
ASPLOS’17, pages 329–343, Xi’an, China, 2017. ACM
Press.

[29] Youyou Lu, Jiwu Shu, and Long Sun. Blurred persis-
tence in transactional persistent memory. IEEE Sympo-
sium on Mass Storage Systems and Technologies, 2015-
August(1), 2015.

[30] Amirsaman Memaripour, Anirudh Badam, Amar Phan-
ishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin
Strauss, and Steven Swanson. Atomic in-place updates
for non-volatile main memories with kamino-tx. In Pro-
ceedings of the Twelfth European Conference on Com-
puter Systems, EuroSys’17, page 499–512, New York,
NY, USA, 2017. Association for Computing Machinery.

[31] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pi-
rahesh, and Peter Schwarz. ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Lock-
ing and Partial Rollbacks Using Write-Ahead Logging.
ACM Transactions on Database Systems, 17(1):94–162,
March 1992.

[32] Peter Bergner, Alon Shalev Houfater, Madhusudnanan
Kandeasamy, David Wendt, Suresh Warrier, Julian
Wang, Bernhard King Smith, Will Schmidt, Bill Schmidt,
Steve Munroe, Tulio Magno, Alex Mericas, Mauricio
Oliveira, and Brian Hall. Performance optimization and
tuning techniques for IBM Power Systems processors
including IBM POWER8. IBM Redbooks, 2015.

[33] Peter Bergner, Alon Shalev Houfater, Madhusudnanan
Kandeasamy, David Wendt, Suresh Warrier, Julian
Wang, Bernhard King Smith, Will Schmidt, Bill Schmidt,
Steve Munroe, Tulio Magno, Alex Mericas, Mauricio
Oliveira, and Brian Hall. Performance optimization and
tuning techniques for IBM Power Systems processors
including IBM POWER8. IBM Redbooks, IBM, 2015.

[34] Christopher J. Rossbach, Owen S. Hofmann, and Em-
mett Witchel. Is transactional programming actually
easier? SIGPLAN Not., 45(5):47–56, January 2010.

[35] Hermann Schweizer, Maciej Besta, and Torsten Hoefler.
Evaluating the cost of atomic operations on modern
architectures. In Proceedings of the 2015 International

168 19th USENIX Conference on File and Storage Technologies USENIX Association

Conference on Parallel Architecture and Compilation
(PACT), PACT ’15, page 445–456, USA, 2015. IEEE
Computer Society.

[36] Storage Networking Industry Association (SNIA) Tech-
nical Position. NVM Programming Model Version 1.2,
jun 2017.

[37] Transaction Processing Performance Council. TPC-C
Benchmark Revision 5.11.0.

[38] Haris Volos, Andres Jaan Tack, and Michael M Swift.
Mnemosyne: Lightweight persistent memory. In Pro-
ceedings of the sixteenth international conference on
Architectural support for programming languages and
operating systems - ASPLOS’11, pages 91–104, New-
port Beach, California, USA, 2011. ACM Press.

[39] Darius Šidlauskas, Simonas Šaltenis, and Christian S.
Jensen. Processing of extreme moving-object update
and query workloads in main memory. The VLDB Jour-
nal, 23(5):817–841, October 2014.

[40] Z. Wang, H. Yi, R. Liu, M. Dong, and H. Chen. Persis-
tent transactional memory. IEEE Computer Architecture
Letters, 14(1):58–61, Jan 2015.

[41] Zhenwei Wu, Kai Lu, Andy Nisbet, Wenzhe Zhang, and
Mikel Luján. Pmthreads: Persistent memory threads
harnessing versioned shadow copies. In Proceedings
of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation
(PLDI ’20), US, June 2020. ACM.

[42] Seongdae Yu, Seongbeom Park, and Woongki Baek.
Design and implementation of bandwidth-aware mem-
ory placement and migration policies for heterogeneous
memory systems. In Proceedings of the International
Conference on Supercomputing, ICS ’17, New York, NY,
USA, 2017. Association for Computing Machinery.

USENIX Association 19th USENIX Conference on File and Storage Technologies 169

The Dilemma between Deduplication and Locality: Can Both be Achieved?

Xiangyu Zou†, Jingsong Yuan†, Philip Shilane∗, Wen Xia†‡, Haijun Zhang†, and Xuan Wang†

† Harbin Institute of Technology, Shenzhen ∗ Dell Technologies
‡ Wuhan National Laboratory for Optoelectronics

Corresponding author: xiawen@hit.edu.cn

Abstract
Data deduplication is widely used to reduce the size of

backup workloads, but it has the known disadvantage of caus-
ing poor data locality, also referred to as the fragmentation
problem, which leads to poor restore and garbage collection
(GC) performance. Current research has considered writing
duplicates to maintain locality (e.g. rewriting) or caching data
in memory or SSD, but fragmentation continues to hurt restore
and GC performance.

Investigating the locality issue, we observed that most du-
plicate chunks in a backup are directly from its previous
backup. We therefore propose a novel management-friendly
deduplication framework, called MFDedup, that maintains
the locality of backup workloads by using a data classification
approach to generate an optimal data layout. Specifically, we
use two key techniques: Neighbor-Duplicate-Focus indexing
(NDF) and Across-Version-Aware Reorganization scheme
(AVAR), to perform duplicate detection against a previous
backup and then rearrange chunks with an offline and itera-
tive algorithm into a compact, sequential layout that nearly
eliminates random I/O during restoration.

Evaluation results with four backup datasets demonstrates
that, compared with state-of-the-art techniques, MFDedup
achieves deduplication ratios that are 1.12× to 2.19× higher
and restore throughputs that are 2.63× to 11.64× faster due
to the optimal data layout we achieve. While the rearranging
stage introduces overheads, it is more than offset by a nearly-
zero overhead GC process. Moreover, the NDF index only
requires indexes for two backup versions, while the traditional
index grows with the number of versions retained.

1 Introduction
Deduplication is an important data reduction technique
in modern commercial backup systems because it usually
achieves a high deduplication ratio (the logical size divided
by the post deduplication size), which was found to often be in
the range of 10∼ 30× [6], thus greatly reducing storage costs.
The basic technique of deduplication is to replace redundant
chunks of data with references to identical chunks that have al-

ready been stored [39]. While deduplication has been applied
to numerous storage and networking topics [6, 12, 21, 29, 45],
our research focuses on hard-drive based deduplication for
backup storage because it remains one of the most significant
use cases.

For deduplication on hard drive systems, fragmentation is
a serious problem: chunks from a backup that are logically
consecutive may refer to previously written chunks scattered
across the disks (poor locality). As a result, this fragmenta-
tion problem causes: 1© poor restore performance since many
random disk reads are required; 2© Garbage Collection (GC)
of deduplicated systems is also challenging because as previ-
ous backup versions are deleted, referenced and unreferenced
chunks may be located together, and referenced chunks must
be preserved to avoid data loss.

Generally, the root cause of this fragmentation (or poor
locality) problem is the sharing of chunks between backup
versions due to deduplication. Deduplication systems usu-
ally group the deduplicated chunks into a large unit called a
container (often 4MB in size) for compression and maximiz-
ing write performance to arrays of disks and use a chunk-
reference list (e.g. a recipe) to record referenced chunks
for each backup version. As an example, consider backup
version 1 that has few or no duplicates, so its chunks are stored
sequentially in containers. Then, version 2 may be highly re-
dundant with the first with small modifications throughout
the backup, so its recipe has references to many chunks of
the first version intermixed with references to newly written
chunks. Later, version N tends to have even worse locality as
it refers to chunks written by many previous backup versions,
so restoring a backup version involves random seeks back and
forth across the disks, and read amplification is high since an
accessed container may have needed and unneeded chunks.

To alleviate the fragmentation problem for better restore
performance, many techniques have been proposed that write
some duplicates (called rewriting approaches) according to
their ‘fragmentation degree’ to maintain a level of data local-
ity [14,22,23,30,31]. Alternatively, there have been proposals
to use memory or SSDs to cache the fragmented chunks or

USENIX Association 19th USENIX Conference on File and Storage Technologies 171

frequently referenced chunks [2,25], which also helps achieve
a higher restore speed, though with increased hardware costs.
However, fragmentation inevitably becomes worse with high
generation backup versions. According to our experimental
observations on four backup datasets (see Figures 7 and 9 in
Section 5), even using the state-of-the-art rewriting techniques
of Capping [23] and HAR [15], the restore speed drops to
about 1/8∼1/3 of the sequential read speed of storage devices
while the actual deduplication ratio drops about 20%∼ 40%
due to ‘rewriting’.

The performance of GC is also impacted by data locality
in traditional container-based data layouts. As older backup
versions are deleted, some chunks become unreferenced by
any version and can be removed from containers to reclaim
space. Generally, GC includes two stages: selecting which
containers have unreferenced chunks and migrating refer-
enced chunks into new containers so selected containers can
be freed. Several approaches [17, 37] have explored ways to
quickly select containers for the first stage. When locality
is poor, containers will have a mix of referenced and unref-
erenced chunks, so the migration stage is time-consuming
because many chunks must be read and rewritten.

Overall, existing solutions for improving restore and GC
performance struggle with the dilemma between deduplica-
tion and the locality of backup workloads. Meanwhile, pre-
vious work on fragmentation in non-deduplicated storage
usually reorganized data to improve the layout [18]. How-
ever, due to chunks being shared between backup versions
(a complex chunk reference relationship), it seems infeasi-
ble to design an optimal layout for all backup versions while
maintaining the space savings of deduplication. Moreover,
reorganizing chunks can be expensive since some chunks may
be referenced by all or most versions: in this case, reorganiz-
ing one chunk means almost all versions are involved [23].

In our observations of deduplicating backups, we find that
almost all the duplicate chunks in a backup version Bi+1 are
derived from its previous version Bi (studied in Section 3.3),
which suggests it is feasible to design an optimal data layout
of deduplicated chunks with nearly no fragmentation, as ex-
plained with three points: 1© This optimal data layout classi-
fies chunks into categories (like containers) according to their
reference relationship. For example, the chunks (a set M), ref-
erenced and only referenced by backup versions Bi and B j, are
classified into one category, where a category is similar to a
variable-sized container. Classification ensures that if a chunk
is required when restoring a backup version, other chunks in
the same category are also required, which means loading an
entire category does not cause read amplification. 2©However,
the number of categories (containers) can grow dramatically
to about 2n categories for n backup versions, according to
our observation and theoretical analysis. 3©With the above
observation that some rare chunk-reference relationships can
be ignored, so we only consider chunks that are referenced
by one version or by consecutive versions. In this way, the

chunk-reference relationship is simplified and the number of
categories is reduced to n(n+ 1)/2 for n backup versions,
which makes the OPT data layout feasible.

Note that this classification-based OPT data layout is signif-
icantly different from a traditional deduplication framework.
Traditional deduplication mainly focuses on the write path of
deduplication and rarely manages the location and placement
of chunks, which we call write-friendly. In contrast, our ap-
proach tries to redesign the data layout of deduplicated chunks
to eliminate the fragmentation problem and thus achieve dra-
matically faster restore and GC performance, which we call
management-friendly. In our implementation of the OPT
data layout using an offline method of iteratively arranging
chunks for each incoming backup version, we find the costs
are acceptable, especially compared with the huge overheads
of restore and GC in previous write-friendly approaches.

To this end, we propose a novel Management-Friendly
Deduplication framework, called MFDedup, that introduces
two new techniques: Neighbor-Duplicate-Focus indexing
(NDF) and Across-Version-Aware Reorganization scheme
(AVAR). Together, they generate and maintain the OPT data
layout, which eliminates the fragmentation problem. Specifi-
cally, the contributions of this paper are three folds:
• We propose NDF to only detect duplicates of a backup

version (Bi+1) with its previous version (Bi), which uti-
lizes our observation, and provides an opportunity to
build the OPT data layout. NDF significantly reduces
the memory footprint for the fingerprint index while
achieving a near-exact deduplication ratio.
• After deduplicating the new version Bi+1 using NDF,

AVAR arranges the unique chunks of Bi+1 into the OPT
data layout by classifying and grouping according to the
simplified reference relationship between chunks and
versions. By iteratively updateing the OPT layout, GC
becomes a simple operation of immediately deleting the
oldest categories as the oldest versions are deleted.
• Evaluation results with four backup datasets suggest that,

compared with previous approaches, MFDedup achieves
a significantly higher deduplication ratio (1.66× to
3.28× higher) and restore throughput (2.63× to 11.64×
higher). Restore throughput fully utilizes the storage de-
vices. Meanwhile, the NDF index is a fixed and limited
overhead compared with traditional global index, and
GC in MFDedup has nearly zero-overhead.

2 Background and Related Work
2.1 Background of Data Deduplication
Data deduplication is a widely used data reduction approach
for storage systems [8, 12, 27, 33, 34, 38, 44, 45]. In general, a
typical data deduplication system splits the input data stream
(e.g., backup files, database snapshots, virtual machine im-
ages, etc.) into multiple data “chunks” (e.g., 8KB size) that
are each uniquely identified with a cryptographically secure
hash signature (e.g., SHA-1), also called a fingerprint [29,34].

172 19th USENIX Conference on File and Storage Technologies USENIX Association

Deduplication systems then deduplicate data chunks accord-
ing to their fingerprints and store only one physical copy to
achieve the goal of saving storage space.

Backup storage and locality. Backup storage often lever-
ages data deduplication due to the highly redundant nature of
the data. In backup storage systems, workloads usually are a
series of backups versions (i.e., successive snapshots of the
primary data), and the size of backups can be greatly reduced
to about 1/10-1/30 of their original size, reducing hardware
costs. Locality in backup workloads means that the chunks of
a backup stream will appear in approximately the same order
in each full backup with a high probability, which is widely
exploited for improving deduplication performance, such as
for fingerprint indexing, restoring, etc., by utilizing the high
sequential I/O speed of HDDs.

Container-based I/O. Many deduplication-based storage
systems usually combine with compression techniques, and
all chunks are stored in containers as the basic unit for com-
pression. Thus, storage I/O are usually based on containers.
Usually, containers are immutable and have a fixed size (e.g.,
4MB). Containers offers several benefits: 1©Writing in large
units achieves the maximum sequential throughput of hard
drives and is compatible with striping across multiple drives
in a RAID configuration. Hard drives remain significantly
cheaper than SSDs and other media, and cost is an important
consideration for backup storage. 2© The locality of data in
containers is frequently leveraged to improve the efficiency
of identifying duplicates as well as for restoring backups to
clients [45].

Fragmentation Problem. Fragmentation in deduplication
systems is related to container-based I/O and the seek latency
of HDDs. This is because different backups will share chunks,
and these shared chunks are randomly distributed across con-
tainers. In other words, spatial locality of each backup will
be destroyed after deduplication. Due to container-based I/O,
when we restore a backup, even if only a few shared chunks in
a container are required, we have to read the whole container
from HDDs, which is sometimes called read amplification
(defined as Total Size o f Loaded Containers

Size o f Actually Restored Data during restores). Even
if a system supports compression regions within a container,
a full compression region must be read and decompressed to
supply a needed chunk. In addition, since the required con-
tainers for each backup are randomly distributed across the
HDDs, seeking to these required containers on HDDs is also
time-consuming. Moreover, the read amplification and seek
issues become worse as the number of backups increases.

2.2 Deduplication Techniques
A typical deduplication system usually consists of several
techniques, including chunking, fingerprint indexing, restore
optimizations, garbage collection, etc.

Chunking Techniques. Content-Defined Chunking
(CDC) [13,29,32,41,42] is a widely used chunking approach
to split the backup stream into variable-sized chunks accord-

ing to the content, which can handle the ‘boundary-shift’
problem existing in Fix-Sized Chunking [34].

Fingerprint Index Techniques. Checking the fingerprint
index (i.e., detecting duplicates) is a critical step in the work-
flow of deduplication. Fingerprint indices grow as a fraction
of backup storage system capacity, so keeping them in mem-
ory is expensive and impractical while putting them in HDDs
will cause a deduplication system bottleneck for indexing.
Several approaches [5, 7, 17, 24, 26, 28, 40, 45] have been pro-
posed, and most leverage spatial or temporal locality by using
the fingerprint index to load many fingerprints from disk that
were written at the same time or consecutively in a file.

Restore Optimization Techniques. As introduced in Sec-
tion 2.1, fragmentation introduces read amplification and
many disk seeks when restoring a backup after deduplica-
tion. Among the restore optimization approaches, there are
two main approaches to review that can be used separately or
together: ‘rewriting’ and ‘cache’. Rewriting trades-off dedu-
plication space savings to improve locality by selectively
writing duplicates [9, 10, 14, 22, 23, 30, 31]. Rewriting lowers
the deduplication ratio, and results show read amplification
remains 2×∼ 4× after rewriting. The caching approach uses
SSDs or memory to cache chunks that are frequently refer-
enced or believed to be needed in the near future [2, 25], but
the cache hit ratio still depends on locality, and read amplifi-
cation is not addressed.

Among rewriting approaches, Capping [23] follows a sim-
ple policy. When deduplicating against a previously-written
container, record how many chunks in the container are refer-
enced for the current backup. For containers with low reuse, it
rewrites chunks to improve the locality of the current backup
version. HAR [15], utilizing the similarity of backup streams,
identifies sparse containers according to historical informa-
tion, and rewrites chunks which refer to those containers. In
contrast, our approach writes minimal duplicate chunks and
creates a data layout without any fragmentation or read am-
plification.

Garbage Collection Techniques. Customers usually con-
figure a retention policy for backup files using their backup
software, which often involves retaining weeks or months
of backups and deleting backups older than the retention
policy. GC then removes unreferenced chunks from the sys-
tem [11, 14, 17, 37]. There are generally two kinds of GC
in deduplicated systems. The first one is traditional Mark-
Sweep [11,17,37]: it walks the backups and marks the chunks
referenced from those backups, and then the unreferenced
chunks are swept away. In practice, this often requires copy-
ing live chunks from a partially-unreferenced container and
forming new containers. Although numerous optimizations
have been proposed [11, 14, 17, 37], copying live chunks and
writing new containers is I/O intensive [15].

The second approach is the Container-Marker Algorithm
(CMA) [15]. CMA maintains a container manifest to record
referenced backups for each container and then deletes the

USENIX Association 19th USENIX Conference on File and Storage Technologies 173

whole containers that are unreferenced, which is a coarse-
grained GC approach that maintains containers if any chunks
are still referenced and thus causes wasted space. In contrast,
we focus on fine-grained GC, but have an approach with
dramatically lower overheads than previous techniques.

3 Observation and Motivation
3.1 Analysis for Fragmentation and Read Am-

plification after Deduplication
As discussed in Section 2.1, fragmentation causes serious
read amplification in deduplication systems using container-
based I/O. In this subsection, we analyze the cause of read
amplification with a detailed example.

Chunk1

Chunk2

Chunk3

Chunk4

Chunk1

Chunk2'

Chunk3'

Chunk4'

Chunk1

Chunk2'

Chunk3''

Chunk4''

Version 1 Version 2 Version 3

Chunk1

Chunk2

Chunk3

Container 1

Duplicate

New

New

New

Duplicate

New

Duplicate

New

Chunk4

Chunk5

Chunk6

Container 2

Chunk2'

Chunk3'

Chunk4'

Container 3

Chunk5'

blank

blank

Container 4

Chunk5 Chunk5' Chunk5''New New

Chunk6 Chunk6 Chunk6Duplicate Duplicate

Chunk3''

Chunk4''

Chunk5''

Container 5

Chunk1

Chunk6

Container 1

Chunk2

Chunk3

Chunk4

Container 2

Chunk3'

Chunk4'

Chunk5'

Container 3

Chunk2'

Container 4

Chunk3''

Chunk4''

Chunk5''

Container 5

Chunk5

Traditional data layout

An OPT data layout that minimizes read amplification

Figure 1: Examples of running exact deduplication on three
backup versions with a traditional data layout versus an opti-
mal data layout based on classification.

In traditional deduplication systems, after deduplication,
all remaining chunks are stored in containers in the order
they appear in a backup. Figure 1 shows an example of the
traditional data layout after deduplication of three backup
versions. Deduplicated chunks from three backup versions
are stored in five containers using the traditional data layout,
and Chunk 6 is referenced by all the three versions. Because
of the container-based I/O, no matter which version we want
to restore, we always need to read Container 2 from HDDs.

Read Amplification. For Versions 2 and 3, only Chunk 6
is needed from Container 2, which includes other chunks
unreferenced by Versions 2 and 3. This is an example of
poor spatial locality. Therefore, loading Container 2 causes
read amplification (i.e., we read two unneeded chunks) when
restoring these two versions. But for Version 1, all chunks
in Container 2 are required, which means a strong spatial
locality, and there is no fragmentation and read amplification.
Note that under the traditional data layout, Chunk 6 is a frag-
mented chunk for Versions 2 and 3, but is not a fragmented
chunk for Version 1, which means fragmentation is dependent
on the backup version and associated with chunks’ reference
relationship.

3.2 An Optimal Data Layout
In this subsection, we present and discuss a classification-
based optimal (OPT) data layout according to the chunks’
reference relationships as mentioned in the last subsection.

An Example of Classification: For the three chunks {4,
5, 6} in Container 2 (in the traditional data layout in Fig-
ure 1), according to their reference relationship, we can clas-
sify them into two categories (like containers). The first cat-
egory includes Chunks 4 and 5, which are only referenced
by Version 1, and the second category is Chunk 6, which is
referenced by all three versions. If we store two categories
separately in different containers, we could load both cate-
gories when restoring Version 1 and load only the second
category for Versions 2 and 3. In this way, the fragmentation
problem of these three chunks are resolved, and there will be
no read amplification when restoring any of the versions.

Classification-based Data Layout. Here we continue the
previous example and classify all chunks into five categories
(like containers) according to their reference relationship and
then store each category into a variable-sized container, as
shown in the ‘OPT data layout’ in Figure 1:

• Container 1 is referenced by Versions {1, 2, 3}.

• Container 2 is referenced by Version 1.

• Container 3 is referenced by Version 2.

• Container 4 is referenced by Versions {2, 3}.

• Container 5 is referenced by Version 3.

This layout keeps strong spatial locality for each backup
version with a read amplification of 1, so we refer to it as
the OPT data layout that minimizes read amplification. For
example, if we want to restore Version 3, we need to load
Containers 1,4 and 5, which does not load any unrequired
chunks. Meanwhile, there is also no read amplification when
restoring Versions 1 and 2. Therefore, Figure 1 provides a
possible solution to eliminate fragmentation for that example
of three backup versions. In the worst case of three backup
versions, there will be seven categories (i.e., total number
of

(3
1

)
+
(3

2

)
+
(3

3

)
= 23−1 reference relationship). Here

(n
k

)
means choosing k from n elements.

Challenges for OPT Data Layout. Actual backup work-
loads are much more complicated than the example shown
in Figure 1. Specifically, if we follow the idea of classi-
fication on n backup versions, there will be 2n − 1 (i.e.,(n

1

)
+
(n

2

)
+ ...+

(n
n

)
= 2n− 1) categories that are stored as

2n− 1 containers. Assuming there are 30 backup versions
with about 1 million unique 8KB chunks (totaling 8 GB after
deduplication), there will be more than 1,000,000,000 contain-
ers after classification and thus most of the time each container
has only one or very few chunks. In other words, this OPT
data layout solves the read amplification problem but requires
more seek operations for these very small containers, which
also causes poor data locality.

174 19th USENIX Conference on File and Storage Technologies USENIX Association

0%

20%

40%

60%

80%

100%

1 20 40 60 80 100

P
ro

p
o

rt
io

n
 o

f
C

h
u

n
k
s

#-th of Versions

Unique
Internal

Adjacent
Skip

(a) WEB Dataset

0%

20%

40%

60%

80%

100%

1 20 40 60 80 100

P
ro

p
o

rt
io

n
 o

f
C

h
u

n
k
s

#-th of Versions

Unique
Internal

Adjacent
Skip

(b) CHM Dataset

0%

20%

40%

60%

80%

100%

1 20 40 60 80 100

P
ro

p
o

rt
io

n
 o

f
C

h
u

n
k
s

#-th of Versions

Unique
Internal

Adjacent
Skip

(c) VMS Dataset

0%

3%

6%

94%

97%

100%

1 40 80 120 160 200

P
ro

p
o

rt
io

n
 o

f
C

h
u

n
k
s

#-th of Versions

Unique
Internal

Adjacent
Skip

(d) SYN Dataset

Figure 2: Distribution of four kinds of chunks on four backup datasets. Skip duplicate chunks are the least common.

3.3 Derivation Relationship of Backups
In this subsection, we will present our key observation about
the deduplication relationship of backups through an analysis
of four large backup datasets. These relationships can be
exploited to greatly decrease the number of categories (i.e.,
containers) needed for the OPT data layout.

In backup storage systems, workloads usually consist of
a series of backup images, which are all generated from
the original data on a primary storage system (i.e. laptop,
server, database, etc.). Therefore, the duplicate chunks of each
backup are not randomly distributed but are derived from the
chunks of the last backup as we will show with experiments,
which is consistent with the typical consecutive pattern of
duplicates that is leveraged by many systems [24, 40, 45] for
high deduplication performance.

To better illustrate our observation, we denote four kinds
of chunks in a backup version Bi as follows:
• Internal duplicate chunks, whose referenced chunks are

also in Bi.
• Adjacent duplicate chunks, whose referenced chunks are

not in Bi but in the last version Bi−1.
• Skip duplicate chunks, whose referenced chunks are nei-

ther in Bi nor in Bi−1.
• Unique chunks: the non-duplicate chunks.
Key Observation. Figure 2 studies the distribution of the

four kinds of chunks on four backup datasets running with
exact deduplication. From Figure 2, we can observe that most
duplicate chunks for a backup version are from the previous
version (Adjacent) and within the current backup itself (In-
ternal). Adjacent and Internal account for more than 99.5%
in most datasets. The Skip duplicate chunks only consist of
a small fraction (less than 0.5% in most datasets) of all du-
plicate chunks. This observation supports an approach of
avoiding deduplicating Skip chunks to preserve locality since
they would only have a small impact on the deduplication
ratio.

Motivated by the above observation of the duplicate chunks’
pattern, we avoid deduplicating Skip chunks and treat them
as Unique chunks for the current version. This greatly sim-
plifies chunk-reference relationships: each physical chunk
must be referenced by one version or by consecutive versions
(e.g., Bi, ... Bi+k) in the former OPT data layout. With this
condition, we can greatly reduce the number of classified
categories (containers). Taking three backups for example, be-

cause each chunk must be referenced by successive versions
{Bi, ..., Bi+k}, where i ≥ 1 and i+ k ≤ 3. Thus, when k=0,
there are

(3
1

)
categories; when k 6= 0, there are

(3
2

)
categories

(choosing the start and the end one for successive versions).
Hence, the number of categories in this example is reduced
from seven to six.

In general, if we have n backup versions and improve the
OPT data layout by exploiting the duplicate chunks’ pattern,
the upper limit of the number of categories (containers) will
be

(n
1

)
+
(n

2

)
= n(n+ 1)/2, which is much less than 2n− 1.

Continuing an earlier example with 30 backup versions, there
will be 465 containers with about 2150 chunks on average, so
the average size of container is about 17.6MB. This condition
makes the classification feasible for the OPT data layout while
the size of containers is large enough to maintain the spatial
locality of backup workloads.

4 Design and Implementation
4.1 MFDedup Overview
Based on our key observations about the relationships be-
tween backups and the OPT data layout mentioned in Sec-
tion 3, implementing the optimal data layout in a deduplicated
backup storage systems is feasible by the following two key
design principles: 1© All chunks are classified into categories
(like containers) according to their reference relationship. 2©
Skip duplicate chunks are treated as unique chunks to simplify
the chunks’ reference relationship.

In this paper, we propose our approach MFDedup, a
management-friendly deduplication framework using the
aforementioned optimal (OPT) data layout. Our approach is to
maintain the locality of backup workloads, which eliminates
fragmentation that slows restore and GC. MFDedup follows
the above two design principles and reorganizes chunks in
an offline algorithm to achieve the OPT data layout, by using
two key techniques:

• Neighbor-Duplicate-Focus indexing (NDF). MFD-
edup only removes duplicates between neighboring
backup versions. Hence, we only need to build and ac-
cess a local fingerprint index consisting of the neigh-
boring backup versions’ fingerprints, whose resource
requirements are lower compared with traditional global
fingerprint index, as detailed in Section 4.2.
• Across-Version-Aware Reorganization (AVAR). Af-

ter detecting duplicate chunks of each new backup ver-

USENIX Association 19th USENIX Conference on File and Storage Technologies 175

sion using NDF, MFDedup offline arranges the dedu-
plicated chunks of the last backup version. Specifically,
these chunks are classified and grouped to iteratively
update the OPT data layout according to our simplified
chunk-reference relationship, as detailed in Section 4.3.

Chunking &
Fingerprinting

Indexing&
Storing
(inline)

Arranging
(offline)

Backup
Workload

AVAR

Unique
Chunks

Previous version
OPT Data Layout

NDF-based Fingerprint Index

Recipes Current version
OPT Data Layout

Figure 3: An overview of MFDedup framework.

The overall workflow of the MFDedup framework is shown
in Figure 3, which includes three key stages: Chunking & Fin-
gerprinting, Indexing & Storing, and Arranging. Chunking
& Fingerprinting refers to splitting the backup stream into
chunks using Content-Defined Chunking [29, 39] and then
calculating a fingerprint (i.e. SHA1 digest) for each chunk.
Indexing & Storing detects duplicate and unique chunks from
the previous backup version by using NDF-based fingerprint
index and then stores unique chunks and a Recipe for each
backup. Arranging is an offline process, which iteratively up-
dates the OPT data layout version by version, with the support
of NDF-based fingerprint index. Note that the Recipe records
the chunk-fingerprint sequence of a backup version, which is
used to recover the backup version after deduplication.

In general, MFDedup applies online deduplication using
NDF, which removes duplicates only between neighboring
backup versions, and then an offline Arranging using AVAR,
which keeps the OPT data layout to maintain locality of
backup workloads and thus eliminate fragmentation.

4.2 Neighbor-Duplicate-Focus Indexing
In this section, we will introduce the Neighbor-Duplicate-
Focus indexing (NDF) technique in MFDedup, which is based
on our observation (Section 3.3) that most duplicate chunks
exist between neighboring versions in a backup storage sys-
tem (i.e., duplicate chunks of backup version Bi are nearly all
from its previous version Bi−1). Therefore, MFDedup chooses
to treat Skip duplicate chunks as unique chunks instead of
deduplicating them. In other words, MFDedup only identifies
duplicate chunks in backup version Bi that are identical to
chunks either in Bi (within the same version) or Bi−1 (the pre-
vious version). We refer to this as a NDF-based fingerprint
index.

In the NDF implementation, we maintain an independent
fingerprint index table for each backup version. Besides us-
ing NDF in the Indexing & Storing stage of MFDedup for
duplicate detection, NDF is also used in the Arranging stage
for classification as detailed in next subsection. After a finger-

Version 1 Version 2 Version 3
Chk1
Chk2
Chk3
Chk4
Chk5
Chk6

Chk1
Chk2'
Chk3'
Chk4'
Chk5'
Chk6

Chk1
Chk2'
Chk3''
Chk4''
Chk5''
Chk6

Chk1
Chk2
Chk3
Chk4
Chk5
Chk6

V1's FP
Index

Duplicate?

Cat.(1,1)

Volume 1 : Archived
Categories for Version 1

Chk2
Chk3
Chk4
Chk5

Duplicate?

Chk2'

Chk1
Chk6

Dedup

Cat.(1,2)

Volume 2 : Archived
Categories for Version 2

Cat.(2,2)

Chk3'
Chk4'
Chk5'

N:Archive

Active
Cat.(1,1)

Active
Cat.(1,2)
Chk1
Chk6

Active
Cat.(2,2)
Chk2'
Chk3'
Chk4'
Chk5'

Y:Migrate

N:Archive

Active
Cat.(3,3)
Chk3''
Chk4''
Chk5''

Active
Cat.(2,3)

Active
Cat.(1,3)

Y:Migrate

Dedup
① ②

③

④

⑤

Dedup

V2's FP
Index

V3's FP
Index

NDF

Figure 4: An example of the AVAR workflow on three backup
versions, which is presented by a solid line in five steps: 1©
Deduplicating Version 1→ 2© Deduplicating Version 2→
3© Arranging Version 1→ 4© Deduplicating Version 3→ 5©

Arranging Version 2. Gray dashed lines refer to fingerprint
indexing operations.

print index table is used in the above two stages for the latest
two backup versions, it can be released. Therefore, we only
need to maintain two fingerprint indices, which could be kept
in memory if they are small (they are typically much smaller
than the traditional index that stores all versions) or loaded
using previous locality-based approaches [24, 45]. Assuming
a fingerprint index entry takes 20 bytes (i.e., the size of SHA1
digest), the size of a backup version is 10GB, and the expected
chunk size is 8KB, the total memory cost of NDF-based fin-
gerprint index will be 2×10GB/8KB×20B = 50MB (about
0.4882% size of a backup version).

Indexing overhead of NDF is related to the data size
of two most recent backup versions, which is considerably
smaller than traditional deduplication systems that have a
global fingerprint index. Meanwhile, NDF is able to achieve a
near-exact deduplication ratio while supporting the OPT data
layout in MFDedup (detailed in Section 4.3).

4.3 Across-Version-Aware Reorganization
In this subsection, we will introduce Across-Version-Aware
Reorganization (AVAR) in MFDedup, which is designed to
eliminate fragmentation and generate the OPT data layout
combining with the NDF technique.

There are two stages in AVAR, which are the Deduplicating
stage (i.e., Indexing & Storing in Section 4.1) and the Arrang-
ing stage, and both utilize the NDF-based fingerprint index.

176 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 4 gives an example of AVAR on three backup ver-
sions, running with the two stages alternating (except the first
backup version): The Deduplicating stage identifies unique
chunks of a backup version Bi. Then the Arranging stage
updates the OPT data layout for backup version sets {B1..Bi},
by reorganizing the previous OPT data layout of {B1..Bi−1}
with the unique chunks of Bi. Note that there is naturally an
OPT data layout when the first backup version is stored, so
the Arranging stage is not required after the Deduplicating
stage. More details about the two stages of AVAR are elabo-
rated below.

Deduplicating Stage. In this stage, we detect duplicate
chunks using the NDF-based fingerprint index and then store
unique chunks as well as Recipes. In the remainder of this
section, we ignore Recipes, and focus on how data chunks
are managed for the OPT data layout. Therefore, as shown in
Steps 1©, 2© and 4© of Figure 4, the Deduplicating Stage is
responsible for storing unique chunks of the latest new backup
version Bi into a new active Category, which is currently only
referenced by Bi. Note that chunks in the active Category
may be referenced by future backup versions and thus will be
processed by the Arranging stage later.

Note that each Category is named with a pair of numbers
in MFDedup, which reflects which backup versions refer to
chunks in this category. For example, if chunks in a cate-
gory are referenced from consecutive Versions 2, 3, and 4, we
denote this category as Cat.(2, 4).

Arranging Stage. According to the 1st principle of MFD-
edup, classification methods used for generating the OPT data
layout are based on the reference relationship between chunks
and backup versions, which means the old OPT data layout
expires when a new version arrives and is processed by the
Deduplicating stage. This is because the reference relation-
ship between chunks and backups has changed. Therefore,
the Arranging stage is responsible for iteratively updating
the existing OPT data layout with new unique chunks of the
incoming version (after the Deduplicating stage), following
the two design principle of MFDedup.

To better present the iterative process of our Arranging
stage, Figure 5 shows a general evolution example of OPT
data layout with three backup versions. According to the
design principle 2© in Section 4.1 (i.e., Skip duplicate chunks
are ignored and treated as unique chunks), in backup version
sets {B1..Bn−1}. Then Cat.(1,n-4) is not referenced by the
last backup version Bn−1 and cannot be referenced by Bn and
later backup versions. As a result, these kinds of categories
are always carried forward as part of the OPT data layout and
are referred to as archived. On the other hand, Cat.(1,n-1)
that is referenced by the last backup version Bn−1, will be
split into two categories when backing up a new version Bn.
We call those categories active.

Therefore, in our implementation of AVAR, classified cat-
egories (containers) have two states: Active and Archived
when updating the OPT data layout. Archived means the cat-

OPT data layout of
Backup set {B1..Bn-1}

Cat.(1,n-4) (Archived)

Cat.(1,n-1) (Active)

OPT data layout of
Backup set {B1..Bn}

Cat.(1,n-4) (Archived)

Cat.(1,n) (Active)

OPT data layout of
Backup set {B1..Bn+1}

Cat.(1,n) (Archived)

Cat.(1,n+1) (Active)

Cat.(1,n-1) (Archived)
Cat.(1,n-1) (Archived)

Cat.(1,n-4) (Archived)

derive
derive

…
Inherit

Inherit

Inherit

Figure 5: An example of the OPT data layout’s evolution on
three backup versions. Some categories are inherited from the
previous version, and some derive new categories.

egories are immutable, while Active means the categories
will be further ‘arranged’ by MFDedup after future backups.
More specifically, in the Arranging stage of AVAR, we fo-
cus on active categories, which derive new active categories
and archived categories. Like the example of Step 5© shown
in Figure 4, Cat.(1,2) and Cat.(2,2) are the only two exist-
ing (old) active categories after backing up Version 3, and
we check each chunk of them with the fingerprint index of
backup version 3. Duplicate chunks, existing in Version 3,
are migrated to new active Cat.(1,3) and Cat.(2,3), and other
chunks are arranged in archived Cat.(1,2) and Cat.(2,2). After
migrating and archiving, old active Cat.(1,2) and Cat.(2,2) are
no longer required and thus deleted.

Grouping. After Arranging existing Active categories, the
new Archived categories are grouped into a Volume by the
order of their name (e.g. in the order of Cat.(1,3), Cat.(2,3),
Cat.(3,3)), for easier storage management. The benefits of
grouping categories will be introduced in the next section.

4.4 Restore and Garbage Collection
Restore and Garbage Collection both benefit from our OPT
data layout in MFDedup, and their workflows are greatly
simplified as elaborated in this subsection.

Restore. When restoring a backup version in MFDedup,
we only need to read the required categories on the OPT
data layout, which is referenced by the to-be-restored version.
Meanwhile, tracing required chunks (categories) for restore
is totally metadata-free in MFDedup with the support of the
OPT data layout (i.e., can be calculated by our layout).

For the situation that there are n backup versions stored
in MFDedup, and we want to restore a backup version Bk,
all categories referenced by Bk are required. For example,
Cat.(3,k+2) is required, because it is referenced from B3 to
Bk+2, which includes Bk. Thus, all required categories for Bk
could be represented as:

Required Cat.= {Cat.(i, j)},where 1≤ i≤ k ≤ j ≤ n

= ∪n
j=k ∪

j
i=1 Cat.(i, j).

(1)

Like the example of Figure 6, there are four stored backups.
According to Equation 1, restoring Version 3 requires the
blue-colored categories. Note that according to our grouping
approach, ∪ j

i=1Cat.(i, j) are always sequentially grouped in
the same Volume. Thus, loading ∪n

j=k ∪
j
i=1 Cat.(i, j) requires

n sequential reads at most.

USENIX Association 19th USENIX Conference on File and Storage Technologies 177

OPT Data Layout

Cat.(1,1)

Vol.1

Volumes
(Archived Catogories)

Active
Catogories

Cat.(1,2)

Vol.2

Cat.(2,2)

Cat.(1,3)

Vol.3

Cat.(2,3)

Cat.(3,3)

Cat.(1,4)

Cat.(2,4)

Cat.(3,4)

Cat.(4,4)

FP1 Len1 Data1

FP6 Len6 Data6

FP9 Len9 Data9

FP2

FP6 Offset6

FP5 Offset5

···

V3's Restore
Hash Table

Offset2

Data6

Restored Version 3

To be reclaimed
if delete Version 1

Traverse categories
colored blue for

restoring Version 3

Vol.4

Figure 6: An example of restore and deletion on the OPT data
layout with four backup versions.

A recipe is required to restore a backup version, which is
used to build a ‘restore’ hash table, whose format is shown in
Figure 6. The entry of the hash table is a pair like <fingerprint,
offset>, which records a chunks’ fingerprint and its offset in
the to-be-restored version.

The workflow of restore is shown in Figure 6, after getting
the required categories, the chunks are restored one by one ac-
cording to the Recipe for Version 3. Therefore, MFDedup only
needs to seek to the required volumes and then sequentially
read the required (consecutive) categories in those volumes,
which achieves a superior restore performance (i.e., few seeks
and large sequential I/Os).

Deletion and Garbage Collection. As a result of our OPT
data layout, deletion and garbage collection are naturally sim-
ple, and the space can be immediately reclaimed in MFDedup.
In deduplication systems, deleting a backup version means
reclaiming its unique chunks (those not referenced by other
backups). FIFO-based deletion in MFDedup simply deletes
and reclaims the earliest volumes, because they consist of
unique chunks of the earliest backup versions. For example
in Figure 6, we can reclaim space of Version 1 by directly
deleting Volume 1.

MFDedup also supports deleting other backup versions
besides the earliest ones. From the description of the Dedu-
plicating stage, we see that the unique chunks of each backup
version are always stored in the last category of each volume
(see Figure 6). Thus, we can also delete any backup version
by resizing the corresponding volume using ‘truncate()’ (i.e.,
deleting the last category in this file). For example, if we want
to delete Version 2 in Figure 6, we can remove the archived
Category 3 by just truncating Volume 2. A previous work [11]
mentioned that the CMA approach [15] only supports FIFO
deletion, while we support any deletion pattern.

In this way, we no longer apply traditional GC techniques
in MFDedup, such as mark-sweep or reference-count man-
agement, since the chunk-reference relationship is naturally
designed into our classification-based OPT data layout. This
is a dramatic reduction in system resources (CPU cycles,
RAM, I/O) and coding complexity.

4.5 Discussion and Limitations
In this subsection, we discuss overheads, limitations, and cor-
responding possible optimizations of MFDedup in a deployed
system to support various backup workloads.

Self-Organization of OPT data layout. This OPT data
layout is self-organized and simple, and the cost of metadata
is greatly reduced. The exact physical position and the refer-
ence counts of each unique chunk, which are usually used for
restore and GC in traditional deduplication systems, are not
needed for MFDedup. For example, in restore, the required
categories for each version are calculable in the OPT data
layout.

Backups Size. While backup sizes can vary over a wide
range, many VM backups are ∼100GB, and the index is
400MB for the most recent virtual machines. Wallace [38]
and Amvrosiadis [4] also suggested the majority of backups
were 50-500GB in Data Domain and Symantec production
systems. Hence MFDedup can be directly applied in these
scenarios with a reasonable memory overhead.

Fingerprint Prefetching for Larger Backups. Although
the current design of MFDedup has the index in RAM, pre-
vious techniques for prefetching and caching sequences of
fingerprints (designed for a large fingerprint index) [5,7,17,24,
26, 28, 40, 45] could also be used in MFDedup. We expect the
sequential locality to also exist in MFDedup for two reasons.
On the one hand, sequential locality exists inside categories,
although it is destroyed across categories by Arranging. On
the other hand, recipes also keep the sequential locality of
each backup.

Restoring for Larger Backups. When restoring a single
large backup, since chunks are organized with categories
in MFDedup, we could also organize a ‘restore’ hash table
(recording pairs <fingerprint, offset>) for each category, and
then load the hash tables to memory separately. Besides, a
single backup could be divided by MFDedup into several
smaller sub-units (e.g., each <100GB) to relieve the memory
burden for both backing up and restoring. But, when the size
of a single backup is huge (such as over 10T B), and there
is only one category for this backup, the hash table would
also be very large (over 10T B/8KB× (20B+ 8B) = 35GB,
here we assume ‘fingerprint’ and ‘offset’ take 20B and 8B,
respectively), which is difficult to maintain in memory, so
MFDedup can not handle these use cases yet.

Incremental Backups vs. Full Backups As we intro-
duced in Section 4, MFDedup is designed for full backups.
For incremental backups, we could add an API to distinguish
between incremental and full backups. Also, as synthetic full
backups have already become broadly used, the incremen-
tal changes are typically relative to the last “full” backup
synthesized, so MFDedup can also be directly applied.

Reserved Space for Arranging. Arranging is an offline
process, in which chunks are migrated or archived, and it
requires additional reserved space. As shown in Figure 4,
Arranging runs on active categories, thus, the reserved space

178 19th USENIX Conference on File and Storage Technologies USENIX Association

is equal to the maximum size of active categories, which is
much smaller than a full backup and is studied in Section 5.6.

What if Arranging Falls Behind. If there are a lot of
workloads to back up and not enough time to finish the Ar-
ranging stage in MFDedup, we can skip it temporarily, and
apply it in future idle time. Before Arranging catches up, the
OPT data layout is not updated with new incoming backup
versions. The more Arranging falls behind, the more seriously
OPT data layout is damaged, with an increase in read ampli-
fication and decrease in restore throughput. However, this a
rare case since users usually create full backups daily or less
frequently [3, 23], which provides enough time for our offline
Arranging. In addition, a higher deduplication ratio leads to
a smaller read amplification and also a smaller reduction in
restore throughput when Arranging falls behind.

Time Overhead of Offline Arranging. In MFDedup, we
have transferred background work from GC to Arranging
while achieving many benefits: high restore speed, immediate
space reclamation, etc. Arranging is an offline process that
traverses active categories of a backup version, migrates du-
plicate chunks, and archives the remaining chunks. The time
cost of Arranging is close to or better than perfect garbage col-
lection with the benefits of better restore and GC performance
of MFDedup as evaluated in Section 5.5. In the paper, we al-
ways run Arranging after each backup to keep the data layout
healthy (i.e., optimal), but Arranging could act like GC: just
running once after several backups. In this case, Arranging
falls behind and will cause slight read amplification, as dis-
cussed in “What if Arranging Falls Behind”. Besides, several
Arranging tasks, in which duplicate chunks will be migrated
several times, could be merged in this situation, which could
reduce the total overhead for Arranging, though this has not
been evaluated.

Out-of-Order Restore. Unlike the implementation of the
traditional deduplication framework, restore in MFDedup
is out-of-order, which means the writing order of restored
chunks does not absolutely follow their logical order in work-
loads. While the chunks in volumes are generally in order
for a backup, there are logical gaps that are filled by other
volumes, which causes random writes to the restored version.
Although the sequential locality still exists inside categories,
as discussed in “Fingerprint Prefetching”, restore will have
better performance if the destination media has good random
write performance (e.g., on SSDs). Besides, some previous
techniques, like a reassembly buffer [20], could be applied to
improve the performance when streaming a restore to HDD
devices.

5 Performance Evaluation
5.1 Experimental Setup
Evaluation Platform and Configurations. We perform our
experiments on a workstation running Ubuntu 18.04 with
an Intel Core i7-8700 @ 3.2GHz CPU, 64GB memory, Intel
D3-S4610 SSDs, and 7200rpm HDDs.

Table 1: Four backup datasets used in evaluation.
Name Total Size Versions Workload DescriptionsBefore Dedup

WEB 269 GB 100 Backup snapshots of website: news.sina.com,
captured from June to September in 2016.

CHM 279 GB 100 Source codes of Chromium project
from v82.0.4066 to v85.0.4165

VMS 1.55 TB 100 Backups of an Ubuntu 12.04 Virtual Machine

SYN 1.38 TB 200 Synthetic backups by simulating file
create/delete/modify operations [36]

In our evaluation, we built a MFDedup prototype system
and also built Destor [16] for comparison with several state-of-
the-art techniques for restore and GC, including the History-
Aware Rewriting algorithm (HAR) [15], Capping [23], and
Container-Marker Algorithm (CMA) [14]. MFDedup and
Destor use the same configuration in the Chunking & Finger-
printing stage: chunking uses FastCDC [41] with the mini-
mum, average, and maximum chunk sizes set to 2KB, 8KB,
and 64KB; Fingerprinting uses a SHA1 digest generated by
Intel Intelligent Storage Acceleration Library Crypto Version
(i.e., ISA-L_crypto [1]).
Experimental methods. To simulate real backup/restore sce-
narios, we separate the storage space of our workstation into
two parts: a backup space using a 7200rpm HDD and a user
space using an Intel D3-S4610 SSD. Both spaces (drives)
have an XFS file system. It is typical in backup environments
to use HDDs for cost reasons while primary systems often
use SSD for higher performance.

To evaluate backup/restore performance, tested datasets
are backed up from the user space to the backup space ver-
sion by version while the restore runs in the reverse di-
rection. Note that before each backup/restore, we always
flush the file system cache using the command: “echo 3 >
/proc/sys/vm/drop_caches”.

To simulate users’ retention (deletion) requirements in
backup systems, we retain the most recent 20 versions. Thus
Version n−20 is deleted after Version n is backed up, which is
the same as the previous work HAR [15] and CMA [14]. For
throughput (time cost) of backup, restore, and GC/Arranging
in our evaluation, we present the average results of five runs.

Container-based I/O is considered, because many
deduplication-based storage systems usually combine
with compression techniques, and all chunks are stored in
containers as the basic unit for compression. Because here
we focus on deduplication and compression techiniques are
orthogonal to deduplication, we do not introduce compression
in evaluations.
Evaluation Dataset. Four backup datasets are used for eval-
uation as shown in Table 1. These datasets represent various
typical backup workloads, including website snapshots, an
open source code project, virtual machine images, and a syn-
thetic dataset, with deduplication ratios varying from 2.19
to 44.65. WEB, SYN, and VMS datasets have been used in
several studies of data deduplication [15, 41, 43].

USENIX Association 19th USENIX Conference on File and Storage Technologies 179

 2

 4

 6

 8

0 20 40 60 80 100

A
c
tu

a
l
D

e
d

u
p

lic
a

ti
o

n
 R

a
ti
o

After #-th Version is Backed Up

Exact
HAR+PGC
HAR+CMA

MFDedup
Capping+PGC
Capping+CMA

(a) WEB

 1.2

 1.6

 2

 2.4

0 20 40 60 80 100

A
c
tu

a
l
D

e
d

u
p

lic
a

ti
o

n
 R

a
ti
o

After #-th Version is Backed Up

Exact
HAR+PGC
HAR+CMA

MFDedup
Capping+PGC
Capping+CMA

(b) CHM

 0

 5

 10

 15

 20

0 20 40 60 80 100

A
c
tu

a
l
D

e
d

u
p

lic
a

ti
o

n
 R

a
ti
o

After #-th Version is Backed Up

Exact
HAR+PGC
HAR+CMA

MFDedup
Capping+PGC
Capping+CMA

(c) VMS

 0

 5

 10

 15

 20

0 40 80 120 160 200

A
c
tu

a
l
D

e
d

u
p

lic
a

ti
o

n
 R

a
ti
o

After #-th Version is Backed Up

Exact
HAR+PGC
HAR+CMA

MFDedup
Capping+PGC
Capping+CMA

(d) SYN

Figure 7: Actual Deduplication Ratio of MFDedup and five approaches running on four datasets (retaining 20 backups).

 0

 300

 600

 900

 1200

1 20 40 60 80 100

B
a
c
k
 u

p
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

#-th of Versions

MFDedup
HAR

Capping

(a) WEB

 0

 500

 1000

 1500

 2000

 2500

 3000

1 20 40 60 80 100

B
a
c
k
 u

p
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

#-th of Versions

MFDedup
HAR

Capping

(b) VMS

Figure 8: Backup throughput of MFDedup and two other
rewriting approaches running on two selected datasets (due
to space limit), without considering (offline) Arranging.

5.2 Actual Deduplication Ratio
As mentioned in Section 2, rewriting and GC techniques
(e.g. HAR, Capping, and CMA) consume more storage space
in exchange for better restore and GC performance. Mean-
while, MFDedup ignores Skip duplicate chunks to implement
OPT data layout, which also reduces the deduplication ratio.
Hence, in this subsection, we evaluate MFDedup and other
approaches with the Actual Deduplication Ratio (denoted by
ADR) defined as Total Size o f the Dataset

Size a f ter Running an Approach , which reflects
the corresponding reduced deduplication ratio due to these
techniques (such as rewriting).

Figure 7 shows ADR of MFDedup, Exact Deduplication,
and other approaches, including combinations of rewriting
(HAR and Capping) and GC (Perfect GC and CMA) tech-
niques. Here MFDedup includes its GC approach. Note that
we only retain the latest 20 backup versions in our evaluation,
and thus Perfect GC and CMA represent two typical GC tech-
niques using Mark-Sweep with utilization thresholds set at
0% and 100%, respectively. Perfect GC reclaims all possible
space, while CMA runs faster but leaves unreferenced chunks
in containers that are partially referenced, so they show two
kinds of extreme impacts of GC.

Generally, Figure 7 shows that MFDedup achieves ADR
that is very close to Exact deduplication, which is much higher
than other rewriting and GC approaches. This is because the
space cost of ignoring Skip duplicate chunks in MFDedup is
quite small, especially compared with the number of rewritten
chunks in other approaches.

Figure 7 also shows rewriting techniques cause a decrease
in ADR when GC starts after version 21. When the CMA
technique (higher GC speed, fewer unreferenced chunks re-
moved) is added, this loss worsens. This is consistent with
our discussion in Section 2: rewriting reduces deduplication

while GC also can lead to more rewritten chunks. Meanwhile,
deletion and GC are naturally supported in our OPT data
layout with NDF and AVAR techniques, which has no frag-
mentation issue and thus no space cost for MFDedup. Overall,
MFDedup achieves a 1.12× to 2.19× higher ADR than other
approaches due to the OPT data layout.

5.3 Backup Throughput
In this section, we study backup throughput of MFDedup com-
pared with rewriting approaches. Here we do not consider the
impact of GC since it is usually an offline process. Both HAR
and Capping use a full-in-memory global fingerprint index
while MFDedup applies NDF-based local fingerprint index.
To minimize the performance impact of reading datasets, we
back up the datasets from a ramdisk to measure the backup
throughput.

Figure 8 shows backup throughput of the three approaches,
which have similar results for a given dataset. This high-
lights that MFDedup does not sacrifice backup throughput
to achieve the other benefits we discuss. The performance
of the three techniques is similarly limited by the chunking
and SHA1 digest calculation. In theory, since MFDedup no
longer rewrites duplicate chunks (thus achieving higher Ac-
tual Deduplication Ratio in Section 5.2), its storage I/O when
backing up will also be smaller than the traditional design.

Indexing Overhead. During backups, we measured the
maximum memory cost for the NDF index, which varied
from 6.27MB to 46.35MB (only indexing 2 backup versions).
In contrast, traditional deduplication approaches maintain a
global fingerprint index for all 20 backup versions and would
require 26.81MB to 64.45MB space. Note that the traditional
global index grows with the number of retained versions,
while NDF only maintains 2 indices.

5.4 Restore Throughput
Previous approaches [15, 23] use Speed Factor to measure
restore throughput. It is defined as the ratio of useful data
restored per container read in deduplication-based backup
systems, assuming using fix-sized containers as the read I/O
unit [23]. Since MFDedup uses variable-sized containers to
hold categories as the I/O unit, thus we define three metrics
in this subsection, Restore Throughput, Seek Number, and
Read Amplification Factor. Here Seek Number is defined
as the number of seek operations required for reading contain-
ers/volumes on disk devices while Read Amplification Factor

180 19th USENIX Conference on File and Storage Technologies USENIX Association

 0

 80

 160

 240

 320

1 20 40 60 80 100

fread()

R
e

s
to

re
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

#-th of Versions

MFDedup
HAR

Capping

(a) WEB

 0

 60

 120

 180

 240

1 20 40 60 80 100

fread()

R
e

s
to

re
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

#-th of Versions

MFDedup
HAR

Capping

(b) CHM

 0

 70

 140

 210

 280

1 20 40 60 80 100

fread()

R
e

s
to

re
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

#-th of Versions

MFDedup
HAR

Capping

(c) VMS

 0

 60

 120

 180

 240

1 40 80 120 160 200

fread()

R
e

s
to

re
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

#-th of Versions

MFDedup
HAR

Capping

(d) SYN

Figure 9: Restore Throughput of MFDedup, HAR, and Capping on four backup datasets. fread() denotes sequential throughput
of the backup device.

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

1 20 40 60 80 100

S
e
e
k
 F

a
c
to

r

#-th of Versions

MFDedup
HAR

Capping

(a) WEB

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

1 20 40 60 80 100

S
e
e
k
 F

a
c
to

r

#-th of Versions

MFDedup
HAR

Capping

(b) VMS

Figure 10: Seek Number of MFDedup, HAR, and Capping
on restoring two typical datasets (due to space limit).

 0

 1

 2

 3

 4

1 20 40 60 80 100R
e
a
d
 A

m
p
lif

ic
a
ti
o
n
 F

a
c
to

r

#-th of Versions

MFDedup
HAR

Capping

(a) WEB

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 20 40 60 80 100R
e
a
d
 A

m
p
lif

ic
a
ti
o
n
 F

a
c
to

r

#-th of Versions

MFDedup
HAR

Capping

(b) VMS

Figure 11: Read Amplification Factor of MFDedup, HAR,
and Capping on restoring two datasets (due to space limit).

is defined in Section 2.2.
Figures 9, 10 and 11 present the restore results of MFD-

edup, HAR, and Capping on the three metrics, which demon-
strate that Restore Throughput is generally consistent with
the other two metrics. Figure 9 shows that HAR performs
better than Capping in Restore Throughput, but MFDedup
achieves up to 11.64× (WEB), 4.54× (CHM), 2.63× (VMS)
and 3.73× (SYN) higher than HAR. This is because MFD-
edup has eliminated fragmentation by maintaining locality of
backup workloads on the OPT data layout, while fragmen-
tation (though alleviated) still exists in HAR and Capping
based systems and becomes worse with higher versions.

Figure 10 shows the Seek Number on two datasets. Results
for the other datasets were consistent and removed for space
reasons. MFDedup reduces the Seek Number from thousands
for HAR and Capping to 20, which is because it groups several
archived categories into one big, sequentially written volume;
Capping and HAR need more seek operations due to their
scattered distribution of required chunks.

On the other hand, Figure 11 shows the Read Amplification
Factor (results were consistent for all datasets). MFDedup has
the smallest Read Amplification Factor, which is only 34.32%
of Capping and 50.19% of HAR on average. This is because

its OPT data layout has eliminated fragmentation. Meanwhile,
HAR and Capping will encounter more unneeded chunks in
loaded containers when restoring. Read Amplification Factor
is less than 1 for MFDedup due to Internal deduplication
within a backup version (Figure 2), so read chunks can be used
multiple times for a restore. Therefore, restore throughput of
MFDedup is even higher than the storage media: up to 1.5×
of fread(), which means MFDedup can completely utilize the
performance of storage devices.

Note that these result are also evaluated while retaining
20 backup versions. If we retain more backup versions, the
restore results of HAR and Capping will decrease, as is dis-
cussed in many previous works [15, 23]. Without fragmenta-
tion, MFDedup achieves a consistently high Restore Through-
put, even when retaining more backup versions.

5.5 Arranging vs. Traditional GC
Compared with traditional deduplication approaches, MFD-
edup has the benefit of nearly zero-overhead Garbage Collec-
tion (GC), but adds the offline Arranging process. Therefore,
in this subsection, we evaluate the time cost of Arranging in
comparison with Perfect GC, which reflects the overhead for
updating the OPT data layout in MFDedup.

GC approaches mainly differ in the technique to select the
containers and chunks to clean. Once selected though, all
the GC techniques involve migrating referenced chunks into
new, immutable containers. To simplify our evaluation, we
conservatively focus on the cost of reading selected containers
and migrating valid chunks into new containers since that
is the common phase. This is a lower bound on the cost
of GC since it neglects the selection phase, which involves
enumerating the live files/chunks [11].

The results are shown in Figure 12 comparing Arranging
and Perfect GC. Since we are retaining 20 versions, GC does
not run for the first 20 versions, though Arranging does. An-
alyzing the steady-state performance after the 20th version,
Arranging’s total processing period is only 45% (WEB), 37%
(CHM) and 25% (SYN) of GC’s total processing time on
average. But in VMS, Arranging takes 9% longer than GC
because VMS’s modification style (always change the same
region in each backup) makes GC very easy. Generally, Figure
12 suggests that Arranging is usually faster than GC, which
would take even more time if the selection phase were in-
cluded in GC’s total. When MFDedup runs its version of GC,

USENIX Association 19th USENIX Conference on File and Storage Technologies 181

 0

 20

 40

 60

 80

1 20 40 60 80 100

P
ro

c
e

s
s
in

g
 P

e
ri
o

d
 (

s
)

#-th of Versions

GarbageCollection
Arranging

(a) WEB

 0

 20

 40

 60

 80

1 20 40 60 80 100

P
ro

c
e

s
s
in

g
 P

e
ri
o

d
 (

s
)

#-th of Versions

GarbageCollection
Arranging

(b) CHM

 0

 50

 100

 150

 200

 250

 300

1 20 40 60 80 100

P
ro

c
e

s
s
in

g
 P

e
ri
o

d
 (

s
)

#-th of Versions

GarbageCollection
Arranging

(c) VMS

 0

 40

 80

 120

 160

 200

 240

1 40 80 120 160 200

P
ro

c
e

s
s
in

g
 P

e
ri
o

d
 (

s
)

#-th of Versions

GarbageCollection
Arranging

(d) SYN

Figure 12: Time cost comparison between Arranging of MFDedup and GC of traditional deduplication systems.

 32

 128

 512

 2048

 8192

1 20 40 60 80 100

S
iz

e
 o

f
V

o
lu

m
e
 (

M
B

)

#-th of Volumes

WEB
CHM

VMS
SYN

(a) Volume

10
-1

10
0

10
1

10
2

10
3

10
4

1 20 40 60 80 100S
iz

e
 o

f
C

a
te

g
o
ri
e
s
 (

M
B

)

Active Categories: Cat.(#,100)

WEB
CHM

VMS
SYN

(b) Active Category

Figure 13: Size distribution of Volumes and Categories after
deduplicating 100 backup versions with MFDedup.

the processing time is insignificant since large Volumes can
be deleted at once without any copy-forward.

Arranging has a consistent processing time across versions,
while GC’s runtime is more variable, and consistent overheads
are easier to plan for in a storage system. Arranging’s process-
ing time is consistent because it is a local process on a recent
version, while GC is a global process. As Figure 6 shows,
Arranging is always applied in Active categories generated
in the same version, and it always achieves a better locality.
On the other hand, GC in other techniques suffers from poor
locality [17], because the selected containers and chunks are
distributed randomly.

Note that other GC approaches will be faster than Perfect
GC, but at the cost of greatly decreasing Actual Deduplication
Ratio as discussed in Section 5.2. In contrast, MFDedup has
almost no deduplication ratio loss for GC while supporting
immediate deletion and GC, and also achieving nearly perfect
restore performance with an acceptable Arranging cost, as
shown in Figures 7, 9, and 12.

5.6 Size Distribution of Volumes/Categories
In this section, we demonstrate the data layout of MFDedup
with the size of volumes and active categories. We back up
100 versions without retention for evaluation. After that, there
will be 99 Volumes and 100 active categories, and these active
categories compose a logical volume (they will be archived
in a volume after the next Arranging).

Figure 13(a) shows the size of Volumes varying from 90MB
to 1.3GB on our four datasets. The results can tell administra-
tors how much space will be freed by MFDedup by deleting
backup versions (volumes). The results also help administra-
tors estimate how much more can be written to the deduplica-
tion system, since volumes represent the difference between
neighboring versions. For previous deduplication systems, it

is difficult to answer these two issues [35], though sketching
approaches have been considered [19].

Figure 13(b) shows the size of active Categories vary in a
large range. We learn that the maximum categories hold about
16.99% (WEB), 46.46% (CHM), 18.49% (VMS), 51.87%
(SYN) of the size of the last backup version. This indicates
the reserved-space requirement for offline Arranging in MFD-
edup is much smaller than a full backup as discussed in Sec-
tion 4.5. Meanwhile, the reserved space can be further reduced
by compressing categories.

6 Conclusion and Future Work
In this paper, we propose a management-friendly deduplica-
tion framework, MFDedup. Different from traditional ‘Write
Friendly’ style deduplication architectures, MFDedup, is de-
signed to be ‘Management-Friendly’ and solves the fragmen-
tation problem in deduplication-based backup systems, by
introducing a novel deduplication process (NDF) and a local-
ity improvement process (AVAR) to generate OPT data layout
and thus maintain locality of backup workloads.

With the benefits of eliminating the fragmentation prob-
lem, MFDedup improves actual deduplication ratios (1.12×
to 2.19× higher) and restore throughput (2.63× to 11.64×
higher) than previous approaches with accepted time cost on
the offline ‘Arranging’ to update the OPT data layout, while
GC in MFDedup is nearly zero-overhead.

As future work, we are considering adding delta compres-
sion in MFDedup for further space savings as well as handling
more complex backup scenarios such as incremental backups.

Acknowledgments
We are grateful to our shepherd Danny Harnik and the anony-
mous reviewers for their insightful comments. This research
was partly supported by National Key R&D Program of
China under Grant no. 2018YFB1003800, 2018YFB1003805,
the National Natural Science Foundation of China under
Grant no. 61972441, no. 61972112, and no. 61832004, the
Shenzhen Science and Technology Program under Grant no.
JCYJ20190806143405318, no. JCYJ20200109113427092,
and no. JCYJ20170413105929681, Innovation Fund of
WNLO 2018WNLOKF008.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the funding agencies.

182 19th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Intel intelligent storage acceleration library crypto ver-

sion. https://github.com/intel/isa-l_crypto. [Online].

[2] Yamini Allu, Fred Douglis, Mahesh Kamat, Ramya Prab-
hakar, Philip Shilane, and Rahul Ugale. Can’t we all
get along? redesigning protection storage for modern
workloads. In Proceedings of the 2018 USENIX Confer-
ence on USENIX Annual Technical Conference (ATC’
18), pages 705–718, Boston, MA, July 2018. USENIX
Association.

[3] George Amvrosiadis and Medha Bhadkamkar. Identify-
ing trends in enterprise data protection systems. In
Proceedings of the 2015 USENIX Annual Technical
Conference (USENIX ATC ’15), page 151–164, USA,
September 2015. USENIX Association.

[4] George Amvrosiadis and Medha Bhadkamkar. Getting
back up: Understanding how enterprise data backups
fail. In Proceedings of the 2016 USENIX Conference on
USENIX Annual Technical Conference (ATC’ 16), pages
479–492, Denver, CO, June 2016. USENIX Association.

[5] Lior Aronovich, Ron Asher, Eitan Bachmat, Haim Bit-
ner, Michael Hirsch, and Shmuel T Klein. The design
of a similarity based deduplication system. In Proceed-
ings of SYSTOR 2009: The Israeli Experimental Systems
Conference, pages 1–14, Haifa, Israel, October 2009. As-
sociation for Computing Machinery.

[6] Tony Asaro and Heidi Biggar. Data de-duplication and
disk-to-disk backup systems: Technical and business
considerations. The Enterprise Strategy Group, pages
2–15, 2007.

[7] Deepavali Bhagwat, Kave Eshghi, Darrell DE Long, and
Mark Lillibridge. Extreme binning: Scalable, parallel
deduplication for chunk-based file backup. In 2009
IEEE International Symposium on Modeling, Analysis
& Simulation of Computer and Telecommunication Sys-
tems, pages 1–9. IEEE, 2009.

[8] William J Bolosky, Scott Corbin, David Goebel, and
John R Douceur. Single instance storage in windows
2000. In Proceedings of the 4th USENIX Windows
Systems Symposium, pages 13–24, Seattle, WA, August
2000. USENIX Association.

[9] Zhichao Cao, Shiyong Liu, Fenggang Wu, Guohua
Wang, Bingzhe Li, and David H. C. Du. Sliding look-
back window assisted data chunk rewriting for improv-
ing deduplication restore performance. In Proceedings
of the 17th USENIX Conference on File and Storage
Technologies (FAST’ 19), pages 129–142, Boston, MA,
February 2019. USENIX Association.

[10] Zhichao Cao, Hao Wen, Fenggang Wu, and David H. C.
Du. Alacc: Accelerating restore performance of data
deduplication systems using adaptive look-ahead win-
dow assisted chunk caching. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies
(FAST’ 18), pages 309–324, Oakland, CA, USA, Febru-
ary 2018. USENIX Association.

[11] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony
Wong, Shiqin Yan, and Fabiano Botelho. The logic
of physical garbage collection in deduplicating storage.
In Proceedings of the 15th Usenix Conference on File
and Storage Technologies (FAST’ 17), Santa Clara, CA,
USA, February 2017. USENIX Association.

[12] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ottean,
Jin Li, and Sudipta Sengupta. Primary data deduplica-
tion—large scale study and system design. In Presented
as part of the 2012 USENIX Annual Technical Confer-
ence (ATC’12), pages 285–296, Boston, MA, October
2012. USENIX Association.

[13] Kave Eshghi and Hsiu Khuern Tang. A framework
for analyzing and improving content-based chunking
algorithms. Hewlett-Packard Labs Technical Report TR,
30(2005), 2005.

[14] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Jingning Liu, Wen Xia, Fangting Huang, and Qing
Liu. Reducing fragmentation for in-line deduplication
backup storage via exploiting backup history and cache
knowledge. IEEE Transactions on Parallel and Dis-
tributed Systems, 27(3):855–868, 2015.

[15] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Wen Xia, Fangting Huang, and Qing Liu. Accelerating
restore and garbage collection in deduplication-based
backup systems via exploiting historical information.
In Proceedings of the 2014 USENIX Annual Technical
Conference (ATC’14), page 181–192, Philadelphia, PA,
October 2014. USENIX Association.

[16] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Wen Xia, Yucheng Zhang, and Yujuan Tan. Design
tradeoffs for data deduplication performance in backup
workloads. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies (FAST’15), page
331–344, Santa Clara, CA, February 2015. USENIX
Association.

[17] Fanglu Guo and Petros Efstathopoulos. Building a high-
performance deduplication system. In Proceedings of
the 2011 USENIX Conference on USENIX Annual Tech-
nical Conference (ATC’ 11), pages 1–25, Portland, OR,
October 2011. USENIX Association.

USENIX Association 19th USENIX Conference on File and Storage Technologies 183

[18] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin
Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and
Jihong Kim. Improving file system performance of mo-
bile storage systems using a decoupled defragmenter. In
Proceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference (ATC’ 17), pages 759–771,
Santa Clara, CA, July 2017. USENIX Association.

[19] Danny Harnik, Moshik Hershcovitch, Yosef Shatsky,
Amir Epstein, and Ronen Kat. Sketching volume ca-
pacities in deduplicated storage. ACM Transactions on
Storage, 15(4), December 2019.

[20] Muhammad Asim Jamshed, YoungGyoun Moon,
Donghwi Kim, Dongsu Han, and KyoungSoo Park. mos:
A reusable networking stack for flow monitoring mid-
dleboxes. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’17), pages
113–129, Boston, MA, March 2017.

[21] Keren Jin and Ethan L Miller. The effectiveness of
deduplication on virtual machine disk images. In Pro-
ceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference, pages 1–12, Haifa, Israel, oct 2009.
Association for Computing Machinery.

[22] Michal Kaczmarczyk, Marcin Barczynski, Wojciech Kil-
ian, and Cezary Dubnicki. Reducing impact of data
fragmentation caused by in-line deduplication. In Pro-
ceedings of the 5th Annual International Systems and
Storage Conference, SYSTOR ’12, Haifa, Israel, Octo-
ber 2012. Association for Computing Machinery.

[23] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat.
Improving restore speed for backup systems that use
inline chunk-based deduplication. In Proceedings of the
11th USENIX Conference on File and Storage Technolo-
gies (FAST’13), page 183–198, San Jose, CA, February
2013. USENIX Association.

[24] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat,
Vinay Deolalikar, Greg Trezis, and Peter Camble. Sparse
indexing: Large scale, inline deduplication using sam-
pling and locality. In Proccedings of the 7th Confer-
ence on File and Storage Technologies (FAST’ 09), vol-
ume 9, pages 111–123, San Francisco, California, Febru-
ary 2009. USENIX Association.

[25] Bo Mao, Hong Jiang, Suzhen Wu, Yinjin Fu, and Lei
Tian. Read-performance optimization for deduplication-
based storage systems in the cloud. ACM Trans. Storage,
10(2), March 2014.

[26] Dirk Meister, Jürgen Kaiser, and André Brinkmann.
Block locality caching for data deduplication. In Pro-
ceedings of the 6th International Systems and Storage
Conference (SYSTOR’13), Haifa, Israel, October 2013.
Association for Computing Machinery.

[27] Dutch T Meyer and William J Bolosky. A study of
practical deduplication. ACM Transactions on Storage
(ToS), 7(4):1–20, 2012.

[28] Jaehong Min, Daeyoung Yoon, and Youjip Won. Effi-
cient deduplication techniques for modern backup oper-
ation. IEEE Transactions on Computers, 60(6):824–840,
2011.

[29] Athicha Muthitacharoen, Benjie Chen, and David
Mazieres. A low-bandwidth network file system. In
Proceedings of the Eighteenth ACM Symposium on Op-
erating Systems Principles (SOSP’ 01), pages 174–187,
Banff, Alberta, Canada, December 2001. Association
for Computing Machinery.

[30] Young Jin Nam, Dongchul Park, and David H.C. Du.
Assuring demanded read performance of data dedupli-
cation storage with backup datasets. In 2012 IEEE 20th
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Sys-
tems (MASCOTS ’12), pages 201–208, USA, July 2012.
IEEE Computer Society.

[31] Youngjin Nam, Guanlin Lu, Nohhyun Park, Weijun
Xiao, and David HC Du. Chunk fragmentation level: An
effective indicator for read performance degradation in
deduplication storage. In Proceedings of the 2011 IEEE
International Conference on High Performance Comput-
ing and Communications (HPCC’ 11), pages 581–586,
USA, July 2011. IEEE, IEEE Computer Society.

[32] Fan Ni and Song Jiang. Rapidcdc: Leveraging duplicate
locality to accelerate chunking in cdc-based deduplica-
tion systems. In Proceedings of the ACM Symposium on
Cloud Computing (SOCC’ 19), pages 220–232, Santa
Cruz, CA, USA, November 2019. Association for Com-
puting Machinery.

[33] Calicrates Policroniades and Ian Pratt. Alternatives for
detecting redundancy in storage systems data. In Pro-
ceedings of the Annual Conference on USENIX Annual
Technical Conference (ATC’04), pages 73–86, Boston,
MA, October 2004. USENIX Association.

[34] Sean Quinlan and Sean Dorward. Venti: A new approach
to archival storage. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (FAST’02,
volume 2, pages 89–101, Monterey, CA, February 2002.
USENIX Association.

[35] Philip Shilane, Ravi Chitloor, and Uday Kiran Jonnala.
99 deduplication problems. In Proceedings of the 8th
USENIX Conference on Hot Topics in Storage and
File Systems (HotStorage’16), page 86–90, Denver, CO,
USA, June 2016. USENIX Association.

184 19th USENIX Conference on File and Storage Technologies USENIX Association

[36] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shi-
lane, Geoff Kuenning, and Erez Zadok. Generating
realistic datasets for deduplication analysis. In Proceed-
ings of the 2012 USENIX Annual Technical Conference
(ATC’12), pages 261–272, Boston, MA, 2012. USENIX
Association.

[37] Michael Vrable, Stefan Savage, and Geoffrey M Voelker.
Cumulus: Filesystem backup to the cloud. ACM Trans-
actions on Storage (TOS), 5(4):1–28, 2009.

[38] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shi-
lane, Stephen Smaldone, Mark Chamness, and Windsor
Hsu. Characteristics of backup workloads in produc-
tion systems. In Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies (FAST’12),
volume 12, pages 4–4, San Jose, CA, February 2012.
USENIX Association.

[39] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip
Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun
Zhou. A comprehensive study of the past, present, and
future of data deduplication. Proceedings of the IEEE,
104(9):1681–1710, 2016.

[40] Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. Silo:
A similarity-locality based near-exact deduplication
scheme with low ram overhead and high throughput.
In Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference (ATC’ 11), pages
26–30, Portland, OR, October 2011. USENIX Associa-
tion.

[41] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua,
Yuchong Hu, Yucheng Zhang, and Qing Liu. Fastcdc: A

fast and efficient content-defined chunking approach for
data deduplication. In Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference
(ATC’ 16), page 101–114, Denver, CO, USA, October
2016. USENIX Association.

[42] Yucheng Zhang, Hong Jiang, Dan Feng, Wen Xia, Min
Fu, Fangting Huang, and Yukun Zhou. Ae: An asym-
metric extremum content defined chunking algorithm
for fast and bandwidth-efficient data deduplication. In
2015 IEEE Conference on Computer Communications
(INFOCOM), pages 1337–1345. IEEE, August 2015.

[43] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang,
Yu Hua, and Qiang Wang. Finesse: Fine-grained fea-
ture locality based fast resemblance detection for post-
deduplication delta compression. In Proceedings of
17th USENIX Conference on File and Storage Technolo-
gies (FAST ‘19), pages 121–128, Santa Clara, CA, USA,
February 2019. USENIX Association.

[44] Nannan Zhao, Hadeel Albahar, Subil Abraham, Keren
Chen, Vasily Tarasov, Dimitrios Skourtis, Lukas Rup-
precht, Ali Anwar, and Ali R. Butt. Duphunter: Flexible
high-performance deduplication for docker registries. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 769–783. USENIX Association, July
2020.

[45] Benjamin Zhu, Kai Li, and R Hugo Patterson. Avoiding
the disk bottleneck in the data domain deduplication
file system. In Proceedings of the 6th USENIX Con-
ference on File and Storage Technologies (FAST’ 08),
volume 8, pages 1–14, San Jose, California, February
2008. USENIX Association.

USENIX Association 19th USENIX Conference on File and Storage Technologies 185

Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to
Eliminate Duplicate Writes

You Zhou†, Qiulin Wu†, Fei Wu†∗, Hong Jiang‡, Jian Zhou†, and Changsheng Xie†

†Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology,
Huazhong University of Science and Technology

‡Department of Computer Science and Engineering, University of Texas at Arlington

Abstract
Duplicate writes are prevalent in diverse storage systems,
originating from data duplication, journaling, and data reloca-
tions, etc. As flash-based SSDs have been widely deployed,
these writes can significantly degrade their performance and
lifetime. To eliminate duplicate writes, prior studies have
proposed innovative approaches that exploit the address re-
mapping utility inside SSDs. However, remap operations lead
to a mapping inconsistency problem, which may cause data
loss and has not been properly addressed in existing studies.

In this paper, we propose a novel SSD design, called Remap-
SSD, with two notable features. First, it provides a remap
primitive, which allows the host software and SSD firmware
to perform logical writes of duplicate data at almost zero
cost. Second, a hybrid storage architecture is employed to
maintain the mapping consistency. Small byte-addressable
non-volatile RAM is used to persist remapping metadata in
a log-structured manner and is managed synergistically with
flash memory. We verify Remap-SSD on a software SSD
emulator with three case studies: intra-SSD deduplication,
SQLite journaling, and F2FS cleaning. Experimental results
show that Remap-SSD can realize the full potential of address
remapping to improve SSD performance and lifetime.

1 Introduction
Duplicate writes are pervasive in real-world storage systems.
Not only data duplication is common [16, 51, 62, 64], but also
a broad spectrum of system software and applications intro-
duce duplicate writes. For example, many databases and file
systems employ double-write journaling to guarantee write
atomicity [24, 46, 55]; data relocations are required for space
cleaning in log-structured/copy-on-write systems [35,46] and
for file defragmentation [23]; file copy and snapshotting opera-
tions are common behaviors [60, 66].

On the other hand, NAND flash-based solid state drives
(SSDs) have been widely employed in various storage systems.
Due to the idiosyncrasies of flash memory, the SSD-internal
∗Corresponding author. Email: wufei@hust.edu.cn.

firmware, called flash translation layer (FTL), performs out-
of-place updates. Logical pages written from the host are
always mapped to new free flash pages, while obsolete flash
pages are invalidated. Thus, a logical-to-physical (L2P) mapp-
ing table is maintained to translate logical page numbers
(LPNs) to physical page numbers (PPNs) [21, 42]. For fast
lookups, this table is typically cached in SSD-internal DRAM.
The FTL also conducts garbage collection (GC) periodically
to reclaim invalid pages in the granularity of flash blocks,
where valid pages are relocated and then the blocks are erased.
Notice that writes are harmful to both the performance and
lifetime of SSDs [14, 43]. This situation deteriorates, as flash
technologies are scaling rapidly to increase the bit density but
at the cost of degraded write speed and endurance [33].

To eliminate duplicate writes on flash memory, innovative
approaches have been proposed to exploit the SSD address
remapping functionality [16, 17, 22–24, 28, 34, 45, 46, 60]. By
directly modifying the L2P mapping table, copies and moves
of data pages as well as duplicate writes of repeating data
pages can be completed quickly without conducting physical
writes. Also, data transfers between the host and SSD can be
avoided. Although enabling such remapping requires minor
modifications to the host software and SSD interface, the
benefits are quite worthwhile. The performance, lifetime, and
space utilization of SSDs can be improved significantly.

However, remap operations lead to a critical mapping incon-
sistency problem, which may cause data corruption. Whenever
a logical data page is written to a flash page, the FTL needs
to store some house-keeping metadata including the relevant
LPN either in the out-of-band (OOB) area of the same flash
page [21, 41] or in another reserved flash page [8]. These per-
sistent physical-to-logical (P2L) mappings are indispensable
for completing data relocations during each GC operation
and for recovering L2P mappings after sudden power failures
(see Section 2). Remap operations change the L2P mapp-
ings, but the relevant P2L mappings on flash memory cannot
be updated accordingly. Due to such mapping inconsistency,
wrong L2P mappings would be modified after data reloca-
tions during GC or be restored during power-off recovery,

USENIX Association 19th USENIX Conference on File and Storage Technologies 187

compromising data consistency.
This mapping inconsistency problem, although crucial, has

not been properly addressed in prior studies. The common
solution in [16, 22, 23, 34, 45, 46] is to persist new P2L mapp-
ings generated by remap operations in a dedicated log on
flash memory. Its main drawback is that the log size would
increase continuously over time, incurring prohibitively high
lookup overheads at last. Although limiting the log size could
confine the lookup overheads, it would also restrict the usage
of SSD address remapping. In addition, some other solutions
have been proposed but only fit in very limited application
scenarios of address remapping [24, 28]. These solutions and
their drawbacks are discussed thoroughly in Section 3.3.

In this paper, we propose a novel SSD design, called Remap-
SSD, to safely and efficiently exploit SSD address remapping
for reducing duplicate writes. Its two notable features are: (1)
providing a remap primitive, which allows the host software
and SSD firmware to conduct logical writes of duplicate data
at almost zero cost; and (2) employing a hybrid storage ar-
chitecture, where small byte-addressable non-volatile RAM
(NVRAM) is employed to store remapping metadata in a log-
structured manner and is managed synergistically with flash
storage. Remap-SSD not only ensures that persistent P2L
mappings are always consistent with the latest L2P mappings,
but also enables fast lookups of P2L mappings during GC.
We verify Remap-SSD on FEMU (a software SSD emula-
tor [38]) with three case studies: intra-SSD deduplication,
SQLite journaling, and F2FS cleaning. Experimental results
show that Remap-SSD can realize the full potential of address
remapping for improving SSD performance and lifetime.

2 Background
Mappings in flash-based SSDs: Modern SSDs generally em-
ploy a page-level FTL, powered by embedded processors and
DRAM, for high performance [20, 21]. Since a host logical
page can be dynamically mapped to any flash page, an L2P
mapping table is maintained for address translation. Assum-
ing the page size is 4KB and each mapping entry takes 4B, the
table size is about 0.1% of the SSD capacity. The table is per-
sisted on flash memory and usually cached in DRAM for fast
lookups, which locate on the critical path of I/O processing.

When a logical page is written to a flash page, the FTL
transparently persists the reverse P2L mapping (i.e., the LPN)
and write timestamp as house-keeping metadata on flash me-
mory for two reasons. First, data pages are periodically mi-
grated on flash memory for GC and wear leveling purposes.
P2L mappings need to be retrieved to locate and modify the re-
levant L2P mappings after the migrations. Second, the mapp-
ing consistency needs to be guaranteed. The latest L2P mapp-
ings in DRAM may get lost after sudden power failures [42].
By scanning the persistent metadata, the FTL can obtain all
the PPN-LPN entries and write order of PPNs, from which
the latest L2P mappings can be restored.

Flash management: SSDs are architected with a number
of channels connecting many flash dies, each of which is a
parallel unit for accesses [30]. It has been a common prac-
tice, especially for high-performance SSDs, to organize flash
storage in superblocks [8, 14, 20, 54, 58]. A superblock con-
sists of flash blocks with the same offset across multiple dies.
Both space allocations for data writes and GC operations are
performed in the unit of a superblock. This has several ad-
vantages. First, the intra-SSD parallelism can be maximized.
Second, flash management is simplified due to a large gra-
nularity. Third, it facilitates die-level RAID, as parity can be
easily added in each superblock [14, 33, 67]. Finally, the FTL
can accelerate the recovery speed of L2P mappings by storing
house-keeping metadata of each superblock collectively in its
tail flash pages [8]. Then, only a small amount of tail flash
pages need to be scanned, rather than all the flash pages.

Non-volatile RAM: NVRAM technologies (e.g., PCRAM
and MRAM) have received much attention and their deve-
lopments are advancing [47]. Compared to flash technolo-
gies, they offer attractive benefits, such as lower latency and
byte-addressability, but have lower bit density and higher cost.
Therefore, NVRAM complements flash memory well and has
opened up new opportunities to enhance flash-based SSDs for
various purposes [26, 28, 40, 44]. Notably, SSDs with hybrid
storage architectures have entered the market since 2019 (e.g.,
Intel Optane memory H10 with Optane memory and QLC
flash [7]) and will gain increased popularity in the near future.

3 Motivation
SSDs have been deployed in diverse storage systems [18,
19], where duplicate writes are prevalent. We illustrate this
with several examples in Section 3.1. Although duplicate
writes degrade the performance, lifetime, and space utilization
of SSDs, they can be eliminated by exploiting SSD address
remapping. We detail where and how prior studies leverage
SSD address remapping in Section 3.2 and their drawbacks
in ensuring mapping consistency in Section 3.3.

3.1 Duplicate Writes
Data Duplication. One major source of duplicate writes is
data duplication, which is commonplace [10, 39, 51, 62, 64].
For instance, in the disk images of some departmental work-
ing environments [16] and file system images collected from
smartphones [64], the data duplication rate is 8%~86% and an
average of 33%, respectively, while duplicate writes account
for 6%~28% and 22%~48% of total writes; in the three pro-
duction systems at FIU, the ratios of duplicate writes range
from 33% to 92% [22].

Journaling. To guarantee write atomicity, journaling
approaches have been widely used in databases (e.g., MySQL
and SQLite) and file systems (e.g., ext4 and XFS) [24, 46].
Either before-images (e.g., rollback journaling) or after-
images (e.g., write-ahead logging) of updated pages are

188 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: Examples of SSD remap operations. Duplicate
writes to LPNs L2 and L4 can be completed through address
remapping without writing flash pages. However, L2P and
P2L mappings become inconsistent, causing data corruption.

written in a dedicated log, after which updates are applied to
home/original locations in place. Such journaling introduces
double writes of data, for example, causing a worst-case slow-
down of about 73% in ext4 compared to no journaling [55].

Data Relocation. Copy-on-write and log-structuring me-
chanisms are popular means to provide write atomicity and
write sequentiality (e.g., in Couchbase and F2FS) [35, 46].
They conduct out-of-place updates, so periodical cleaning or
compaction operations are required to reclaim storage space
occupied by stale data. In addition, file fragmentation has been
a long-standing problem that degrades the performance of file
systems. Many file systems recommend periodical defragmen-
tation [23]. Both cleaning/compaction and defragmentation
cause data relocations and thus duplicate writes.

Data Copy and Snapshot. Data copy is a frequent behavior
of users and applications. Snapshotting, which provides point-
in-time states of data volumes, is an important feature and a
common routine in storage systems [56]. These operations
may introduce duplicate writes to create physical data copies.

3.2 Exploiting SSD Address Remapping
To eliminate duplicate writes, the SSD address remapping
functionality can be utilized. Assume LPN Ly is written with
a duplicate data page copied or moved from LPN Lx. The FTL
can realize the write by remapping Ly to the flash page storing
Lx, rather than by writing a new free flash page. Such remap
operations, as shown in Figure 1, can be done quickly by
updating the relevant L2P mappings in SSD-internal DRAM.

Many prior studies have proposed to exploit SSD address
remapping in a spectrum of application scenarios, as sum-
marized in Figure 2 and Table 1. Among the studies, a
body of works integrate a data deduplication engine inside
SSDs [16, 22, 34, 50, 63, 65].1 The engine identifies duplicate

1Intra-SSD deduplication presents a drop-in solution that is highly desira-
ble for two reasons. First, the detrimental effects of writes on SSDs can be
substantially alleviated without modifying the host software and consuming
host computing and memory resources. Second, data deduplication can be

data pages written from the host (through hashing finger-
prints). Instead of writing them to flash memory, they can be
remapped to existing flash pages that store the same contents.
Address remapping is also attractive for reducing journaling
overheads [17, 24, 45, 46, 60]. After data pages to be updated
are written to the log, they can be applied by remapping LPNs
of their original locations to the relevant flash pages storing
the log. Using remapping for snapshotting files [60] is straight-
forward, like copying data A in Figure 1. Data relocations for
cleaning [28], compaction [46], and defragmentation [23] can
be accomplished similarly to moving data C in Figure 1.

However, address remapping causes a critical mapping
inconsistency problem. Remap operations modify the L2P
mappings, but the relevant P2L mappings on flash memory
cannot be updated accordingly (because flash memory does
not support in-place updates). Such inconsistency between
L2P and P2L mappings would finally cause data corruption,
since L2P mappings would be altered incorrectly during GC
or be rebuilt falsely during power-off recovery. For example,
in Figure 1, after remapping LPN L2 (previously mapped to
PPN P2) to PPN P1 (already referenced by L1), the L2P and
P2L mappings of P1 become inconsistent ({L1,L2}→ P1 vs.
P1→ L1). Then, after a GC operation migrates the data page
on PPN P1 to P1′ and erases P1, L2 would still be mapped to
P1 wrongly. Consider another scenario where L2P mappings
need to be restored after a sudden power outage. An improper
L2P mapping, i.e., L2→ P2, would be recovered from the
P2L mapping, i.e., P2→ L2, persisted on flash memory.

Although several schemes have been proposed in existing
studies to cope with the mapping inconsistency, they suffer
from severe drawbacks. To facilitate in-depth analysis of the
drawbacks in Section 3.3, we classify the applications of
remapping in two dimensions. Note that remap operations
change the L2P mapping regularity from conventional 1-to-1
to M-to-1. In the first dimension, a remapping scenario is
considered as P-type, if the maximum M, namely degree of
L2P association, is predefined. Otherwise, it is U-type. For
example, data relocation and journaling are P-type (M equals
to 1 and 2, respectively), while deduplication and file copy are
U-type (M depends on content popularity and user behaviors,
respectively). In the second dimension, a remapping scenario
is D-type, if the LPNs and PPNs for future remapping are
deterministic at the time of the PPNs being written. Otherwise,
it is N-type. For instance, in write-ahead logging (D-type),
when data pages being updated are written to the log, the
LPNs of their original locations are already known.

Combining the two dimensions (P/U-type and D/N-type),
applications of SSD address remapping are divided into three
types (PD, PN, and UN), as shown in Figure 2. The UD type
is not applicable because the U type and D type contradict
with each other.

implemented efficiently by utilizing the FTL’s functionalities (e.g., address
remapping and GC) [16]. Also, a hardware hash unit can be employed [22].

USENIX Association 19th USENIX Conference on File and Storage Technologies 189

Table 1: Prior studies exploiting SSD address remapping.

Name Applications of remapping Schemes for mapping
consistency guarantee Major drawbacks

JFTL [17] Write-ahead logging (WAL) None N/AANViL [60] Snapshots, data deduplication, WAL
CAFTL [16],
CA-SSD [22] Intra-SSD data deduplication Maintain a dedicated log

on flash memory to record
P2L mappings changed by

address remapping

High lookup overheads
of P2L mappings

during GC,

poor scalability

Janusd [23] File system defragmentation
Copyless copy [45] WAL, intra-SSD data deduplication

SHARE [46]
WAL, compaction, tree wandering

in copy-on-write databases

PebbleSSD [28]
Cleaning

in log-structured file systems
Replace (fixed-size) flash OOB
with byte-addressable NVRAM

Only apply in P-type
remapping scenarios

WAL-SSD [24] WAL
Write the predetermined LPN

for future remapping to flash OOB
Only apply in PD-type
remapping scenarios

Figure 2: Applications of SSD address remapping. They
can be classified according to characteristics of remapping.

3.3 Schemes for Mapping Consistency

To address the mapping inconsistency problem caused by re-
mapping, several schemes have been proposed, as listed in
Table 1. Taking all types of remapping scenarios into consi-
deration, the common scheme adopted in [16,22,23,45,46] is
to maintain a dedicated log on flash memory for persisting the
P2L mappings changed by remapping. This scheme is referred
to as Remap-SSD-FLog in Section 5. Its major drawback is
that it requires scanning the entire log to retrieve certain P2L
mappings during every GC operation and power-off recovery.
Especially, the log size increases continuously and could grow
very large as remap operations are used. Assume the SSD
capacity is 4TB, page size is 4KB, and each log entry for a
page remap operation takes at least 12B (e.g., 4B PPN + 4B
LPN + 4B timestamp). When 5% or 20% of data pages have
been remapped (these ratios are quite reasonable, consider-
ing the popularity of duplicate writes discussed in Section
3.1), the log size is as large as 600MB or 2.4GB, respec-
tively. Hence, the lookup overheads of P2L mappings would
increase over time and finally become exceedingly high. It
would not be an effective solution to add high-speed NVRAM

for storing the log (denoted as Remap-SSD-NLog in Section
5). This is because the scanning process would still be very
time-consuming, e.g., from tens of milliseconds to seconds
when the log size is hundreds of megabytes.

To confine the lookup overheads, Janusd [23] sets a limit
on the log size and reclaims obsolete mapping entries periodi-
cally. However, remap operations have to be disabled when
the number of valid entries reaches the limit. Additionally,
high reclamation overheads are introduced, i.e., reading and
re-writing the entire log on flash memory.

PebbleSSD [28] proposes an NVRAM-enhanced scheme,
which replaces the fixed-size OOB area in flash pages with
byte-addressable NVRAM. Therefore, P2L mappings of
remapped data pages can be updated in place in the NVRAM
OOB, retaining consistent with the L2P mappings. However,
due to the limited OOB size, this scheme only fits in P-type
remapping scenarios, where the maximum degree of L2P asso-
ciation is limited and small. For UN-type remapping, where
the degree of L2P association may be high, large NVRAM
OOB area would be required. This would greatly increase
the cost. Moreover, NVRAM space utilization would be low,
since not all flash pages have high degrees of L2P association.

By utilizing the property of PD-type remapping, WAL-
SSD [24] writes the predetermined LPN for future remapping
to the OOB area when the relevant flash page is written. Thus,
the L2P and P2L mappings of the flash page are consistent
after the predefined remap operation. This scheme is only app-
licable for PD-type remapping scenarios, because the LPNs
for future remapping are totally uncertain in N-type scenarios.

In summary, existing SSD designs that exploit address re-
mapping restrict the application scenarios and/or usage fre-
quency of remapping severely, mainly due to the L2P and
P2L mapping inconsistency problem. Furthermore, simply
enhancing the SSD with extra NVRAM is inadequate to re-
move the restrictions. As a consequence, the full potential of
SSD address remapping is largely underutilized.

190 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 3: Overview of Remap-SSD. The SSD supports a remap primitive, which can be invoked by host software (ÌÍ) or the
FTL internally (e.g., by an intra-SSD deduplication engine Ë). To guarantee the L2P and P2L mapping consistency, remapping
metadata entries are persisted in NVRAM segments that are exclusively allocated to each flash superblock on demand.

4 Design
In this section, we present a novel SSD design, called Remap-
SSD. The goal is to maximize the utilization of address
remapping in diverse application scenarios and meanwhile
maintain the L2P and P2L mapping consistency efficiently.

4.1 Overview of Remap-SSD

Remap-SSD provides a remap primitive at the firmware/FTL
level, which embodies the address remapping utility, as shown
in Figure 3. The primitive is exposed to the host software as
a vendor specific command, which is supported inherently
in current interface techniques (e.g., NVMe and SATA).
Through the primitive, applications and file systems can copy
or relocate data pages without performing flash writes. Fur-
thermore, the primitive can be used internally by the FTL,
e.g., to eliminate writes of duplicate data when an intra-SSD
deduplication engine is employed.

The remap primitive is formatted as remap(tgtLPN,
srcLPN, length, remapFlag) (tgt: target, src: source). It
remaps a range of LPNs between tgtLPN and tgtLPN +
length - 1 to the flash pages currently mapped to the range
of LPNs between srcLPN and srcLPN + length - 1. The
remapFlag parameter is a 1-bit flag indicating whether the
source LPNs should be deallocated/invalidated or not after re-
mapping. For data relocations, the corresponding flash pages
should no longer be mapped to source LPNs (remapFlag
= 1). Regarding data copies, the L2P mappings of source
LPNs are retained (remapFlag = 0) and the degrees of L2P
association of relevant flash pages increase by one. Both re-
mapping and invalidation of LPNs are realized by directly
modifying the L2P mapping table in SSD-internal DRAM.

Another notable feature of Remap-SSD is a hybrid storage

architecture consisting of flash memory and byte-addressable
NVRAM. Flash memory is organized in superblocks for data
storage. Each superblock consists of flash blocks with the
same offset across all flash dies. Besides P2L mappings and
write timestamps that are persisted on flash memory along
with data pages, Remap-SSD stores additional house-keeping
metadata on NVRAM for address remapping, called remapp-
ing metadata (RMM). Whenever an LPN is remapped to a
flash page, a RMM entry that includes the changed P2L mapp-
ing is written to NVRAM. A remap command is considered to
be completed successfully only after the involved L2P mapp-
ings have been modified in DRAM and the relevant RMM
entries have been persisted on NVRAM. Modifications of
L2P mappings are not required to be persisted because they
can be recovered from house-keeping metadata (see Section
4.5). Thus, remap operations can be carried out quickly.

We introduce how to manage RMM entries on NVRAM in
Section 4.2, which is the key to solve the problems of high-
overhead lookups and poor scalability in the exiting solution
(Remap-SSD-FLog). Details of RMM, which guarantee the
mapping consistency and remapping atomicity, are described
in Section 4.3. Sections 4.4 and 4.5 present how Remap-SSD
performs GC operations and power-off recovery, respectively.

4.2 Co-management of Flash and NVRAM

Naively logging RMM entries would result in an expensive
scan of the log for every lookup of P2L mappings, as analyzed
in Section 3.3. To address this challenge, Remap-SSD takes
advantage of a key observation that a flash superblock is the
basic unit of free space allocations (for data writes) and GC
operations. This observation delivers a favorable conclusion
that retrievals of P2L mappings are always performed in the
granularity of a flash superblock.

USENIX Association 19th USENIX Conference on File and Storage Technologies 191

P2L mappings are retrieved during GC and power-off re-
covery. In each GC operation, the FTL selects a victim flash
superblock, where valid data pages are read out and written
to a free flash superblock. Before the migrations, valid P2L
mappings of the victim superblock need to be retrieved so
that the involved L2P mappings can be updated to point to
new physical locations. After the migrations, the victim su-
perblock can be erased and become free. The main process of
power-off recovery is rebuilding the latest L2P mapping table
based on house-keeping metadata of data pages that have been
persisted on flash memory. This process starts with scanning
the house-keeping metadata in write time order. Since data
pages and their house-keeping metadata are written to flash
memory superblock by superblock, P2L mappings of data
pages in a superblock are examined together.

Based on the conclusion, Remap-SSD manages flash me-
mory and NVRAM synergistically. The NVRAM volume is
divided into fixed-size segments, which are exclusively al-
located to a flash superblock on demand to store its RMM
entries. A segment validity bitmap (SV-bitmap) is maintained
in DRAM or NVRAM to indicate whether each segment is
used or free. Each segment is partitioned into slots, which are
written with RMM entries in a log-structured manner. When
any data page in a flash superblock is remapped, the relevant
RMM entry is appended in the free NVRAM segment allo-
cated to the superblock (e.g., Ì in Figure 3). If the superblock
has no segments yet (e.g., Í in Figure 3) or the segment in
use is full (e.g., Ë in Figure 3), a new free segment is assigned
first. We refer to the NVRAM segments that belong to a flash
superblock as a segment group. A group contains zero or an
unfixed number of segments, which are linked together.

An NVRAM segment group is actually a small and
size-varied local log of remapping metadata for a flash su-
perblock.2 Compared with scanning a single global log for
retrieving P2L mappings during GC in prior studies (i.e.,
Remap-SSD-FLog), Remap-SSD achieves fast lookups by
scanning only a segment group. Meanwhile, Remap-SSD is
adaptive to workloads and has high NVRAM utilization.

4.3 Remapping Metadata

Contents of RMM entries should be carefully designed to
serve three goals: mapping consistency, atomicity of remap
operations, and space efficiency.

First, the changed P2L mapping and timestamp of an LPN
remapping should be recorded for power-off recovery of L2P
mappings. Recall that a remap operation is to remap a target
LPN to the PPN that is currently mapped to a source LPN; if
it is a relocation-based remapping (remapFlag=1), the source
LPN needs to be deallocated. The P2L mapping contains four
fields: a pair of target LPN and PPN, a remapping flag, and
an alterable field, i.e., a source LPN if the flag is set or null

2For SSDs that do not employ a superblock-based FTL, our design still
applies and the only change is that the granularity becomes a flash block.

value otherwise. Without the last two fields, deallocations of
source LPNs could not be recognized and then L2P mappings
of source LPNs may be revived undesirably after power-off
recovery.3 The timestamp can be virtual time. In the current
implementation, we use the number of host write/remap opera-
tions that have been performed in the SSD, i.e., write/remap
sequence number for short.

Second, atomicity of remap operations should be main-
tained, as their executions may be disrupted by sudden power
outages. We distinguish two atomicity levels: remapping ato-
micity and command atomicity. The former refers to the ato-
micity of remapping a single LPN, or more precisely, write
atomicity of a RMM entry on NVRAM. A partially updated
or written RMM entry would result in improper power-off
recovery of L2P and P2L mappings and thus data corruption.
A remap command includes one or multiple RMM entries
that may scatter in several NVRAM segments. Command
atomicity implies atomic remap commands. If the write of
any RMM entry in a remap command fails, all the mapping
changes caused by the command should be discarded.

Partial updates of RMM entries have been avoided by the
log structure of NVRAM segments. Remap-SSD must be
able to further detect incomplete writes of RMM entries on
NVRAM for remapping atomicity, and moreover, recognize
whether all the RMM entries of a remap command have been
persisted successfully for command atomicity. This can be
achieved by adding extra fields in each RMM entry.

Modern processors generally support 8-byte atomic writes
to NVRAM [68]. Remap-SSD configures RMM entry size
to be a multiple of 8 bytes, say K ∗ 8 bytes. As K is larger
than one, Remap-SSD adopts a simple tornbit mechanism
implemented by Mnemosyne [59] to guarantee atomic writes
of RMM entries. In every 8 bytes, a single torn bit is preserved.
NVRAM segments are initialized to zeros when allocated for
use. Completely written entries will have all K torn bits set as
ones, while incomplete entries, which have at least one zero
torn bit, will be discarded during power-off recovery.

If command atomicity is desired, three more fields are re-
quired in a RMM entry: the start LPN and length of the remap
command, a command atomicity flag indicating whether the
remap command is required to be atomic. Each remap com-
mand can be identified by its write/remap sequence number.
When RMM entries on NVRAM are scanned during power-
off recovery, a remap command is successfully executed only
if all the RMM entries in its LPN range are found to be intact.
Otherwise, the remap command is partially performed and
will be abandoned to guarantee command atomicity.

Current applications commonly require remapping atomi-
city. This resembles regular SSDs, where single-page write
atomicity is guaranteed and maybe only some of data pages
in a write command are persisted after a sudden power out-
age. Atomic remap commands are similar to the advanced

3The interface protocols may require an SSD to return an error or some
deterministic value (e.g., zeros) when a deallocated LPN is read [4].

192 19th USENIX Conference on File and Storage Technologies USENIX Association

Table 2: Remapping metadata entry.
First 8 bytes Second 8 bytes

0 Torn bit 64 Torn bit

1-21 Flash page offset 65-95 Target LPN
in superblock 96 Remapping flag

22-63 Write/Remap 97-127 Null or
sequence number source LPN

atomic-write primitives proposed in [49,52] and NVMe speci-
fication [4]. Although these atomic commands are not widely
used yet, they provide an option to reduce the complexity and
overheads for atomicity assurance in the host software. In the
current implementation, Remap-SSD ensures only remapping
atomicity by default.

The third goal of elaborating a RMM entry is to improve
the space efficiency, which can be realized by compacting its
fields. The target PPN is replaced by its physical page offset
in the resident flash superblock, as each NVRAM segment is
dedicated to a specific superblock. Also, the unused bits in
LPN fields can be utilized. Assuming the SSD capacity and
page size are 4TB and 4KB, respectively, a 4B LPN field can
spare two bits for holding the torn bit and/or remapping flag.
Table 2 shows an example layout of a RMM entry, whose size
is 16B. The entry size can be extended to 24B, if any fields
demand more bits or command atomicity is required.

Besides RMM entries, each NVRAM segment contains a
segment metadata entry in its head slot. This entry stores a
flash superblock ID which the segment is associated with, the
current write/remap sequence number, a segment sequence
number among the segments allocated to the superblock, and
a next segment ID that links the segments in a group. The
former three fields are written immediately when the segment
is allocated, while the next segment ID is written when the
segment is full and a next free segment is allocated. The asso-
ciation relationships between flash superblocks and NVRAM
segments can be restored from segment metadata entries.

4.4 Garbage Collection

Both the writes of data pages to flash superblocks and RMM
entries to NVRAM segments are conducted in a log-structured
fashion. Thus, GC is required to reclaim invalid flash pages
and invalid RMM entries.

When free flash superblocks run out, a flash GC operation
is triggered on a victim superblock (e.g., with the most invalid
pages). Since address remapping is enabled, a flash page may
be referenced by multiple LPNs. Only flash pages without any
references are invalid and can be recycled. The FTL maintains
a reference counting table (RC-table) to track the number of
references to each flash page. Consider the number of writes
on most duplicate data is small (e.g., smaller than ten [16,34]).
Four-bit counters are used by default.

NVRAM GC is performed both passively and actively.

Reclamation of a flash superblock causes a passive recycle
on its NVRAM segment group. An active recycle is triggered
when free NVRAM segments run out. The NVRAM segment
group with the most invalid RMM entries will be selected as
the victim. Invalid RMM entries are those whose P2L mapp-
ings are not consistent with the latest L2P mappings. The FTL
tracks the number of invalid RMM entries in each segment
group. Specifically, a bitmap is used to indicate whether the
current L2P mapping of each LPN is established by a remap
or write operation, called LR-bitmap. When a remapped LPN
is remapped again or written to a new PPN, the number of
invalid RMM entries in the segment group of the flash su-
perblock where the stale PPN resides increases by one. To
recycle a segment group, RMM entries in it are checked,
where valid entries are migrated to a new group of free seg-
ments and invalid ones are discarded. Then, the stale segment
group is zeroed to be free.

The usage of address remapping is limited by both the re-
ference counting capability and the NVRAM capacity. If the
counter of a flash page reaches its maximum, remapping to
this page is prohibited. Also, if all the NVRAM segments are
filled with valid RMM entries, remap operations are disabled.
It is important to note that these two cases do not mean Remap-
SSD would return a failure on the relevant remap command
and require the host software to perform error handling. In-
stead, Remap-SSD internally transforms the prevented remap
operations to regular physical writes of duplicate data pages,
which is transparent to the host. Therefore, host software can
maximize the utilization of remap commands without con-
cerning the operational details inside the SSD. In addition, to
restrain NVRAM GC overheads, remap operations are dis-
abled when the ratio of valid RMM entries is larger than a
high watermark (95% by default).

4.5 Power-off Recovery

Power-off recovery aims to recover the FTL to a consistent
state with the latest mappings after sudden power outages.
The key is to ensure P2L mappings of data pages that have
been written on flash memory are persistent. Then, the most
recent L2P mapping table can be rebuilt from P2L mappings.

Remap-SSD maintains head and tail metadata in each flash
superblock for fast power-off recovery, similar to conventional
SSDs [8]. When a flash superblock is allocated, head metadata
are written first before any data writes, including at least the
type, write timestamp, and erase count of the superblock. The
type indicates whether the superblock stores host data pages
or FTL metadata or other vendor-specific information. Write
timestamps preserve the write order of superblocks. Note that
flash pages in a block must be written sequentially and blo-
cks in a superblock can be written in parallel. Remap-SSD
chooses the first flash page of the Xth block in a superblock
to keep head metadata, where X is the modulus of superblock
ID and the number of blocks each superblock contains. This

USENIX Association 19th USENIX Conference on File and Storage Technologies 193

Figure 4: Persistent metadata for power-off recovery. WSN:
write/remap sequence number, PPO: physical page offset in
the superblock. The latest L2P mappings can be rebuilt from
persistent metadata in flash superblocks and NVRAM.

enables concurrent reads to head metadata of different su-
perblocks. Tail metadata are retained in the last several flash
pages in each data superblock. They collectively hold the P2L
mappings and write/remap sequence numbers of data pages
that have been written in the superblock.

Power-off recovery of Remap-SSD relies on the head and
tail metadata in flash superblocks and remapping metadata in
NVRAM segments, as shown in Figure 4. The main recovery
procedure includes three steps. First, head metadata of all
flash superblocks are read to identify superblocks storing host
data, which are organized in write time order. Second, tail
metadata of superblocks are scanned in write time order, from
which we can obtain the L2P mapping table established by
data page writes and these writes’ timestamps. The power-
off recovery of traditional SSDs ends after this step. Third,
Remap-SSD examines all NVRAM segments. Based on intact
RMM entries whose timestamps are more recent than the
write timestamps of relevant data pages, the changes to L2P
mappings caused by the latest remap operations are applied.
As the latest L2P mapping table has been recovered, the RC-
table is also acquired. Moreover, segment metadata entries are
used to restore the SV-bitmap and association relationships
between flash superblocks and NVRAM segment groups.

4.6 Discussion

Hybrid Storage Architecture. One might wonder whether it
is necessary for Remap-SSD to employ a hybrid storage ar-
chitecture or whether NVRAM segments can be replaced by
reserved flash pages. We argue that pure flash storage is not
adequate to address the mapping inconsistency problem. This
is mainly due to the size discrepancy between RMM entry
and flash write unit. If NVRAM is not adopted, for each flash
superblock containing remapped data, its RMM entries would
have to be cached in DRAM and accumulate to a page size
before being written to a flash page. Then, there would be
a large amount of cached entries (from many superblocks)

facing the risk of loss if sudden power outages occur. It is
feasible to use supercapacitors for some level of power loss
protection and periodically flush cached entries. However,
this would lead to write amplification and underutilized sto-
rage space when cached entries of a superblock cannot fill a
page. Also, supercapacitors increase the cost and raise new
reliability concerns (e.g., aging effect [11]).

We should note that adding NVRAM in Remap-SSD has
high cost-efficiency. The requirement for NVRAM capacity
is small. Writes of every 1GB duplicate data through address
remapping only produce 4MB RMM. In contrast, the utiliza-
tion of remapping brings large savings on storage space and
cost. Assume PCRAM, whose bit cost is roughly 5 times that
of flash memory [47], is in use. The cost of storing RMM on
PCRAM is only about 2% of the cost of storing duplicate data
on flash memory. On the other hand, given 1GB NVRAM,
which can accommodate a maximum of 256GB duplicate
data, its cost can be compensated as long as 5GB flash sto-
rage space is saved. In addition, the NVRAM lifetime is not
a concern, since NVRAM has more than 1,000 times better
write endurance than flash memory.

Metadata Overheads. Compared with traditional SSDs
whose address remapping ability is not exposed, Remap-SSD
introduces extra metadata overheads. First, remapping meta-
data and segment metadata are stored in NVRAM. The NV-
RAM capacity limits the maximum number of valid RMM
entries and thus unique LPNs that can be remapped. The seg-
ment metadata size is inversely proportional to the segment
size, for example, 1.6% of NVRAM capacity when the seg-
ment size is 1KB. Second, the SV-bitmap (see Section 4.2),
RC-table, and LR-bitmap (see Section 4.4) are maintained in
DRAM or NVRAM (if DRAM is too small). The SV-bitmap
size is negligible. The sizes of RC-table and LR-bitmap are
proportional to the physical and logical capacities of the SSD,
respectively. Assume the logical and physical capacities of
the SSD are 4TB and 5TB, respectively, and the page size is
4KB. The RC-table (with 4-bit counters) size in Remap-SSD
is 640MB, while that (with 1-bit counters) in conventional
SSDs is 160MB. The LR-bitmap occupies 128MB space and
can be embedded into the L2P mapping table if its PPN field
has any unused bit.

5 Case Studies and Evaluation

5.1 Experimental Setups

To evaluate Remap-SSD, we perform three case studies with
various applications: intra-SSD deduplication, write-ahead
logging in SQLite, and cleaning in F2FS. Remap-SSD is com-
pared with one scheme, called NoRemap-SSD, which does
not exploit SSD address remapping, and three other schemes,
which exploit SSD address remapping but differentiate in
how to guarantee the mapping consistency. Remap-SSD-FLog
maintains a dedicated log of RMM entries stored on parallel

194 19th USENIX Conference on File and Storage Technologies USENIX Association

(a) Normalized performance (10% duplicate data). (b) Normalized performance (30% duplicate data). (c) Flash write amplification (30% duplicate data).

Figure 5: Intra-SSD deduplication with 10% and 30% data duplication ratios. Performance (bandwidth or throughput)
numbers are normalized to those of NoRemap-SSD, which does not perform deduplication. Remap-SSD-FLog, Remap-SSD-
NLog, and Remap-SSD are evaluated in each workload with three log/NVRAM sizes, i.e., 40MB, 80MB, and 120MB. Flash
write amplifications (lower is better) with 10% duplicate data are not shown as they present similar insights to Figure (c).

flash dies. This scheme corresponds to the commonly adopted
solution in existing studies listed in Table 1. Remap-SSD-
NLog enhances Remap-SSD-FLog by using NVRAM to store
the log. Remap-SSD-Opt is an optimal case assuming RMM
entries can always be retrieved in O(1) time. It also repre-
sents prior studies (i.e., PebbleSSD [28] and WAL-SSD [24])
that target only specific applications of remapping. The maxi-
mum usage of remapping in Remap-SSD-FLog, Remap-SSD-
NLog, and Remap-SSD is restricted by the log/NVRAM size,
while Remap-SSD-Opt has no limit. The NVRAM segment
size is set as 1KB by default in Remap-SSD.

Most experiments are conducted on FEMU, a QEMU-
based NVMe SSD emulator [38]. FEMU runs in a machine
with 3.80GHz 16-core Intel i7-9800X CPU and 64GB DRAM.
The emulated SSD is configured with 32GB logical capacity
plus 4GB over-provisioning space (the total capacity is lim-
ited by DRAM size of the machine). Every flash block has
1024 pages whose size is 4KB. Each superblock contains 16
blocks, since the SSD consists of 16 parallel dies (each die
has one plane). The flash read, write, and erase latencies are
50µs, 500µs, and 5ms, respectively. The NVRAM read and
write latencies are 50ns and 500ns per 64B, respectively. In
addition, we carry out some experiments of intra-SSD dedup-
lication on SSDsim, a popular SSD simulator [25], to evaluate
the schemes with a larger SSD and real-world traces. The
simulated SSD has 256GB/288GB logical/physical capacity
and 32 dies, while the flash block size remains unchanged.
Write-dominant workloads are used for evaluation, since our
work aims to reduce duplicate writes.

5.2 Intra-SSD Deduplication

Intra-SSD deduplication is a case worthwhile for studying
for two reasons. First, data duplication incurs extensive dupli-
cate writes, demanding the exploitation of address remapping.
Second, deduplication generates complex UN-type remapp-
ing behaviors, similar to those in copying or snapshotting
files. Such behaviors challenge the schemes for maintaining
mapping consistency, so their efficiency differences can be

clearly presented. In all the schemes excluding NoRemap-
SSD, we implement a deduplication engine in the FTL, similar
to CAFTL [16]. The FTL maintains a hash-based fingerprint
store and computes the fingerprint of each logical data page
written from the host. We assume a hardware hash unit is used
and the computational overhead is 32µs [22]. If a fingerprint
hits the store, the remap primitive is used to map the logical
page to be written to the existing logical page that has the
same content. Otherwise, the fingerprint is unique and added
to the store and the logical page is written to flash memory.

We conduct two sets of experiments on FEMU-SSD run-
ning benchmark tools and on SSDsim running real-world
traces. Benchmarks include the fileserver and oltp workloads
in filebench [2], updating RocksDB with a zipfian request
distribution in YCSB [6], and random-write workload (fio-
randw for short) in fio [3]. These benchmarks do not include
content locality in their data sets. Thus, we use their I/O
patterns and simulate contents of logical data pages using a
zipf distribution, which has been verified in characterizing
the content popularity [22]. The distribution is expressed by
P(ti) = C/ta

i , where, C = 1/(∑N
i=1 t−a

i), N is the number of
unique contents in the data set, a is the zipf parameter repre-
senting the skewness in content popularity. We set a as 0.2 and
the data duplication ratio as 10% or 30% (N equals to 90% or
70% of the total number of logical data pages, respectively).
Real-workload traces include homes and mail, collected from
production systems at FIU [22]. They contain real fingerprints
of data pages, which can be used for deduplication.

Figure 5 shows the performance and flash write amplifica-
tions (WAs) of the five schemes when data duplication ratio
is 10% and 30%. The performance metric is bandwidth or
throughput (operations per second), which is measured by
benchmark tools. The WA results from valid data migrations
during GC and is calculated as the ratio between total flash
page writes and host page writes. Compared to NoRemap-
SSD, the other schemes significantly improve the storage
performance (e.g., by 1.5~8.2 times in Remap-SSD-Opt) and
reduce the WA below one (e.g., by 40.5%~80.4% in Remap-
SSD-Opt). Such benefits stem from intra-SSD data dedupli-

USENIX Association 19th USENIX Conference on File and Storage Technologies 195

(a) SSD bandwidth in homes. (b) SSD bandwidth in mail.

Figure 6: Intra-SSD deduplication with real-world traces.
Bandwidth values are normalized to those of Remap-SSD-Opt.
Different log/NVRAM sizes, 160MB, 320MB, and 640MB,
are evaluated (SSD capacity is 256GB). Bandwidths of
NoRemap-SSD are 6~40 times lower than those of the other
schemes and are not shown in the figures.

(a) Normalized performance. (b) Flash write amplification.

Figure 7: Impacts of NVRAM segment size in Remap-SSD
under intra-SSD deduplication (10% duplicate data). The
NVRAM size is 40MB. With a larger NVRAM, the impacts
of segment size decrease.

cation, which completes host writes of duplicate data through
quick remap operations without performing flash page writes.
Moreover, deduplication reduces the GC overheads since it
results in smaller storage space consumption and thus larger
over-provisioning space.

For the three schemes that log remapping metadata (i.e.,
Remap-SSD-FLog, Remap-SSD-NLog, and Remap-SSD), the
log/NVRAM size is a critical factor that affects their perfor-
mance and WA. When the log/NVRAM size is enlarged,
the performance increases because more RMM entries or
remap operations can be afforded. With 30% data duplica-
tion ratio, 17%~34% of remap operations are demoted to
regular flash writes (because the log/NVRAM is full) when
the log/NVRAM size is 40MB. The percentages become up
to 4.5% and 0%, respectively, when the log/NVRAM sizes
are 80MB and 120MB. Compared to Remap-SSD-FLog and
Remap-SSD-NLog, Remap-SSD improves the performance
by an average of 20.2% and 17%, respectively, when the
log/NVRAM size is 40MB. The improvements increase to
38.5% and 24.3% for an 80MB log/NVRAM, and further to
44.3% and 26.8% for a 120MB log/NVRAM. The main rea-
son behind these performance improvements is that Remap-
SSD-FLog and Remap-SSD-NLog suffer from high over-
heads of scanning the entire log, no matter on flash memory
or faster NVRAM, in every GC operation. The larger the log

size is, the higher the overheads are. In contrast, Remap-SSD
always achieves fast lookups by maintaining a small local log
for each GC unit on demand, rather than a global log.

On the other hand, Remap-SSD has slightly higher WAs
than Remap-SSD-FLog and Remap-SSD-NLog when the
log/NVRAM size is small, such as an average of 4.5% and
2.3% for log/NVRAM sizes of 40MB and 80MB, respectively.
When the log/NVRAM size increases to 120MB, the three
schemes obtain similar WAs. This is because Remap-SSD
allocates NVRAM segments for separate local logs and may
leave some segments underutilized, while Remap-SSD-FLog
and Remap-SSD-NLog can fully utilize the flash/NVRAM
log space and undertake more remap operations. When a
larger log/NVRAM is used, the gaps on space utilization and
remapping efficiency narrow.

We also study the performance of Remap-SSD with a
larger SSD and real-world traces, as shown in Figure 6. Be-
fore running each trace, we age the SSD by issuing random
writes until flash GC is triggered and by filling NVRAM
with 70% valid RMM entries with random LPNs. When the
log/NVRAM size is 160MB, 320MB, and 640MB, Remap-
SSD averagely improves the performance by 10.7%, 32.1%,
and 97.3%, compared to Remap-SSD-FLog, and 7.2%, 22%,
and 62.6% compared to Remap-SSD-NLog, respectively. Fur-
thermore, Remap-SSD has close performance to Remap-SSD-
Opt, e.g., an average of 2.1% and up to 6.2% lower perfor-
mance. These results demonstrate rapidly increasing perfor-
mance overheads of employing a global log when the log size
grows and, on the other hand, the good scalability of Remap-
SSD. Besides, the three schemes have similar WAs (not shown
in figures), as segmenting large NVRAM in Remap-SSD neg-
ligibly degrades the space utilization.

Figure 7 shows sensitivity studies on the NVRAM segment
size in Remap-SSD. A larger segment size results in trivial
performance degradations and slight WA increases. This is be-
cause space utilization of NVRAM decreases as the allocation
unit is enlarged. We set the segment size as 1KB by default,
despite marginally higher segment metadata overheads.

From above results, we can make two conclusions. First,
maintaining a global log for remapping metadata causes sig-
nificant performance overheads, which are proportional to the
log size. Second, Remap-SSD provides an efficient and scala-
ble scheme that can maximize the utilization of SSD address
remapping while ensuring the mapping consistency. When the
NVRAM size increases, Remap-SSD’s performance does not
degrade and keeps comparable with that of Remap-SSD-Opt.

5.3 Write-ahead Logging in SQLite

Write-ahead logging (WAL) is a widely used approach for
transactional atomicity in databases and file systems [24].
All modifications on the database file are written to a WAL
file and then applied to original locations during checkpoint
operations. With Remap-SSD, checkpointing writes can be

196 19th USENIX Conference on File and Storage Technologies USENIX Association

(a) SSD bandwidth under fillrandom workload. (b) SSD bandwidth under fillseq workload. (c) Flash page writes.

Figure 8: Performance results of SQLite. Numbers of flash page writes are normalized to those of NoRemap-SSD.

realized through the remap primitive, i.e., remapping LPNs of
original locations to those in the WAL file. We use SQLite, a
popular database [5], to verify Remap-SSD on reducing WAL
overheads. One issue is that data pages in the SQLite WAL
file are not page-aligned because they are interleaved with
frame headers [37]. To make data pages aligned, we simply
store frame headers collectively in reserved pages. The remap
primitive is implemented as a new NVMe command and is
invoked by SQLite through an extended ioctl system call.

We use the db_bench benchmark [1] to test SQLite (syn-
chronous=NORMAL). Two tests are conducted: one writes
1.6 million values in random key order (fillrandom) and the
other writes 1.5 million values in sequential key order (fillseq).
The value size is 16KB. Figure 8 shows the SSD bandwidth
over time and the numbers of total flash page writes of diff-
erent schemes. Remap operations are counted in measuring
the bandwidth. The log/NVRAM size is 80MB.

In each test, NoRemap-SSD sustains two sharp perfor-
mance drops, e.g., at the time around 500s and 1000s in Figure
8(a). The first drop is because the SSD has undergone a full
disk write and begins to conduct GC operations. At this time,
the working set (i.e., the number of valid unique LPNs) size
is moderate. As invalid flash pages has accumulated to a high
level, GC overheads are small. Then, the working set grows
and invalid flash pages are reclaimed over time, increasing the
GC overheads significantly. This leads to the second perfor-
mance drop. We can see the schemes that exploit SSD address
remapping postpone the first performance drop and avoid the
second drop, because remapping enables single-write WAL
and largely reduces flash writes, e.g., by 44.5% on average
(see Figure 8(c)). Also, the schemes with remapping finish
the tests much faster than NoRemap-SSD. In addition, SSD
bandwidth increases over time up to the first drop in Figure
8(a). The reason is that the ratio of reads, which originate
from read-modify-write operations for small random updates,
rises and the SSD processes reads faster than writes.

Remap-SSD always outperforms Remap-SSD-FLog and
Remap-SSD-NLog, e.g., by an average of 15.1% and 7.8%,
respectively, in the two workloads after GC has been tri-
ggered. Notably, Remap-SSD-FLog suffers from two band-
width drops at time 540s and 845s in fillrandom. This owes to
reclaiming invalid RMM entries in the log on flash memory,

which is slower than that in Remap-SSD-NLog. The reclama-
tion requires reading the entire log, writing back valid entries,
and erasing flash blocks. In contrast, Remap-SSD looks up
and reclaims RMM entries in a small unit, i.e., a segment
group, whose largest size is found to be 117KB in the experi-
ments of SQLite. These results exhibit the efficiency of RMM
management in Remap-SSD.

We notice that there is a performance inversion between
the schemes with remapping and NoRemap-SSD after the
first performance drop at around 600s in Figure 8(b). This
is attributed to higher GC overheads in the schemes with re-
mapping. On the one hand, the schemes with remapping have
a larger working set size than NoRemap-SSD at that time due
to higher write bandwidth. On the other hand, despite elimi-
nating WAL overheads, remapping reduces the number of
invalid flash pages and thus GC efficiency. In NoRemap-SSD,
the WAL file is overwritten repeatedly when it becomes full
and its contents have been applied to the database file. Such
overwrites lead to invalidation of flash pages that store obso-
lete WAL contents. By contrast, these flash pages remain valid
in the schemes with remapping, because they are remapped
to and referenced by relevant logical pages in the database
file. As the working set size grows and invalid flash pages
are reclaimed by GC over time in NoRemap-SSD, its GC
overheads increase and the performance inversion between it
and Remap-SSD ends.

5.4 Cleaning in F2FS
Considering the detrimental effects of random writes on SSDs,
log-structured file systems naturally fit for SSDs and have
drawn close attention [35]. They provide write sequentiality
by organizing data in logs. However, cleaning is required to
reclaim invalid data blocks. Similar to and independent from
intra-SSD GC, the log cleaning process includes migrating
valid data blocks and thus introduces duplicate writes. We
modify F2FS, a state-of-the-art and popular log-structured file
system designed for flash devices [35], to utilize the remap
primitive for migrating valid data blocks at almost zero cost.

Two workloads are used for testing F2FS: the fileserver
workload in filebench, updating MongoDB with a zipfian re-
quest distribution in YCSB [6]. Each test consists of three
successive phases: (1) running the workload to generate in-

USENIX Association 19th USENIX Conference on File and Storage Technologies 197

(a) fileserver in filebench. (b) YCSB on MongoDB.

Figure 9: Speedups in F2FS. Performance is normalized to
that of NoRemap-SSD. The log/NVRAM size is 80MB.

valid data blocks in F2FS; (2) manually triggering cleaning
operations until all invalid data blocks in F2FS are reclaimed;
(3) running the workload for the second time for performance
evaluation. Figure 9 shows the speedups of the schemes with
remapping over NoRemap-SSD on above three phases. The
utilization of SSD address remapping accelerates the cleaning
process (i.e., the second phase) by an average of 28.3% and
improves F2FS performance at runtime by up to 50%. The
cleaning process includes a large number of remap opera-
tions. Then, Remap-SSD-FLog and Remap-SSD-NLog con-
tain much more RMM entries in the log in the third phase than
in the first phase. As a result, average performance improve-
ments of Remap-SSD over Remap-SSD-FLog and Remap-
SSD-NLog are 2.8% and 4% in the first phase but increase
to 19.1% and 11.6% in the third phase, respectively. These
results verify the efficiency and scalability of Remap-SSD in
exploiting SSD address remapping.

6 Related Work

Innovative SSD architectures have been an active field of
study in both academia and industry. Below we discuss some
representative designs in two areas related to Remap-SSD,
i.e., novel SSD interfaces and hybrid SSD architectures.

Novel SSD interfaces. The conventional block interface im-
pedes hardware-software co-designs that can maximally ex-
ploit the performance characteristics of flash storage. Hence,
several new SSD interfaces have been devised. A number
of designs employ remap or similar primitives to reduce du-
plicate writes by utilizing the SSD address remapping uti-
lity [16, 17, 23, 24, 28, 45, 46, 60]. Compared to these designs,
Remap-SSD avoids their limitations on the usage of remapp-
ing (see Section 3) by solving the mapping inconsistency
problem in an efficient manner.

Atomic-write interfaces have also been proposed by le-
veraging the copy-on-write nature of the FTL [31, 49, 52].
Through the interfaces, the burden of ensuring transactional
atomicity can be removed from the host software. To eli-
minate redundant log layers across the storage stack and
provide predicable performance, the open-channel and ZNS
(zoned namespaces) interfaces allow the host to directly ma-
nipulate data layout on flash memory [13, 36, 48]. Recently,

key-value (KV) interfaces [29, 32, 61] and dual block- and
byte-addressable interfaces [9, 12] have been presented for
SSDs. KV-SSDs consolidate KV management with the FTL
to provide high-performance and scalable KV stores. Dual-
interface SSDs open a fast and fine-grained path to access
SSDs. Besides, Willow [53] proposed a user-programmable
SSD that enables flexible interactions between the host and
SSD. These schemes and Remap-SSD share the same design
philosophy of breaking the block interface.

Hybrid SSD architectures. To address the idiosyncrasies
of flash memory and take advantage of emerging NVRAM
technologies, hybrid SSD architectures have been studied. NV-
RAM can be used in different ways for various purposes, e.g.,
to store the L2P mapping table for fast and energy-efficient
address translation [26], to absorb small updates to data pages
on flash memory [57], to replace flash OOB for supporting
byte-addressable metadata [28], and to store intra-SSD RAID
parity for reducing parity updating overheads [27, 67]. These
efforts along with Remap-SSD demonstrate the large design
space and great potentials of hybrid SSD architectures.

In addition, our design on the co-management of NVRAM
and flash storage is partially inspired by the co-management
of reserved space and value storage in HashKV [15]. As a KV
store built on KV separation, HashKV divides value storage
into fix-sized partitions and allows a partition to grow on
demand by allocating segments in reserved space.

7 Conclusion

Reducing flash writes has been a long-standing goal in de-
ploying SSDs. In this paper, we present Remap-SSD, which
exports a remap interface and employs a flash and NVRAM
hybrid storage architecture. It allows the host and FTL to ma-
ximally exploit the address remapping facility for eliminating
duplicate writes. Meanwhile, Remap-SSD ensures the latest
mappings can always be retrieved quickly and recovered from
house-keeping metadata persisted on flash memory and NV-
RAM together with written or remapped data. Through three
practical case studies, we demonstrate Remap-SSD delivers a
safe, efficient, and scalable solution that exploits SSD address
remapping for performance and lifetime improvements.

Acknowledgments

We would like to thank our shepherd, Patrick P. C. Lee, and
the anonymous reviewers for their valuable feedback. This
work was supported in part by the NSFC under Grant No.
61902137, No. U2001203, No. 61872413, No. 61821003,
Key Area Research and Development Program of Guangdong
Province under Grant No. 2019B010107001, National Key
Research and Development Program of China under Grant
No.2018YFB1003305, the 111 Project (No. B07038), and
Key Laboratory of Information Storage System, Ministry of
Education of China.

198 19th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Database Microbenchmarks. http://www.lmdb.tec
h/bench/microbench/.

[2] Filebench Benchmark. https://github.com/fileb
ench/filebench/wiki.

[3] Fio Benchmark. https://github.com/axboe/fio.

[4] NVM express base specification. https://nvmexpre
ss.org/resources/specifications/.

[5] SQLite Home Page. https://www.sqlite.org/ind
ex.html.

[6] YCSB Benchmark. https://github.com/brianfr
ankcooper/YCSB.

[7] Intel Optane Memory H10 with Solid State Storage.
https://www.intel.com/content/www/us/en/pr
oducts/docs/memory-storage/optane-memory/
optane-memory-h10.html, 2019.

[8] Flash translation layer in the storage performance devel-
opment kit (SPDK). https://spdk.io/doc/ftl.ht
ml, 2020.

[9] Ahmed Abulila, Vikram Sharma Mailthody, Zaid
Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong,
and Wen-mei Hwu. FlatFlash: Exploiting the byte-
accessibility of SSDs within a unified memory-storage
hierarchy. In Proceedings of the 24th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19), 2019.

[10] Mohammadamin Ajdari, Pyeongsu Park, Joonsung Kim,
Dongup Kwon, and Jangwoo Kim. CIDR: A cost-
effective in-line data reduction system for terabit-per-
second scale SSD arrays. In Proceedings of the IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA’19), pages 28–41, 2019.

[11] G. Alcicek, H. Gualous, P. Venet, R. Gallay, and A. Mi-
raoui. Experimental study of temperature effect on ultra-
capacitor ageing. In Proceedings of the European Con-
ference on Power Electronics and Applications, 2007.

[12] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young
Hwang, Sangyeun Cho, Dong-Gi Lee, and Jaeheon
Jeong. 2B-SSD: The case for dual, byte- and block-
addressable solid-state drives. In Proceedings of the
45th Annual International Symposium on Computer Ar-
chitecture (ISCA’18), 2018.

[13] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
LightNVM: The linux open-channel SSD subsystem. In
Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST’17), 2017.

[14] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo,
and Onur Mutlu. Error characterization, mitigation, and
recovery in flash-memory-based solid-state drives. Pro-
ceedings of the IEEE, 105(9):1666–1704, 2017.

[15] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and
Yinlong Xu. HashKV: Enabling efficient updates in
KV storage via hashing. In Proceedings of the USENIX
Annual Technical Conference (ATC’18), 2018.

[16] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL:
a content-aware flash translation layer enhancing the
lifespan of flash memory based solid state drives. In
Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST’11), pages 77–90, 2011.

[17] Hyun Jin Choi, Seung-Ho Lim, and Kyu Ho Park. Jftl:
A flash translation layer based on a journal remapping
for flash memory. ACM Transactions on Storage, 4(4),
2009.

[18] Kevin Conley. Flash: The Great Disruptor. Flash Me-
mory Summit, 2015.

[19] Bob Fine. Mckesson mixes SSDs with HDDs for op-
timal performance and ROI. Flash Memory Summit,
2016.

[20] Donghyun Gouk, Miryeong Kwon, Jie Zhang, Sungjoon
Koh, Wonil Choi, Nam Sung Kim, Mahmut Kandemir,
and Myoungsoo Jung. Amber*: Enabling precise full-
system simulation with detailed modeling of all ssd re-
sources. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[21] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.
DFTL: a flash translation layer employing demand-
based selective caching of page-level address mappings.
In Proceedings of International Conference on Architec-
tural Support for Programming Languages and Operat-
ing System (ASPLOS’09), 2009.

[22] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and
Anand Sivasubramaniam. Leveraging value locality in
optimizing NAND flash-based SSDs. In Proceedings of
the 9th USENIX Conference on File and Stroage Tech-
nologies (FAST’11), 2011.

[23] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin
Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and
Jihong Kim. Improving file system performance of mo-
bile storage systems using a decoupled defragmenter. In
Proceedings of the USENIX Annual Technical Confer-
ence (ATC’17), pages 759–771, 2017.

[24] Kyuhwa Han, Hyukjoong Kim, and Dongkun Shin.
WAL-SSD: Address remapping-based write-ahead-
logging solid-state disks. IEEE Transactions on Com-
puters, 69(2):260–273, 2020.

USENIX Association 19th USENIX Conference on File and Storage Technologies 199

http://www.lmdb.tech/bench/microbench/
http://www.lmdb.tech/bench/microbench/
https://github.com/filebench/filebench/wiki
https://github.com/filebench/filebench/wiki
https://github.com/axboe/fio
https://nvmexpress.org/resources/specifications/
https://nvmexpress.org/resources/specifications/
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-memory/optane-memory-h10.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-memory/optane-memory-h10.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-memory/optane-memory-h10.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-memory/optane-memory-h10.html
https://spdk.io/doc/ftl.html
https://spdk.io/doc/ftl.html

[25] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo,
and Shuping Zhang. Performance impact and interplay
of SSD parallelism through advanced commands, allo-
cation strategy and data granularity. In Proceedings
of ACM International Conference on Supercomputing
(ICS’11), 2011.

[26] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Shuping
Zhang, Jingning Liu, Wei Tong, Yi Qin, and Liuzheng
Wang. Achieving page-mapping FTL performance at
block-mapping FTL cost by hiding address translation.
In Proceedings of IEEE Symposium on Mass Storage
Systems and Technologies (MSST’10), 2010.

[27] Soojun Im, Dongkun Shin, Dongkun Shin, Dongkun
Shin, and Dongkun Shin. Flash-aware RAID techniques
for dependable and high-performance flash memory
SSD. IEEE Transactions on Computers, 60(1):80–92,
2011.

[28] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou,
and Steven Swanson. Improving ssd lifetime with byte-
addressable metadata. In Proceedings of the Interna-
tional Symposium on Memory Systems (MEMSYS’17),
page 374–384, 2017.

[29] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstanti-
nou, and Steven Swanson. KAML: A flexible, high-
performance key-value SSD. In Proceedings of the
IEEE International Symposium on High Performance
Computer Architecture (HPCA’17), 2017.

[30] Myoungsoo Jung and Mahmut T Kandemir. Sprinkler:
maximizing resource utilization in many-chip solid state
disks. In Proceedings of the 20st IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA’14), 2014.

[31] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-
Hwan Oh, and Changwoo Min. X-FTL: Transactional
FTL for SQLite databases. In Proceedings of the 2013
ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’13), 2013.

[32] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,
Yang-suk Kee, Francisco Londono, Sangyoon Oh,
Jongyeol Lee, and Daniel D. G. Lee. Towards building a
high-performance, scale-in key-value storage system. In
Proceedings of the 12th ACM International Conference
on Systems and Storage (SYSTOR’19), 2019.

[33] Bryan S. Kim, Jongmoo Choi, and Sang Lyul Min. De-
sign tradeoffs for SSD reliability. In Proceedings of the
17th USENIX Conference on File and Storage Technolo-
gies (FAST’19), 2019.

[34] Jonghwa Kim, Choonghyun Lee, Sangyup Lee, Ikjoon
Son, Jongmoo Choi, Sungroh Yoon, Hu ung Lee, Sooy-
ong Kang, Youjip Won, and Jaehyuk Cha. Deduplication
in SSDs: Model and quantitative analysis. In Proceed-
ings of the 28th IEEE Symposium on Mass Storage Sys-
tems and Technologies (MSST’12), 2012.

[35] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: a new file system for flash sto-
rage. In Proceedings of USENIX Conference on File
and Storage Technologies (FAST’15), 2015.

[36] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Ji-
hong Kim, and Arvind. Application-managed flash. In
Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST’16), 2016.

[37] Wongun Lee, Keonwoo Lee, Hankeun Son, Wook-Hee
Kim, Beomseok Nam, and Youjip Won. WALDIO:
Eliminating the filesystem journaling in resolving the
journaling of journal anomaly. In Proceedings of the
USENIX Annual Technical Conference (ATC’15), 2015.

[38] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Matias Bjørling, and Haryadi S.
Gunawi. The CASE of FEMU: Cheap, accurate, scala-
ble and extensible flash emulator. In Proceedings of the
16th USENIX Conference on File and Storage Technolo-
gies (FAST’18), 2018.

[39] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri
Narasimhan, Tony Zhang, and Ming Zhao. Cachededup:
In-line deduplication for flash caching. In Proceedings
of the 14th USENIX Conference on File and Storage
Technologies (FAST’16), pages 301–314, 2016.

[40] Lloyd Liu. MRAM based NVMe SSD Architecture.
Flash Memory Summit, 2019.

[41] Dongzhe Ma, Jianhua Feng, and Guoliang Li. LazyFTL:
A page-level flash translation layer optimized for NAND
flash memory. In Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data, 2011.

[42] Micron. How Micron SSDs Handle Unexpected Power
Loss. https://www.micron.com/-/media/client
/global/documents/products/white-paper/ssd
_power_loss_protection_white_paper_lo.pdf,
2014.

[43] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: random write con-
sidered harmful in solid state drives. In Proceedings of
USENIX Conference on File and Storage Technologies
(FAST’12), 2012.

200 19th USENIX Conference on File and Storage Technologies USENIX Association

https://www.micron.com/-/media/client/global/documents/products/white-paper/ssd_power_loss_protection_white_paper_lo.pdf
https://www.micron.com/-/media/client/global/documents/products/white-paper/ssd_power_loss_protection_white_paper_lo.pdf
https://www.micron.com/-/media/client/global/documents/products/white-paper/ssd_power_loss_protection_white_paper_lo.pdf

[44] Sparsh Mittal and Jeffrey S. Vetter. A survey of soft-
ware techniques for using non-volatile memories for
storage and main memory systems. IEEE Transactions
on Parallel and Distributed Systems, 27(5):1537–1550,
2016.

[45] Fan Ni, Xingbo Wu, Weijun Li, Lei Wang, and Song
Jiang. Leveraging ssd’s flexible address mapping to
accelerate data copy operations. In Proceedings of the
IEEE 21st International Conference on High Perfor-
mance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th In-
ternational Conference on Data Science and Systems
(HPCC/SmartCity/DSS’19), pages 1051–1059, 2019.

[46] Gihwan Oh, Chiyoung Seo, Ravi Mayuram, Yang-Suk
Kee, and Sang-Won Lee. Share interface in flash storage
for relational and nosql databases. In Proceedings of
the International Conference on Management of Data
(SIGMOD’16), page 343–354, 2016.

[47] Michael Oros. Analysts Weigh In On Persistent Memory.
Persistent Memory Summit, 2018.

[48] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF: Software-
defined flash for web-scale internet storage systems. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’14), 2014.

[49] Xiangyong Ouyang, David Nellans, Robert Wipfel,
David Flynn, and Dhabaleswar K. Panda. Beyond block
i/o: Rethinking traditional storage primitives. In Pro-
ceedings of the 17th IEEE International Symposium on
High Performance Computer Architecture (HPCA’11),
2011.

[50] Jisung Park, Sungjin Lee, and Jihong Kim. DAC: Dedup-
assisted compression scheme for improving lifetime of
NAND storage systems. In roceedings of Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE’17), 2017.

[51] João Paulo and José Pereira. A survey and classification
of storage deduplication systems. ACM Computing
Surveys, 47(1), 2014.

[52] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Li-
dong Zhou. Transactional flash. In Proceedings of the
8th USENIX Conference on Operating Systems Design
and Implementation (OSDI’08), 2008.

[53] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A user-
programmable SSD. In Proceedings of the 11th

USENIX Symposium on Operating Systems Design and
Implementation (OSDI’14), 2014.

[54] Scott Shadley. NAND flash media management through
RAIN. https://www.micron.com/-/media/clie
nt/global/documents/products/technical-mar
keting-brief/brief_ssd_rain.pdf, 2011.

[55] Kai Shen, Stan Park, and Men Zhu. Journaling of journal
is (almost) free. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST’14),
pages 287–293, 2014.

[56] Sriram Subramanian, Swaminathan Sundararaman,
Nisha Talagala, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Snapshots in a flash with
ioSnap. In Proceedings of the 9th ACM European Con-
ference on Computer Systems (EuroSys’14), 2014.

[57] Guangyu Sun, Yongsoo Joo, Yibo Chen, Dimin Niu,
Yuan Xie, Yiran Chen, and Hai Li. A hybrid solid-state
storage architecture for the performance, energy con-
sumption, and lifetime improvement. In Proceedings of
the 16th International Symposium on High-Performance
Computer Architecture (HPCA’10), 2010.

[58] Ying Y. Tai. High Performance FTL for PCIe/NVMe
SSDs. Flash Memory Summit, 2016.

[59] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In Pro-
ceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS’11), 2011.

[60] Zev Weiss, Sriram Subramanian, Swaminathan Sun-
dararaman, Nisha Talagala, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. ANViL: advanced virtu-
alization for modern non-volatile memory devices. In
Proceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST’15), 2015.

[61] Sung-Ming Wu, Kai-Hsiang Lin, and Li-Pin Chang.
KVSSD: Close integration of LSM trees and flash trans-
lation layer for write-efficient KV store. In Proceedings
of Design, Automation & Test in Europe Conference &
Exhibition (DATE’2018), 2018.

[62] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip
Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun
Zhou. A comprehensive study of the past, present, and
future of data deduplication. Proceedings of the IEEE,
104(9):1681–1710, 2016.

[63] Zhichao Yan, Hong Jiang, Song Jiang, Yujuan Tan, and
Hao Luo. SES-Dedup: a case for low-cost ECC-based
SSD deduplication. In Proceedings of the 35th Sym-
posium on Mass Storage Systems and Technologies
(MSST’19), 2019.

USENIX Association 19th USENIX Conference on File and Storage Technologies 201

https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf

[64] Qirui Yang, Runyu Jin, and Ming Zhao. SmartDedup:
Optimizing deduplication for resource-constrained de-
vices. In Proceedings of the USENIX Annual Technical
Conference (ATC’19), pages 633–646, 2019.

[65] Miao-Chiang Yen, Shih-Yi Chang, and Li-Pin Chang.
Lightweight, integrated data deduplication for write
stress reduction of mobile flash storage. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11):2590–2600, 2018.

[66] Yang Zhan, Alexander Conway, Yizheng Jiao, Nirjhar
Mukherjee, Ian Groombridge, Michael A. Bender, Mar-
tin Farach-Colton, William Jannen, Rob Johnson, Don-
ald E. Porter, and Jun Yuan. How to copy files. In Pro-

ceedings of the 18th USENIX Conference on File and
Storage Technologies (FAST’20), pages 75–89, 2020.

[67] You Zhou, Fei Wu, Weizhou Huang, and Changsheng
Xie. LiveSSD: A low-interference RAID scheme for
hardware virtualized SSDs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 2020.

[68] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and
high-performance hashing index scheme for persistent
memory. In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI’18), 2018.

202 19th USENIX Conference on File and Storage Technologies USENIX Association

CheckFreq: Frequent, Fine-Grained DNN Checkpointing

Jayashree Mohan *

UT Austin
Amar Phanishayee
Microsoft Research

Vijay Chidambaram
UT Austin and VMware research

Abstract
Training Deep Neural Networks (DNNs) is a resource-hungry
and time-consuming task. During training, the model per-
forms computation at the GPU to learn weights, repeatedly,
over several epochs. The learned weights reside in GPU mem-
ory, and are occasionally checkpointed (written to persistent
storage) for fault-tolerance. Traditionally, model parameters
are checkpointed at epoch boundaries; for modern deep net-
works, an epoch runs for several hours. An interruption to
the training job due to preemption, node failure, or process
failure, therefore results in the loss of several hours worth of
GPU work on recovery.

We present CheckFreq, an automatic, fine-grained check-
pointing framework that (1) algorithmically determines the
checkpointing frequency at the granularity of iterations using
systematic online profiling, (2) dynamically tunes checkpoint-
ing frequency at runtime to bound the checkpointing overhead
using adaptive rate tuning, (3) maintains the training data in-
variant of using each item in the dataset exactly once per
epoch by checkpointing data loader state using a light-weight
resumable iterator, and (4) carefully pipelines checkpointing
with computation to reduce the checkpoint cost by introduc-
ing two-phase checkpointing. Our experiments on a variety
of models, storage backends, and GPU generations show that
CheckFreq can reduce the recovery time from hours to sec-
onds while bounding the runtime overhead within 3.5%.

1 Introduction
Deep Neural Networks (DNNs) are widely used in many
AI applications including image classification [20, 23, 41],
language translation [46], and speech recognition [17]. While
DNNs have facilitated state-of-the-art accuracy in these tasks,
they come at the cost of high computational complexity, taking
up to several days to train [8, 35].

Training starts with a randomly chosen set of learnable
parameters (such as weights and biases) and proceeds in itera-
tions consisting forward and backward pass over a minibatch
of data. At the end of each backward pass, the learnable pa-
rameters are recomputed using the gradients obtained, and
updated in GPU memory. Training is performed for several
epochs, where one epoch is a complete pass over the dataset.
At the end of training, the learned parameters are saved to
persistent storage for inference.

Due to the large runtime of DNN training, the model
weights and optimizer state (collectively, model state) are

*Work done as part of MSR internship

occasionally written to persistent storage, for fault tolerance;
else, an interruption to the job due to process failure, or node
crash can wipe out all the job state, resulting in loss of several
hours of GPU work. This is termed checkpointing. Tradition-
ally, models are checkpointed at epoch boundaries [30].

Interruptions to DNN training jobs are common. Be it ded-
icated enterprise clusters or cloud instances, failures due to
software and hardware errors are inevitable. Prior work has
shown that infrastructure and process failures are common
in large-scale big data clusters, with a mean time between
failure (MTBF) of 4 – 22 hours [19, 27]. Similarly, for GPU
clusters, recent study of large-scale DNN training clusters at
Microsoft [22] highlight that DNN training jobs encounter
interruptions due to infrastructure failure, node crashes, soft-
ware bugs, and user errors. Over the span of the analysis
period (2 months), the mean time between job failures was 45
minutes on average (excluding early failures) in the Microsoft
cluster.

Furthermore, a recent trend with cloud providers is the
emergence of cost-effective preemptible VMs which are
priced 6-8× cheaper than dedicated VMs [9, 16, 29]; such
VMs may be preempted at any time. Recent work shows that
GPU VMs may be preempted as frequent as every 15 minutes
and atleast every 24 hours on the Google Cloud [31].

When interruptions occur, the long running, stateful, DNN
job terminates abruptly, wiping out the model parameters in-
memory. For instance, training ResNext101 to accuracy on
ImageNet-1K dataset using a V100 GPU takes 270 hours
(~3.9 hours per epoch) [35]; if checkpointing is performed
at epoch boundaries, about two hours of GPU computation
is wasted on average for every interruption. More generally,
there is a trend of growing size of datasets [3,7,24], and larger,
complex model architectures [8,10,35], consequently increas-
ing DNN epoch time and overall training time. Therefore, it
is critical to frequently checkpoint training progress, at a finer
granularity than epochs i.e., at iteration level. In this work,
we explore how to perform fine-grained checkpointing auto-
matically in a model- and hardware-agnostic manner, without
intrusive changes to the training workload.

We present CheckFreq, a fine-grained checkpointing frame-
work for DNN training. CheckFreq strikes a balance between
ensuring a low runtime overhead and providing a high check-
pointing frequency, so that there is minimal loss of GPU
time in the event of job interruptions or failures by perform-
ing iteration-level checkpointing. CheckFreq has two major
components; a checkpointing policy that automatically deter-

USENIX Association 19th USENIX Conference on File and Storage Technologies 203

mines when to checkpoint, and a checkpointing mechanism
that performs correct, low-cost checkpointing. To this end, we
build upon a set of techniques from the High Performance
Computing (HPC) and storage community, alongside novel
DNN-specific optimizations such as pipelined in-memory
snapshots, utilizing spare GPU capabilities for fast snapshot,
and a DNN-aware systematic profiling for dynamic tuning
of checkpointing frequency. Using CheckFreq, we show that
the recovery time reduces from hours to seconds during job
interruptions.

Fine-grained checkpointing for DNNs at iteration gran-
ularity poses several unique challenges which CheckFreq
addresses as described below.
1. Checkpointing frequency. There is no single checkpoint-
ing frequency that works across models, hardware, and train-
ing environments. The frequency of checkpointing depends
on several factors; e.g., model size, storage bandwidth, and
training iteration time. Moreover, a job could face interference
while writing checkpoints due to reading the dataset from the
same storage device, or due to concurrently running jobs that
share the storage bandwidth to write checkpoints. Statically
determining a checkpointing frequency is sub-optimal for
runtime if a job faces interference in its training environment.

Therefore, CheckFreq algorithmically determines an initial
checkpointing frequency by profiling the job characteristics
during runtime. CheckFreq uses systematic online profiling
to determine the best-case checkpointing frequency for the
model in the given training environment. However, in practice,
the job might incur additional overheads due to intereference
which slows down the checkpointing process. To tackle this,
CheckFreq introduces adaptive rate tuning to dynamically
monitor the job runtime between checkpoint intervals, and
appropriately scale up or scale down the checkpointing fre-
quency, so that the end-to-end runtime overhead is within a
user-given bound.

2. Checkpoint stalls. The model state to be checkpointed
is updated every iteration. Therefore, training has to briefly
pause to accurately checkpoint the current state; the GPU
(or any accelerator) remains idle until checkpoint completes,
introducing checkpoint stalls in training. Naively increasing
the frequency of checkpointing (e.g., every iteration) results
in high runtime overhead due to checkpoint stalls.

CheckFreq reduces checkpoint stalls using a DNN-aware
two-phase checkpointing strategy. The checkpointing oper-
ation is split into a snapshot() and a persist() phase. In
the snapshot() phase, CheckFreq performs a consistent in-
memory copy of all the learnable model state. This operation
is pipelined with compute until the weight update of the sub-
sequent iteration which is the latest point when the model
parameters are updated. In the persist() phase, the snap-
shot is asynchronously written to the storage device. Check-
Freq guarantees that a checkpoint is reliably persisted on disk
(using fsync()) before the subsequent checkpoint operation

begins. Therefore, in the event of an unexpected interruption,
the job state will rollback at most one checkpoint.
3. Data invariant. For a large class of models that perform
random data pre-processing operations in every epoch of
training (eg CNNs), it is crucial to ensure the following data
invariant holds: every epoch must process all the items in
the dataset exactly once, in a random order, with random
pre-processing like crop, resize etc. Existing data iterators in
frameworks like PyTorch, and MxNet do not support resuma-
bility. When the job is interrupted, these iterators can either
miss out, or repeat data items in an epoch, resulting in loss in
model accuracy when resuming at iteration granularity.

To address this challenge, CheckFreq introduces a resum-
able data iterator that respects the data invariant even in the
presence of interruptions. The iterator uses epoch seeded
psuedo-random transformations, that can reconstruct the iter-
ator state as it was prior to interruption. CheckFreq’s iterator
thus makes correct, iteration-level checkpointing feasible.

We implement CheckFreq as a pluggable module for Py-
Torch, with minimal (< 10 LOC) changes to the original job’s
script. Our evaluation across a variety of models, GPUs, and
storage types confirms that CheckFreq reduces the wasted
GPU time from order of hours to just under a minute, while
incurring less than 3.5% runtime overhead, as compared
to the existing epoch-based checkpointing schemes. Check-
Freq reduces the end-to-end training time by 2× when train-
ing a ResNet50 job on a 1080Ti GPU, and by 1.6× for a
ResNext101 job on a V100 GPU, when the job is interrupted
every 5 hours in both cases. We further demonstrate the
importance of CheckFreq’s recoverable iterator by training
ResNet18 to accuracy using ImageNet dataset with frequent
interruptions (once every 2 epochs) and iteration-level check-
pointing; Existing state-of-the-art data loaders like DALI [4]
result in up to 13% drop in accuracy while CheckFreq is able
to train the model to target accuracy.

In summary, this paper makes the following contributions.
• Analyzes the state of DNN checkpointing today and high-

lights the need for fine-grained checkpointing and the chal-
lenges involved in achieveing it (§3)

• The design and implementation of CheckFreq, an auto-
matic, fine-grained checkpointing framework for DNN
training that exploits the DNN computational model to
provide low-cost, pipelined checkpointing (§4)

• Experimental results demonstrating the efficacy of Check-
Freq in reducing the recovery time from hours to seconds,
across a range of models and hardware configurations (§5)

2 Background
This section provides a brief overview of the DNN computa-
tional model and the role of checkpointing in DNN training.

DNN computational model. Training a Deep Neural Net-
work (DNN) is the process of determining the set of weights
and bias in the network, collectively called the learnable pa-

204 19th USENIX Conference on File and Storage Technologies USENIX Association

rameters. Once trained, the DNN computes the output using
the weights learned during the training phase.

DNN Training starts with a randomly chosen set of learn-
able parameters and proceeds iteratively in steps called iter-
ations. Every iteration processes a small disjoint subset of
the dataset called a minibatch. When the entire dataset is pro-
cessed exactly once, an epoch is said to be complete. Each
iteration of training performs the following steps in order.

• Data augmentation. Fetches a minibatch of data from stor-
age and applies random pre-processing operations. For e.g.,
in popular image classification models like the ResNets,
pre-processing includes randomly cropping the input im-
age, resizing, rotating, and flipping it.

• Forward pass. The model function is applied on the mini-
batch of data to obtain the prediction.

• Backward pass. A loss function is used to determine how
much the prediction deviates from the correct answer; each
layer in the DNN computes a gradient of the loss.

• Weight update. Using the gradients computed in the back-
ward pass, the learnable model parameters are updated.
At the end of training (typically after a fixed number of

epochs), the final learned parameters are saved to persistent
storage. To perform inference on the model, the DNN is initial-
ized with the learned parameters and the output is predicted.

Checkpointing. Training a DNN is a highly time-consuming
task. For instance, BERT-large, the state-of-the-art language
modeling network, takes 2.5 days to train [8], when trained
in parallel across 16 V100 GPUs. Since the learnable param-
eters are maintained in GPU memory during training, any
interruption to the training job due to a process crash, server
crash, job or VM preemption, or job migration, results in the
loss of model state learned so far. This state is typically a
few hundred MBs to a few hundred GBs in size [36] (§5.4).
Consequently, several hours of GPU time spent on training
will be lost. To overcome this, the model state is typically
checkpointed at epoch boundaries; i.e., written out to persis-
tent storage for fault-tolerance. This checkpoint can then be
loaded when the training job resumes to ensure that progress
is not entirely lost.

Recovery Time. When a DNN training job is interrupted, it
rolls back to the last completed epoch that was checkpointed
as shown in Figure 1. Note that, all the GPU work performed
between the last checkpoint and the point of interruption is
lost and has to be redone when training resumes. The amount
of GPU time lost due to an interruption is termed the recovery
time. In other words, this is the time spent to bring the model
to the same state as it was prior to the interruption.

3 The Current State of Checkpointing
We analyze the current state of checkpointing in popular open
source ML training frameworks like PyTorch [5], Tensor-
Flow [6], and MxNet [11]. We analyze training workloads
from MLPerf submissions v0.7, and the official workloads

GPU time
Interruption

Recovery Time

Epoch i+1Epoch i

Figure 1: Recovery time. The amount of GPU work lost and
has to be redone on recovery is termed the recovery time.

released by NVIDIA, TensorFlow and PyTorch. We find that
checkpointing in open source ML training frameworks is
incorrect and inefficient.

• Correctness. The checkpointing mechanism used in the
training scripts could result in loss or corruption of check-
point files in the event of job failure or interruption.

• Efficiency. Checkpointing is inefficient. The frequency of
checkpointing is determined in an ad-hoc fashion, typically
at epoch-boundaries which results in loss of several hours
of GPU time for recovery. Furthermore, there is lack of
support for checkpointing at fine granularity; existing data
iterators do not support resuming training state at iteration
boundaries and results in high checkpoint stalls.

3.1 Checkpointing is Incorrect
Corruption due to overwrites. Some of the official training
workloads maintained by PyTorch [38], overwrite the same
checkpoint file at the end of each epoch to reduce storage
utilization. However, this exposes the risk of corrupting the
checkpoint file in the event of a crash during the checkpoint
operation. Prior work [37] has shown that different filesystems
treat overwrites differently; a crash could result in non-atomic
data update in the writeback mode of ext3 resulting in data
corruption, while it could truncate the file on ext4, resulting in
data loss. In either case, the checkpoint file becomes unusable;
training has to restart from the first epoch.

The checkpoint file may not persist. Analyzing the primi-
tives used by training frameworks for checkpointing, such as
torch.save reveal that they do not fsync() the checkpoint
file. We verified that this can lead to data loss. Moreover,
naively performing frequent synchronous fsync() affects
training performance significantly (§5.3.1).

3.2 Checkpointing is Inefficient
Checkpointing is performed sparingly in an ad-hoc fash-
ion. There is no systematic checkpointing policy in the train-
ing jobs; checkpointing interval is chosen in an ad-hoc fash-
ion. For example, some jobs do not checkpoint during train-
ing, while some others start checkpointing only after a large
number of epochs (60% of training) have elapsed. In gen-
eral, we observe that checkpointing is typically performed
at epoch boundaries, providing only modest fault-tolerance;
in the event of a job interruption, the training will resume
from the last completed epoch, which potentially loses sev-
eral hours of GPU training time that has to be redone. For
instance, when ResNext101 is trained using ImageNet on a
V100 GPU, two hours of GPU time is lost on average if the

USENIX Association 19th USENIX Conference on File and Storage Technologies 205

job is interrupted (§5.5).

A naive frequent checkpointing schedule results in check-
point stalls. Providing higher fault-tolerance requires check-
pointing to be performed more frequently than at epoch bound-
aries; i.e., at iteration boundaries. However, naively increas-
ing the frequency of checkpointing introduces a large check-
point stall in training. Since model weights are constantly
updated between iterations, checkpointing requires the train-
ing to briefly pause to capture the model weights accurately.
We term this overhead (i.e, the time GPU is idle, waiting for
the checkpoint to complete) as the checkpoint stall. Therefore,
it is crucial to find the correct checkpointing frequency given
a DNN (because the size of checkpoint varies from 100MBs
to 100GBs across DNNs), and the storage bandwidth, to min-
imize checkpoint stalls.

Violating the data invariant during training can affect
model accuracy. Each epoch performs a full pass over the
dataset, in a random order and holds the invariant that each
data item is seen exactly once per epoch. One of the ben-
efits of checkpointing at epoch boundaries is that, the data
iterator state need not be persisted, as it is reset at the end
of epoch. Checkpointing at a finer granularity (i.e. at itera-
tions), requires infrastructure support to resume the state of
data iterator as well. We note that the support to persist iter-
ator state exists in some custom dataloaders of NLP models
which do not perform random pre-processing operations for
every batch. However, for image and video models that apply
random transformations on the input data every batch, the
existing dataloaders in PyTorch, MxNet, and state-of-the-art
data pipelines like NVIDIA’s DALI are not resumable at iter-
ation boundaries. As a result, they violate the data invariant in
the presence of interruptions, resulting in upto the 13% drop
in accuracy for popular models ResNet18 (Fig 6).

3.3 Summary
In summary, we observe that the checkpointing mechanism
today is incorrect; resulting in potential checkpoint data loss
or corruption. Additionally, the checkpointing policy is ad-
hoc; there is no systematic way of determining how frequently
one must checkpoint, to both minimize recovery time and
incur low checkpoint stalls.

The solution to minimize recovery time is to perform fre-
quent, iteration-level checkpointing. However, performing
correct and efficient fine-grained checkpointing is challeng-
ing. We need (1) low-cost checkpointing mechanisms, (2)
light-weight, resumable data iterators that preserve the model
accuracy, and (3) a way to systematically determine the fre-
quency of checkpointing.

4 CheckFreq: Design and Implementation
We present the goals of CheckFreq and the recovery guaran-
tees it provides. We then present an overview of the overall
architecture of CheckFreq, and discuss the techniques used
by CheckFreq to achieve the enlisted goals.

Technique Benefits
Checkpointing mechanism (How to checkpoint?)
2-phase checkpointing Splits checkpointing into two phases

and pipelines them carefully with
compute to make checkpoints cheap

Recoverable data iterator Maintains data invariant, allows re-
suming training at iteration bound-
aries without affecting accuracy

Checkpointing policy (When to checkpoint?)
Systematic online profiling Automatically determines check-

pointing frequency, cognizant of
model characteristics

Adaptive rate tuning Dynamically tunes checkpointing fre-
quency to reduce overhead due to in-
terference

Table 1: Overview of techniques used by CheckFreq.

4.1 Goals
Correctness. CheckFreq aims to provide frequent, iteration-
level checkpointing that is consistent, and persistent.

No impact on model accuracy. CheckFreq aims to not im-
pact the statistical efficiency of the model by ensuring that the
data invariant holds when training resumes after interruption.

Automatic frequency selection. CheckFreq aims to deter-
mine and tune the frequency of checkpointing automatically
based on the model being trained, and the training environ-
ment (GPU gen, storage type, iteration time). Checkpointing
frequency influences the recovery time, i.e., time to bring
model state to what it was prior to the interruption.

Low checkpoint stalls. CheckFreq aims to reduce check-
point stalls during training, so that there is low runtime over-
head to frequent checkpointing (e.g., < 5%).

Minimal code changes. CheckFreq aims to require minimal
changes to the training code to automate checkpoint manage-
ment and restoration.

4.2 CheckFreq Recovery Guarantees
An interrupted job resumes training from the latest available
checkpoint on disk. In the traditional epoch-based check-
pointing, irrespective of when the job is interrupted, training
resumes from the previous epoch boundary as shown in Fig 1.
If a job performs n iterations per epoch and takes time ti per
iteration, then the average recovery time Ravg for this job is :

Ravg =
n
2
∗ ti

This is because, when interrupted in the middle of an epoch,
work done so far in the epoch must be redone when resumed,
as the state is reset to the end of previous epoch. Thus, recov-
ery time R for epoch-based checkpointing is bounded by:

0≤ R≤ n∗ ti

Note that n ∗ ti is the duration of an epoch; it can be as
large as a few hours. CheckFreq aims to provide a tight bound

206 19th USENIX Conference on File and Storage Technologies USENIX Association

GPU time

Recovery Time

Epoch i+1Epoch i
Interruption

Figure 2: Bounding recovery time. CheckFreq guarantees
that training rolls back at most one checkpoint.

on recovery time and takes a more fine-grained approach to
checkpointing at iteration boundaries. CheckFreq guarantees
that there is at most one ongoing checkpoint operation in the
system at any point in time. When interrupted, it rolls back at
most one checkpoint - either the last initiated checkpoint (if it
completes), or the one prior as shown in Fig 2. If the frequency
automatically determined by CheckFreq is k iterations, then
CheckFreq guarantees that the recovery time R is bounded by

0≤ R≤ 2∗ k ∗ ti
Ravg = k ∗ ti (k << n)

The chosen checkpointing frequency k is 100 – 300× less
than n, as we show later in evaluation (§5.4), thereby resulting
in orders of magnitude reduction in recovery time compared
to epoch based checkpointing.

4.3 Design
We now present an overview of the architecture of CheckFreq
and how it uses various techniques to provide frequent check-
pointing at a bounded cost described in §4.2. Table 1 lists
the different techniques used by CheckFreq and the benefit of
each technique.

Overview. The architecture of CheckFreq is shown in Fig-
ure 3. CheckFreq has three major components; a recoverable
data iterator that returns a minibatch of data to the training
job, a feedback-driven checkpointing policy that determines
when to trigger a checkpoint, and a low-cost checkpointing
mechanism that is split into a snapshot() and a persist()
phase. CheckFreq monitors the runtime overhead incurred
in each checkpoint interval; this is used as feedback to dy-
namically tune the checkpointing frequency to ensure that
the runtime overhead does not exceed a user-given limit p
(e.g., 5%). When interrupted, CheckFreq restores the latest
available checkpoint and resumes training. We describe each
component in detail below.

4.3.1 Checkpointing Mechanism

DNN checkpointing today is performed synchronously; train-
ing is paused until the checkpoint operation is complete. How-
ever, synchronous checkpointing introduces large checkpoint
stalls, which results in large runtime overhead if performed
frequently. In other words, the cost of a checkpoint (Tc) is
high for synchronous checkpointing. For example, consider a
policy that checkpoints every three iterations. The model state
is written to disk after the weight update phase which updates
weights based on the gradients computed in the backward
pass. As shown in Figure 4a, the checkpoint cost is incurred
in the critical path, resulting in high checkpoint stalls, which

Snapshot() Persist()

PolicyIterator

Feedback

DNN training job

next_batch()

1

5

6

4

7

must_checkpoint() ?

Storage

2

3

CHECKFREQ

Figure 3: Training with CheckFreq. CheckFreq’s policy
determines the checkpointing frequency. The checkpointing
mechanism then snapshots and persists the model and iterator
state at the identified frequency in a pipelined manner. If a
failure occurs, CheckFreq rolls back the model and iterator
state to the latest available checkpoint and resumes training.

can significantly slow down the end-to-end training time. To
mask such high checkpoint costs within an overhead p, check-
pointing needs to be performed infrequently, which in turn
results in high recovery cost.

Two-phase checkpointing. CheckFreq aims to reduce the re-
covery cost in the event of an interruption by reducing check-
point stalls. To achieve low checkpoint cost, CheckFreq in-
troduces a DNN-aware two-phase checkpointing mechanism.
CheckFreq splits checkpointing into two phases; snapshot()
and persist() and pipelines each phase with computation.
The main insight behind CheckFreq’s two-phase checkpoint-
ing is that it exploits the DNN computational model (§2) to
pipeline checkpointing operations on modern accelerators
such as the GPUs.

1. Phase 1 : snapshot(). The first is a snapshot() phase,
performed after the weight update step of the iteration.
Here, a copy of the model state is captured in memory,
so that it can be written out to storage asynchronously.
Since the model state resides in GPU memory, snapshot()
involves copying the model parameters from GPU to CPU
memory. Performing this operation synchronously in the
critical path results in non-trivial snapshot() overhead
as shown in Figure 4b. Therefore, CheckFreq carefully
pipelines snapshot() with compute.

Pipelining snapshot() with compute has to be per-
formed cautiously to ensure consistency of model param-
eters and preserve correctness of Stochastic Gradient De-
scent (SGD), which is a popular optimization technique
used by learning algorithms. Naively pipelining them can
result in an inconsistent snapshot that contains part of the
weight updates from one iteration and the rest from the
other. CheckFreq exploits the DNN learning structure to
achieve correct, pipelined snapshots.

We observe that the learnable model parameters are
updated in GPU memory after the backward pass of an

USENIX Association 19th USENIX Conference on File and Storage Technologies 207

1 1 1

11

2 2 2Compute

Checkpoint

3 3 3 4 4 4

44

1 1 1

11

2 2 2 3 3 3 4 4 4

44

5 5 5 6 6 6 7 7 7

1 1 1

11

2 2 2 3 3 3 4 4 4

44

5 5 5 6 6 6 7 7 7

Compute

Checkpoint

Compute

Checkpoint

Weight update

Snapshot

Persist

Forward pass

Backward pass

Checkpoint stall

(a) Baseline :
Synchronous

checkpointing

(b) Only persist()
pipelining

(c) Snapshot()
and persist()

pipelining

5 5 5 6 6 6 7 7 7

Figure 4: Pipelining checkpoint with compute. This figure contrasts three checkpointing mechanisms, when checkpointing is
performed every 3 iterations. (a) performs checkpointing synchronously and incurs a high checkpoint stall. (b) takes a snapshot
of the model state synchronously but pipelines disk IO (persist()) with compute, allowing it to proceed in the background.
CheckFreq takes a more nuanced approach by carefully pipelining snapshot() with the subsequent iteration’s forward and
backward pass and incurs lower checkpointing stalls as shown in (c)

iteration; in a step called the weight update. Therefore,
we can pipeline snapshot() of iteration i with compute,
until the weight update of iteration i+ 1. If snapshot()
does not complete by then, then iteration i+1 waits until
the ongoing snapshot() successfully completes as shown
in Figure 4c. This tight coupling is required to ensure a
consistent snapshot; else we might capture a state that is
partially updated by the subsequent iteration that in turn
affects the correctness of the learning algorithm [28].

GPU-based snapshot(). Although snapshot() is
pipelined with compute of the following iteration, it may
result in checkpointing stalls in cases where it is not possi-
ble to completely hide the cost of copying model state from
GPU to CPU. Therefore, CheckFreq further optimizes this
operation using a GPU-based snapshot() when feasible.
We observe that the cost of performing a snapshot() in
GPU memory is an order of magnitude cheaper than per-
forming it to CPU memory, as the latter involves a GPU to
CPU copy in the critical path. Therefore CheckFreq takes
the following approach.

(a) When spare GPU memory is available in the train-
ing environment to hold a copy of the snapshot,
we snapshot() in the GPU on GPU memory. The
persist() phase then asynchronously copies the
snapshot to CPU memory and then to disk.

(b) If not, CheckFreq snapshots directly into CPU mem-
ory. This can introduce stalls in critical path.

(c) CheckFreq adjusts the frequency of checkpointing ap-
propriately to minimize the overhead of snapshot(),
which can be especially large in (b), and stalls in
persist().

2. Phase 2 : persist(). The second phase in checkpoint-
ing is the persist() phase which asynchronously writes
the snapshot to persistent storage similar to well explored
asynchronous checkpointing techniques [33, 34, 40, 45].
However, to provide bounded rollback guarantees discussed
in §4.2, persist() is tightly coupled with compute. Check-
Freq performs the persist() operation as a background

process; and monitors its progress. When a subsequent
checkpoint is triggered as determined by the policy, the
progress of the ongoing persist() operation is checked.
If the persist() has not completed, then the compute
process waits until the ongoing checkpoint operation is
complete. This ensures that there is at most one ongoing
checkpoint operation at any point in time, and if the job is
interrupted, it rolls back to at most one prior checkpoint.

While it may be tempting to abandon an ongoing check-
point if the next one is triggered, it is a tricky and risky
operation. Suppose we abandon the current checkpoint and
begin writing the next one, a failure at this point may end
up losing both the checkpoints. This could be a chain reac-
tion; a failure could result in rolling back to a significantly
old checkpoint if all the recent ones were abandoned, re-
sulting in a high recovery time. Since CheckFreq aims to
guarantee that we roll back to at most one prior checkpoint,
it does not abandon any running checkpoints.

Resumable light-weight data iterator. The DNN training
workload interacts with CheckFreq using a thin API provided
by a data iterator. The function of a data iterator in DNN
training is to return a pre-processed batch of data items to the
GPU, such that the data invariant holds - each epoch processes
all the data items exactly once, in a random order. While the
native iterator in PyTorch and those provided by state-of-the-
art data pipelines like DALI [4] support this in the common
case, they lack resumability if the training is interrupted.

For example, consider a dataset with eight data items from 1
– 8. In an epoch, the order of data items processed could be as
shown in Fig 5a. Assume that we checkpoint the model state
at the end of every iteration which processes one data item.
If training is interrupted in the middle of this epoch, the data
iterator loses state, and resumes with a random shuffled order
of the dataset as shown in Fig 5b, resulting in data items being
repeated and missed in a epoch, violating the data invariant.

CheckFreq’s data iterator uses the following techniques to
support resumption:
• It shuffles data items every epoch using a seed that is a

function of the epoch number. Therefore, to recreate the

208 19th USENIX Conference on File and Storage Technologies USENIX Association

1 5 8 2 6 4 7 3

4 2 1 5 3 8 7 61 5 8 2 6 4 7 36 4 7 3

1 5 8 2 6 4 7 36 4 7 3 1 5 8 2 6 4 7 31 5 8 2

3 7 8 6

(a) Order of data items processed in an epoch

(b) Resuming with current data iterator

(c) Resuming with CheckFreq data iterator

Figure 5: Resuming iterator state. When iterator state is
not resumable, an epoch might miss data items when job
is interrupted (items 3,6,7 are missed in b). CheckFreq (c)
ensures that training resumes from exactly where it left off.

same shuffle order, it is sufficient to persist the current
epoch ID, and the number of data items processed so far
(which makes iterator checkpointing lightweight).

• When training resumes, the iterator reconstructs the shuffle
order, and deterministically restarts from where it left off
at the last checkpoint as shown in Fig 5c.

Summary. Two-phase checkpointing mechanism along with
the resumable data iterator provides correct, low-cost check-
pointing. The next important question to answer is, how fre-
quently should we checkpoint the model?

4.3.2 Checkpointing Policy

To perform automatic, iteration-level checkpointing, we must
determine the frequency at which checkpointing is performed.
On one hand, we can checkpoint after every iteration, provid-
ing low recovery cost but possibly high runtime overhead. On
the other hand, we can perform coarse grained checkpointing
at epoch boundaries, resulting in high recovery cost but low
runtime overhead. An effective checkpointing policy must
find the right balance between recovery cost and runtime over-
head, minimizing both. The main idea behind CheckFreq’s
checkpointing policy is to initiate checkpoints every k iter-
ations (called the checkpointing frequency), such that the
overhead of one checkpointing operation can be amortized
over k iterations. While prior work in HPC have explored
ways of identifying the checkpointing frequency based on
failure distribution in the cluster [12,14,15], CheckFreq finds
the shortest interval that masks the overhead of checkpointing
based on the DNN and hardware characteristics.

Systematic online profiling. CheckFreq takes a systematic
profile-based approach to determine the checkpointing fre-
quency. It should be chosen such that the runtime overhead
introduced due to checkpointing is within a percentage p of
the actual compute time, where p is the permissible overhead
decided by the user (say 5%).

CheckFreq determines the initial checkpointing frequency
as follows. When a training job starts, CheckFreq’s data itera-
tor (§4.3.1) automatically profiles several iteration-level and
checkpoint-specific metrics which influences the checkpoint-
ing frequency - the iteration time (Ti), time to perform weight
update (Tw), time to create an in-memory GPU copy (Tg), time

Algorithm 1 : Checkpointing frequency determination

Input: Ti,Tw,T c,T g,T s,m,M,Mmax, p
Toc← max(0,Tc− (Ti−Tw)
Tog← Tg
if Mmax−M > m and Tog ≤ Toc then

To← Tog
mode← GPU

else
To← Toc
mode←CPU

end if
k← Tc+Ts−To

Ti

kmin←
⌈

To
p∗Ti

⌉
k← max(k,kmin)

Output: k,mode

to create an in-memory CPU copy (Tc), time to write to stor-
age (Ts), size of checkpoint (m), peak GPU memory utilization
(M), and total GPU memory (Mmax). Based on CheckFreq’s 2-
phase checkpointing mechanism, the frequency determination
algorithm is as shown in Algorithm 1.

The algorithm provides two outputs; 1) the checkpointing
frequency k which is the number of iterations elapsed be-
tween every checkpoint, and 2) the snapshot() mode (CPU
or GPU-based). The algorithm first determines the snapshot
mode based on available free GPU memory; if there is enough
space to snapshot the model state in GPU memory, then the
mode is set to GPU, else the preferred mode is set to CPU-
based snapshotting. Based on the chosen mode, the algo-
rithm estimates the overhead in the critical path incurred after
pipelining checkpointing and compute in a tightly coupled
manner as described earlier (§4.3.1). It then determines the
number of iterations required to amortize this overhead such
that the total runtime overhead incurred is below the threshold
p. For example, consider the cost of a checkpoint operation
and the duration of an iteration are both 1 time unit. If the
threshold on runtime overhead is set to 5%, then CheckFreq
chooses to checkpoint every 20 iterations.

Adaptive rate tuning. A static, profile-based frequency de-
termination works well when the training environment of the
model remains unchanged throughout the runtime of the job.
However, in practice, the checkpoint cost estimated by the
online profiler can deviate, resulting in higher than estimated
runtime overheads. For instance, a job could face write in-
terference by concurrently running jobs sharing storage for
read/write, which affects the time to write a checkpoint.

Therefore, CheckFreq uses an adaptive rate tuning tech-
nique to perform feedback-driven frequency changes. Check-
Freq’s iterator monitors the runtime of the job and the actual
cost of checkpointing during runtime (after the initial fre-
quency determination). If the observed runtime exceeds the
desired overhead, then these values are used to recalculate
the checkpointing frequency. The idea is to ensure that the

USENIX Association 19th USENIX Conference on File and Storage Technologies 209

overall runtime overhead does not exceed the threshold p.

4.4 Implementation
We implement CheckFreq as a pluggable module for PyTorch.
The data iterator of CheckFreq is implemented on top of the
state-of-the-art data pipeline DALI for PyTorch. CheckFreq
can be used as a drop-in replacement to the existing data
loader in PyTorch.

CheckFreq determines the initial checkpointing frequency
by profiling the first 1% of the iterations in the first epoch, or
the first 50 iterations, whichever is the minimum. Therefore,
no checkpointing is performed during this initial phase, which
is a very small fraction of the total runtime. Additionally,
we cache the profiled metrics and the determined policy on
persistent storage so that profiling can be skipped when the
job resumes after a crash.

CheckFreq internally uses torch.save(), followed by a
fsync() to perform persist(), and thus guarantees persis-
tence. To eliminate chances of data corruption, CheckFreq al-
ways writes checkpoints to a new file. However, to keep space
utilization bounded, CheckFreq only maintains two check-
points on disk at any given time; one completed checkpoint
and the other in-flight. Additionally, checkpoints performed at
epoch boundary are preserved (can be turned off by the user).
CheckFreq wraps the weight update step in the optimizer with
a semaphore that waits on the ongoing snapshot() to ensure
that a copy of the model state is completed before it is updated
by the next iteration.

5 Evaluation
In this section we use a number of microbenchmarks and
end-to-end training to accuracy with interruptions to evaluate
the efficacy of CheckFreq with respect to the current epoch-
based checkpointing scheme across a variety of DNNs. Our
evaluation seeks to answer the following questions.
• Can CheckFreq’s iterator make iteration-level checkpoint-

ing feasible without affecting the accuracy? (§5.2)
• Does CheckFreq’s 2-phase checkpoint mechanism reduce

checkpoint stalls compared to the existing synchronous
strategy? (§5.3)

• Can CheckFreq checkpoint more frequently than epoch-
based checkpointing, while incurring low runtime over-
head? (§5.4)

• Does CheckFreq reduce the recovery cost when DNN train-
ing is interrupted? (§5.5)

• What is the end-to-end benefit of training to accuracy with
CheckFreq in the presence of job interruptions in a real
preemptive training environment? (§5.6)

5.1 Experimental setup
We evaluate the efficacy of CheckFreq against the state-of-
the-art epoch-based checkpointing in PyTorch using the state-
of-the-art data pipeline DALI [4].

Servers. We evaluate CheckFreq on two generations of GPU;

GPU GPU CPU Storage
Type Mem(GB) Mem(GB) Media

Conf-Pascal 1080Ti 11 500 HDD
Conf-Volta V100 32 500 SSD

Table 2: Server configurations. We use two ML server
SKUs; each with 24 CPU cores, 500GB DRAM, and 8 GPUs
a Volta V100 GPU with a 1.8TB SSD for persistent storage,
and a Pascal 1080Ti GPU with a 1.8TB HDD for persistent
storage as shown in Table 2. Both these servers have 8 GPUs,
24 CPU cores and 500GB of DRAM. Both servers run 64-bit
Ubuntu 16.04 with CUDA toolkit 10.0 and PyTorch 1.1.0.

Models. We use 7 DNNs in our evaluation. ResNet18 [20],
ResNet50 [20], ResNext101 [48], DenseNet121 [21],
VGG16 [41], InceptionV3 [42] all on Imagenet-1k
dataset [39], and Bert-Large pretraining [13] on Wikipedia &
BookCorpus dataset [49]. For each model, we use the default
minibatch size reported in the literature for these models.

Baseline. We use the epoch-boundary checkpointing as the
baseline for all the models except BERT. BERT trains in units
of iterations; therefore we use the default checkpointing inter-
val of 200 iterations as the baseline [8]. To perform persistent
and correct checkpoints, we explicitly flush the checkpoint
file after the checkpoint operation returns.

5.2 Accuracy implications
We first show the need for resumable data iterator to make fine
grained iteration-level checkpointing feasible. Using the ex-
isting state-of-the-art data iterators to perform iteration-level
checkpointing results in violation of the DNN data invariant
as described in (§4.3.1). To demonstrate this, we perform the
following experiment. We train a ResNet18 job for 70 epochs
or to a target accuracy of 69.5% (whichever is earliest) in
three different scenarios;

• No interrupt. This is the normal training scenario where
the job is not interrupted until its completion. There is no
checkpointing performed here.

• Baseline-interrupt. This scenario uses the existing DALI
iterator (same with the native PyTorch iterator) to perform
checkpoints at the iteration right before the job is inter-
rupted. We interrupt the job once very 7 minutes (approx
every two epochs). This corresponds to commonly used
round durations in preemptive schedulers [18, 26, 32, 47].

• CheckFreq-interrupt. This setting uses the CheckFreq
data iterator that is capable of performing a light-weight
checkpoint of iterator state and correctly resuming it. We
checkpoint, interrupt, and resume the job exactly as de-
scribed in the prior setting.
We plot the Top-1 validation accuracy against cumulative

training time. Figure 6 shows that it is not possible to perform
iteration-level checkpointing using existing iterator, without
affecting the model accuracy. This is because, the model state

210 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 6: Impact of resumable data iterator on accuracy.
Performing iteration-level checkpointing with baseline non-
resumable data iterator violates the data invariant, results in
significant loss of accuracy if job is interrupted. However,
CheckFreq’s iterator does not affect the final accuracy.

Figure 7: Runtime overhead for various models. At a fre-
quency chosen by CheckFreq, synchronous checkpointing
incurs upto 70% overhead while CheckFreq’s pipelined check-
pointing reduces runtime overhead to under 3.5%

is checkpointed at iteration boundaries, but the data loader
state is lost. However, with CheckFreq’s iterator, the model
reaches the target accuracy in the almost the same time as the
setting where the job ran without any interruption.

Storage overhead. Checkpointing data iterator state does not
have a significant space overhead; it requires persisting two
integers - epoch and iteration number, that take up a few bytes
on disk. CheckFreq thus provides light-weight, resumable
data iterators that do not affect the accuracy of DNNs.

5.3 Performance of checkpointing mechanism
We now evaluate the performance of the two-phase check-
pointing strategy of CheckFreq, and compare it against the
synchronous strategy. We further provide a split of benefits
due to pipelining persist() and snapshot() operations.

5.3.1 Checkpoint stalls

Figure 7 shows the runtime overhead incurred due to check-
point stalls with CheckFreq and the baseline checkpointing
mechanism while checkpointing at a frequency chosen for
that model by CheckFreq on Conf-Pascal. The frequency
varies across models, but is kept constant for CheckFreq and
baseline for a given model. While CheckFreq is able to bound
the runtime overheads to about 3.5%, the baseline incurs 17
– 73% runtime overhead due to frequent checkpointing. The
reduction in runtime overhead is due to the two-phase check-
pointing and pipelining it with computation.

Checkpoint stall (seconds)
Synchronous IO pipelining CheckFreq

Conf-Volta 3.6 1.5 0.3
Conf-Pascal 10.7 1.3 0.07

Table 3: Breakdown of benefits. This table shows the split
of checkpoint stall incurred in critical path for VGG16 on two
different hardwares

Model Res18 Res50 ResNext VGG16 BERT

Freq 147 125 238 83 100
Size(MB) 90 195 482 1055 5000

Table 4: Checkpoint frequency. This table shows the num-
ber of checkpoints per epoch and the size of each checkpoint

5.3.2 Breakdown of benefits

To understand how much each phase of the checkpointing
mechanism contributes to the reduction of checkpoint stalls,
we train VGG16 on the two servers using identical batch
size of 64 that is the maximum that can fit on Conf-Pascal.
Checkpointing is performed at a frequency chosen indepen-
dently for the two servers. We evaluate three settings in Ta-
ble 3; 1) The baseline synchronous mode, 2) CheckFreq with
only persist() pipelining (indicated by IO pipelining) and
snapshot() performed synchronously, 3) CheckFreq with
both persist() and snapshot() pipelining.

On both hardware, CheckFreq is able to significantly re-
duce the checkpoint cost by 5 – 18× by pipelining both
phases of checkpointing with compute as compared to only
pipelining persist(). On Conf-Pascal, the benefit due
to pipelining persist() is prominent due to the slower
storage device. On Conf-Volta with fast storage, the CPU
cost of snapshot() and the storage cost of persist() con-
tribute equally to the checkpointing cost. Therefore, pipelin-
ing snapshot() with compute provides significant speedup.

5.4 Checkpointing policy
We compare the checkpointing frequency determined by
CheckFreq for a threshold overhead p of 3.5%. Table 4 shows
the number of checkpoints performed per epoch for vari-
ous models along with per-checkpoint size when perform-
ing distributed data parallel training across across 8 GPUs
on Conf-Pascal. There are two main takeaways here. First,
the checkpointing frequency varies with model; therefore fre-
quency selection must take into account the model character-
istics. Second, CheckFreq is able to perform 83 – 278× more
frequent checkpointing when compared to that performed
at epoch boundaries, while incurring ≤ 3.5% overhead. On
Conf-Volta, CheckFreq resulted in 25 – 100×more frequent
checkpointing than the epoch-based policy. More frequent
checkpoints directly translate to faster recovery times which
we evaluate in Section 5.5.

Adaptive tuning of frequency. To demonstrate the impor-
tance of adaptive frequency tuning, we perform the follow-

USENIX Association 19th USENIX Conference on File and Storage Technologies 211

Setting Isolated Static Adaptive

Overhead 5% 35% 5%
Frequency (# iterations) 14 14 19

Table 5: Adpative frequency tuning. Adaptive frequency
tuning is able to dynamically adjust checkpointing frequency
to maintain the same overhead as if the job is run in isolation.

Model Recovery (seconds)
Baseline CF

ResNet18 840 5
ResNet50 2100 24
VGG16 5700 25

ResNext101 7080 32
DenseNet121 2340 7
Inceptionv3 3000 27

BERT 4920 85
(a) 1 GPU (V100)

Recovery (seconds)
Baseline CF

180 3
540 8
1320 31
1680 14
600 4
780 42
4500 43

(b) 8 GPU (1080Ti)

Table 6: Average recovery time (CF - CheckFreq).

ing experiment. We run a VGG16 training job on a single
GPU (Job-A), allowing it to checkpoint at an initial frequency
chosen by CheckFreq (with an overhead of 5%). After 100
iterations have elapsed, we trigger another VGG16 job on
a different GPU on the same machine (Job-B), so that the
two jobs contend for storage bandwidth to write checkpoints.
We measure the runtime for 500 iterations of Job-A with and
without adaptive frequency tuning. The results are as shown
in Table 5. When Job-A runs in isolation, it incurs an over-
head of 5% while checkpointing every 14 iterations. However,
when Job-B is introduced after 100 iterations of Job-A, if
there is no adaptation across the two jobs, the checkpointing
frequency is statically fixed to 14 iterations and the runtime
overhead for Job-A increases to 35% (indicated as static in
Table 5). This is because, the jobs compete for storage band-
width, increasing checkpoint cost. In contrast, CheckFreq’s
adaptive rate tuning dynamically adjusts the checkpointing
frequency and keeps the overhead bounded at 5%.

5.5 Recovery time
To understand the benefits of using CheckFreq in the pres-
ence of job interruptions, we evaluate the recovery time with
the epoch-based checkpointing and CheckFreq. With epoch-
based checkpointing, irrespective of when during the epoch
the job is interrupted, the job rolls back to the previously com-
pleted epoch. Therefore, in the best case, if a failure occurs
immediately after the finish of an epoch, then the recovery
time is the same as CheckFreq. However, on average, half
an epoch’s worth of work can be lost if the job is interrupted
in the middle of an epoch. And in the worst case, the entire
epoch must be redone if the job fails just before the comple-
tion of an epoch. For the seven different models, we compare
the average case recovery time in two distinct scenarios; 1) a
single-GPU training job on Conf-Volta in Table 6a and 2) a
8 GPU data-parallel job on Conf-Pascal in Table 6b.

As can be seen, CheckFreq is able to reduce recovery time

Figure 8: End-to-end training. We train Resnet50 using a
Conf-Pascal GPU with interruptions every 5 hours. Check-
Freq trains to state-of-the-art accuracy (76.1%) 2× faster than
epoch-based checkpointing by reducing recovery time.

from several minutes (and hours) to just a few seconds, all
while incurring less than 3.5% runtime overhead. For in-
stance, when training ResNext101 on a V100 GPU, on aver-
age, CheckFreq reduces the recovery time from 2 hours to 32
seconds on average.

5.6 End-to-end training
We evaluate the end-to-end benefit of training with CheckFreq
by simulating a preemptive cluster scenario. We consider a
cluster with a premeptive scheduler similar to the one in large
production clusters like Philly [2,22]. We consider an average
preemption interval of 5 hours. Figure 8 plots the total training
duration against top-1 validation accuracy for the epoch-based
baseline checkpointing strategy and CheckFreq for training
ResNet50 using a GPU on Conf-Pascal to state-of-the-art
accuracy. CheckFreq results in 2× faster training by reducing
recovery time from 1.9 hours to under a minute for every
interruption. A similar experiment on Conf-Volta resulted
in 1.6× faster training time to accuracy for ResNext101.

6 Discussion

Applicability to distributed cluster training. CheckFreq
currently works with the distributed data parallel (DDP) mode,
where only one GPU per node (rank 0) is responsible for
checkpointing. While we show results for single- and multi-
GPU training, extending it to multi-node settings is straight-
forward; checkpointing in multi-GPU and multi-node settings
is the same for DDP in frameworks such as PyTorch. Model
weights are synchronized across different workers (same node
or in the distributed cluster) typically every iteration, or ac-
cumulated over a few tens of iterations before synchronizing;
therefore each node sees the same version of weights at these
synchronization points. Hence, one instance of CheckFreq
runs on each node, and persists an identical checkpoint for lo-
cal recovery at synchronization boundaries. Since each node
persists checkpoints independently, and in parallel, there is
no additional synchronization overhead for checkpointing.

Generality. CheckFreq focuses on optimizing checkpointing,
which is by far the predominant way in which DNN training
jobs recover from failures. While our paper focuses on data

212 19th USENIX Conference on File and Storage Technologies USENIX Association

parallel training, prior work in model or pipeline parallelism,
also rely on checkpointing. Using CheckFreq, checkpointing
at minibatch boundaries (every n iterations), each pipeline
stage only persists a subset of parameters and optimizer state
hosted by that worker. CheckFreq also enables checkpointing
within minibatch boundaries during pipeline parallel training
(every m microbatches), as CheckFreq’s iterator controls the
introduction of each microbatch into the pipeline. Checkpoint-
ing at the microbatch granularity requires storing additional
model state – specifically accumulated weight gradients at
every stage in addition to parameter and optimizer state. We
leave it to future work to integrate CheckFreq’s implementa-
tion into frameworks supporting pipeline parallelism.

While we implement CheckFreq in PyTorch, we can extend
it to other frameworks like TF and MxNet by wrapping the
framework-specific APIs into those exposed by CheckFreq.

7 Related Work
Asynchronous DNN checkpointing. While recent work like
DeepFreeze [33] that perform asynchronous DNN checkpoint-
ing employ techniques similar to CheckFreq for IO pipelining,
it only considers CPU clusters. It does not consider the cost of
snapshotting the model state in memory when trained using
state-of-the-art GPUs. Our work shows that on modern ML
optimized servers, the cost of snapshotting the model state
(copying from GPU to CPU) is significant, demonstrating
how to pipeline this transfer with compute, and use spare
GPU capabilities to enable fast snapshotting.

Furthermore, DeepFreeze requires manual intervention to
tune the checkpointing frequency for a given model, hard-
ware and training environment while CheckFreq masks these
complexities from the user and analytically identifies the best
parameters for checkpointing. Unlike DeepFreeze that uses
a static checkpointing frequency, CheckFreq is also benefi-
cial in shared cluster settings, as it adapts the checkpointing
frequency based on memory and storage interference due to
other jobs to minimize checkpoint stalls.

Asynchronous checkpointing in HPC. Prior work in
HPC [34, 40, 45] uses asynchronous checkpointing to mask
the IO latency. A key challenge that differentiates DNN check-
pointing from traditional HPC ones is that, performing a syn-
chronous in-memory copy of the model state from GPU to
CPU is expensive due to the increasingly fast compute ca-
pabilities of the GPU. CheckFreq exploits the DNN learn-
ing structure to carefully pipeline even the in-memory snap-
shot with computation to perform correct, consistent check-
pointing. Moreover, CheckFreq further reduces the latency of
checkpointing by utilizing spare GPU memory and compute
capabilities when possible to perform fast snapshots.

Checkpoint interval estimation in HPC. Prior work [12,
14, 15] determine checkpointing interval for large scale HPC
applications based on failure distributions observed in the
system. CheckFreq does this in a DNN-aware fashion by ex-

ploiting the deterministic, repetitive structure of DNN training
to systematically profile resource utilization at runtime.

Adaptive checkpointing. The idea of using adaptation for
fault management has been used in HPC applications [25] to
decide when to checkpoint, based on a failure prediction mod-
ule. CheckFreq introduces adaptivity in DNN checkpointing
frequency. It identifies and dynamically adapts the checkpoint-
ing frequency, based on the characteristics of the model being
trained, system hardware, and interference due to other jobs.

TensorFlow Checkpoint Manager. TF checkpoint man-
ager [43] allows checkpointing at a user-given time interval,
and supports persisting iterator state. However, it has three
shortcomings. First, the checkpointing frequency is decided in
an ad-hoc fashion by the user; this introduces large checkpoint
stalls if not chosen carefully. Second, it cannot checkpoint
the iterator state if random data transformation is involved;
this is common for most image based models [44]. Finally,
even in cases where it can persist iterator state, TF writes
the entire operator graph to storage along with prefetched
items resulting in large checkpoint size. CheckFreq addresses
these challenges by automatically adapting the checkpointing
frequency and using a light-weight, resumable data iterator.

Framework-transparent checkpointing. Transparent
checkpointing techniques such as CRIU [1] can backup entire
VM state for fault-tolerance; however they do not checkpoint
GPU or accelerator state. Even if they were to capture entire
device state, device state alone is an order of magnitude larger
than the model state captured at iteration boundaries, making
frequent CRIU checkpoints impractical. Thus, in this work,
we focus on the dominant approach to DNN fault-tolerance -
framework-assisted checkpointing of model state.

8 Conclusion
This paper presents CheckFreq, an automatic, fine-grained
checkpointing framework for DNN training. CheckFreq
achieves consistent, low-cost checkpoints at iteration level
using a resumable data iterator, a pipelined two-phase check-
pointing mechanism, and automatic determination and tun-
ing of checkpointing frequency. When the job is interrupted,
CheckFreq reduces recovery time for popular DNNs from
hours to seconds, while incurring low runtime overhead.

Acknowledgements
This work was done during an internship at Microsoft Re-
search as part of Project Fiddle. We thank our shepherd Mehul
Shah, the anonymous FAST reviewers, members of the UT
SaSLab, fellow Project Fiddle interns Youjie Li, Kshiteej
Mahajan, Andrew Or, and many of our MSR colleagues for
their invaluable feedback that made this work better. We sin-
cerely thank MSR Labs for their generous support in procur-
ing the many resources required for this work. This work was
supported by NSF CAREER #1751277 and donations from
VMware, Google, and Facebook.

USENIX Association 19th USENIX Conference on File and Storage Technologies 213

References
[1] CRIU checkpointing. https://criu.org/Main_Page.

[2] Microsoft Philly Traces. https://github.com/msr-
fiddle/philly-traces.

[3] Training a Champion: Building Deep Neural Nets for
Big Data Analytics. https://www.kdnuggets.com/
training-a-champion-building-deep-neural-
nets-for-big-data-analytics.html/.

[4] NVIDIA DALI. https://github.com/NVIDIA/DALI,
2018.

[5] PyTorch. https://github.com/pytorch/pytorch,
2019.

[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 265–283, GA, 2016.

[7] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul
Natsev, George Toderici, Balakrishnan Varadarajan, and
Sudheendra Vijayanarasimhan. Youtube-8m: A large-
scale video classification benchmark. arXiv preprint
arXiv:1609.08675, 2016.

[8] NVIDIA AI. BERT Meets GPUs. hhttps:
//medium.com/future-vision/bert-meets-gpus-
403d3fbed848.

[9] Amazon. Amazon EC2 spot instances. https:
//aws.amazon.com/ec2/spot/?cards.sort-by=
item.additionalFields.startDateTime&cards.sort-
order=asc.

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learn-
ers. CoRR, abs/2005.14165, 2020.

[11] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,

and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. CoRR, abs/1512.01274, 2015.

[12] John T. Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future Gener.
Comput. Syst., 22(3):303–312, 2006.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[14] Sheng Di, Mohamed-Slim Bouguerra, Leonardo Arturo
Bautista-Gomez, and Franck Cappello. Optimization of
multi-level checkpoint model for large scale HPC appli-
cations. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA,
May 19-23, 2014, pages 1181–1190. IEEE Computer
Society, 2014.

[15] Sheng Di, Mohamed-Slim Bouguerra, Leonardo Arturo
Bautista-Gomez, and Franck Cappello. Optimization of
multi-level checkpoint model for large scale HPC appli-
cations. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA,
May 19-23, 2014, pages 1181–1190. IEEE Computer
Society, 2014.

[16] Google. Preemptible VM instances. https:
//cloud.google.com/compute/docs/instances/
preemptible#preemptible_with_gpu.

[17] Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. Speech recognition with deep recurrent neural
networks. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 6645–
6649. IEEE, 2013.

[18] Juncheng Gu, Mosharaf Chowdhury, Kang G.
Shin, Yibo Zhu, Myeongjae Jeon, Junjie Qian,
Hongqiang Harry Liu, and Chuanxiong Guo. Tiresias:
A GPU cluster manager for distributed deep learning. In
16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019, pages 485–500. USENIX Association,
2019.

[19] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and
Devesh Tiwari. Failures in large scale systems: long-
term measurement, analysis, and implications. In Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,

214 19th USENIX Conference on File and Storage Technologies USENIX Association

https://criu.org/Main_Page
https://github.com/msr-fiddle/philly-traces
https://github.com/msr-fiddle/philly-traces
https://www.kdnuggets.com/training-a-champion-building-deep-neural-nets-for-big-data-analytics.html/
https://www.kdnuggets.com/training-a-champion-building-deep-neural-nets-for-big-data-analytics.html/
https://www.kdnuggets.com/training-a-champion-building-deep-neural-nets-for-big-data-analytics.html/
https://github.com/NVIDIA/DALI
https://github.com/pytorch/pytorch
hhttps://medium.com/future-vision/bert-meets-gpus-403d3fbed848
hhttps://medium.com/future-vision/bert-meets-gpus-403d3fbed848
hhttps://medium.com/future-vision/bert-meets-gpus-403d3fbed848
https://aws.amazon.com/ec2/spot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-order=asc
https://aws.amazon.com/ec2/spot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-order=asc
https://aws.amazon.com/ec2/spot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-order=asc
https://aws.amazon.com/ec2/spot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-order=asc
https://cloud.google.com/compute/docs/instances/preemptible#preemptible_with_gpu
https://cloud.google.com/compute/docs/instances/preemptible#preemptible_with_gpu
https://cloud.google.com/compute/docs/instances/preemptible#preemptible_with_gpu

SC 2017, Denver, CO, USA, November 12 - 17, 2017,
pages 44:1–44:12. ACM, 2017.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[21] Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. Densely connected convolutional
networks. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017, pages 2261–2269. IEEE Com-
puter Society, 2017.

[22] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 947–
960, 2019.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[24] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper
Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali,
Stefan Popov, Matteo Malloci, Tom Duerig, et al. The
open images dataset v4: Unified image classification, ob-
ject detection, and visual relationship detection at scale.
arXiv preprint arXiv:1811.00982, 2018.

[25] Zhiling Lan and Yawei Li. Adaptive fault management
of parallel applications for high-performance computing.
IEEE Trans. Computers, 57(12):1647–1660, 2008.

[26] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and
efficient GPU cluster scheduling. In 17th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, pages 289–304. USENIX Association, 2020.

[27] Catello Di Martino, Zbigniew T. Kalbarczyk, Ravis-
hankar K. Iyer, Fabio Baccanico, Joseph Fullop, and
William Kramer. Lessons learned from the analysis of
system failures at petascale: The case of blue waters.
In 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2014, Atlanta,
GA, USA, June 23-26, 2014, pages 610–621. IEEE Com-
puter Society, 2014.

[28] Qi Meng, Wei Chen, Yue Wang, Zhi-Ming Ma, and Tie-
Yan Liu. Convergence analysis of distributed stochas-
tic gradient descent with shuffling. Neurocomputing,
337:46–57, 2019.

[29] Microsoft. Use low priority VMs. https:
//docs.microsoft.com/en-us/azure/batch/
batch-low-pri-vms.

[30] MLPerf. MLPerf Training Results v0.7. https://
github.com/mlperf/training_results_v0.7.

[31] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Analysis and exploitation of dynamic pricing in the
public cloud for ml training. DISPA, 2020.

[32] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Za-
haria. Heterogeneity-aware cluster scheduling
policies for deep learning workloads. arXiv preprint
arXiv:2008.09213, 2020.

[33] Bogdan Nicolae, Jiali Li, Justin M. Wozniak, George
Bosilca, Matthieu Dorier, and Franck Cappello. Deep-
freeze: Towards scalable asynchronous checkpointing of
deep learning models. In 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing,
CCGRID 2020, Melbourne, Australia, May 11-14, 2020,
pages 172–181. IEEE, 2020.

[34] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski,
Kathryn Mohror, and Franck Cappello. Veloc: Towards
high performance adaptive asynchronous checkpointing
at large scale. In 2019 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2019, Rio de
Janeiro, Brazil, May 20-24, 2019, pages 911–920. IEEE,
2019.

[35] NVIDIA. ResNext101 Training. https:
//github.com/NVIDIA/DeepLearningExamples/
tree/master/PyTorch/Classification/
ConvNets/resnext101-32x4d.

[36] OpenAI. GPT-3 Checkpoint. https://github.com/
openai/gpt-3/issues/1.

[37] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All file systems are not created equal: On
the complexity of crafting crash-consistent applications.
In 11th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI ’14, Broomfield, CO,
USA, October 6-8, 2014, pages 433–448. USENIX As-
sociation, 2014.

USENIX Association 19th USENIX Conference on File and Storage Technologies 215

https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://github.com/mlperf/training_results_v0.7
https://github.com/mlperf/training_results_v0.7
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnext101-32x4d
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnext101-32x4d
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnext101-32x4d
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnext101-32x4d
https://github.com/openai/gpt-3/issues/1
https://github.com/openai/gpt-3/issues/1

[38] PyTorch. PyTorch Training Examples. https:
//github.com/pytorch/examples/tree/master/
imagenet.

[39] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Im-
agenet large scale visual recognition challenge. Inter-
national journal of computer vision, 115(3):211–252,
2015.

[40] Faisal Shahzad, Markus Wittmann, Thomas Zeiser,
Georg Hager, and Gerhard Wellein. An evaluation
of different I/O techniques for checkpoint/restart. In
2013 IEEE International Symposium on Parallel & Dis-
tributed Processing, Workshops and Phd Forum, Cam-
bridge, MA, USA, May 20-24, 2013, pages 1708–1716.
IEEE, 2013.

[41] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[42] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-
30, 2016, pages 2818–2826. IEEE Computer Society,
2016.

[43] TensorFlow. Tensorflow checkpoint manager.
https://www.tensorflow.org/api_docs/python/
tf/train/CheckpointManager.

[44] TensorFlow. Tensorflow iterator checkpoint-
ing. https://www.tensorflow.org/guide/
data#iterator_checkpointing.

[45] Devesh Tiwari, Saurabh Gupta, and Sudharshan S.
Vazhkudai. Lazy checkpointing: Exploiting temporal
locality in failures to mitigate checkpointing overheads
on extreme-scale systems. In 44th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, DSN 2014, Atlanta, GA, USA, June 23-26,
2014, pages 25–36. IEEE Computer Society, 2014.

[46] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[47] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October 8-
10, 2018, pages 595–610. USENIX Association, 2018.

[48] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen
Tu, and Kaiming He. Aggregated residual transforma-
tions for deep neural networks. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages
5987–5995. IEEE Computer Society, 2017.

[49] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdi-
nov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler.
Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books. In
Proceedings of the IEEE international conference on
computer vision, pages 19–27, 2015.

216 19th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
https://www.tensorflow.org/api_docs/python/tf/train/CheckpointManager
https://www.tensorflow.org/api_docs/python/tf/train/CheckpointManager
https://www.tensorflow.org/guide/data#iterator_checkpointing
https://www.tensorflow.org/guide/data#iterator_checkpointing

Facebook’s Tectonic Filesystem: Efficiency from Exascale
Satadru Pan1, Theano Stavrinos1,2, Yunqiao Zhang1, Atul Sikaria1, Pavel Zakharov1, Abhinav Sharma1,
Shiva Shankar P1, Mike Shuey1, Richard Wareing1, Monika Gangapuram1, Guanglei Cao1, Christian

Preseau1, Pratap Singh1, Kestutis Patiejunas1, JR Tipton1, Ethan Katz-Bassett3, and Wyatt Lloyd2

1
Facebook, Inc.,

2
Princeton University,

3
Columbia University

Abstract
Tectonic is Facebook’s exabyte-scale distributed filesystem.
Tectonic consolidates large tenants that previously used
service-specific systems into general multitenant filesystem
instances that achieve performance comparable to the spe-
cialized systems. The exabyte-scale consolidated instances
enable better resource utilization, simpler services, and less
operational complexity than our previous approach. This pa-
per describes Tectonic’s design, explaining how it achieves
scalability, supports multitenancy, and allows tenants to spe-
cialize operations to optimize for diverse workloads. The
paper also presents insights from designing, deploying, and
operating Tectonic.

1 Introduction
Tectonic is Facebook’s distributed filesystem. It currently
serves around ten tenants, including blob storage and data
warehouse, both of which store exabytes of data. Prior to
Tectonic, Facebook’s storage infrastructure consisted of a
constellation of smaller, specialized storage systems. Blob
storage was spread across Haystack [11] and f4 [34]. Data
warehouse was spread across many HDFS instances [15].

The constellation approach was operationally complex, re-
quiring many different systems to be developed, optimized,
and managed. It was also inefficient, stranding resources in
the specialized storage systems that could have been reallo-
cated for other parts of the storage workload.

A Tectonic cluster scales to exabytes such that a single
cluster can span an entire datacenter. The multi-exabyte ca-
pacity of a Tectonic cluster makes it possible to host several
large tenants like blob storage and data warehouse on the
same cluster, with each supporting hundreds of applications
in turn. As an exabyte-scale multitenant filesystem, Tectonic
provides operational simplicity and resource efficiency com-
pared to federation-based storage architectures [8, 17], which
assemble smaller petabyte-scale clusters.

Tectonic simplifies operations because it is a single system
to develop, optimize, and manage for diverse storage needs. It
is resource-efficient because it allows resource sharing among
all cluster tenants. For instance, Haystack was the storage
system specialized for new blobs; it bottlenecked on hard disk
IO per second (IOPS) but had spare disk capacity. f4, which
stored older blobs, bottlenecked on disk capacity but had spare
IO capacity. Tectonic requires fewer disks to support the same
workloads through consolidation and resource sharing.

In building Tectonic, we confronted three high-level chal-
lenges: scaling to exabyte-scale, providing performance isola-
tion between tenants, and enabling tenant-specific optimiza-
tions. Exabyte-scale clusters are important for operational
simplicity and resource sharing. Performance isolation and
tenant-specific optimizations help Tectonic match the perfor-
mance of specialized storage systems.

To scale metadata, Tectonic disaggregates the filesys-
tem metadata into independently-scalable layers, similar to
ADLS [42]. Unlike ADLS, Tectonic hash-partitions each
metadata layer rather than using range partitioning. Hash
partitioning effectively avoids hotspots in the metadata layer.
Combined with Tectonic’s highly scalable chunk storage layer,
disaggregated metadata allows Tectonic to scale to exabytes
of storage and billions of files.

Tectonic simplifies performance isolation by solving the
isolation problem for groups of applications in each tenant
with similar traffic patterns and latency requirements. Instead
of managing resources among hundreds of applications, Tec-
tonic only manages resources among tens of traffic groups.

Tectonic uses tenant-specific optimizations to match the
performance of specialized storage systems. These optimiza-
tions are enabled by a client-driven microservice architecture
that includes a rich set of client-side configurations for con-
trolling how tenants interact with Tectonic. Data warehouse,
for instance, uses Reed-Solomon (RS)-encoded writes to im-
prove space, IO, and networking efficiency for its large writes.
Blob storage, in contrast, uses a replicated quorum append
protocol to minimize latency for its small writes and later
RS-encodes them for space efficiency.

Tectonic has been hosting blob storage and data warehouse
in single-tenant clusters for several years, completely replac-
ing Haystack, f4, and HDFS. Multitenant clusters are being
methodically rolled out to ensure reliability and avoid perfor-
mance regressions.

Adopting Tectonic has yielded many operational and effi-
ciency improvements. Moving data warehouse from HDFS
onto Tectonic reduced the number of data warehouse clusters
by 10⇥, simplifying operations from managing fewer clusters.
Consolidating blob storage and data warehouse into multi-
tenant clusters helped data warehouse handle traffic spikes
with spare blob storage IO capacity. Tectonic manages these
efficiency improvements while providing comparable or better
performance than the previous specialized storage systems.

USENIX Association 19th USENIX Conference on File and Storage Technologies 217

2 Facebook’s Previous Storage Infrastructure

Before Tectonic, each major storage tenant stored its data
in one or more specialized storage systems. We focus here
on two large tenants, blob storage and data warehouse. We
discuss each tenant’s performance requirements, their prior
storage systems, and why they were inefficient.

2.1 Blob Storage

Blob storage stores and serves binary large objects. These
may be media from Facebook apps (photos, videos, or mes-
sage attachments) or data from internal applications (core
dumps, bug reports). Blobs are immutable and opaque. They
vary in size from several kilobytes for small photos to several
megabytes for high-definition video chunks [34]. Blob stor-
age expects low-latency reads and writes as blobs are often
on path for interactive Facebook applications [29].

Haystack and f4. Before Tectonic, blob storage consisted
of two specialized systems, Haystack and f4. Haystack han-
dled “hot” blobs with a high access frequency [11]. It stored
data in replicated form for durability and fast reads and writes.
As Haystack blobs aged and were accessed less frequently,
they were moved to f4, the “warm” blob storage [34]. f4 stored
data in RS-encoded form [43], which is more space-efficient
but has lower throughput because each blob is directly acces-
sible from two disks instead of three in Haystack. f4’s lower
throughput was acceptable because of its lower request rate.

However, separating hot and warm blobs resulted in poor
resource utilization, a problem exacerbated by hardware and
blob storage usage trends. Haystack’s ideal effective replica-
tion factor was 3.6⇥ (i.e., each logical byte is replicated 3⇥,
with an additional 1.2⇥ overhead for RAID-6 storage [19]).
However, because IOPS per hard drive has remained steady
as drive density has increased, IOPS per terabyte of storage
capacity has declined over time.

As a result, Haystack became IOPS-bound; extra hard
drives had to be provisioned to handle the high IOPS load
of hot blobs. The spare disk capacity resulted in Haystack’s
effective replication factor increasing to 5.3⇥. In contrast, f4
had an effective replication factor of 2.8⇥ (using RS(10,4)
encoding in two different datacenters). Furthermore, blob stor-
age usage shifted to more ephemeral media that was stored in
Haystack but deleted before moving to f4. As a result, an in-
creasing share of the total blob data was stored at Haystack’s
high effective replication factor.

Finally, since Haystack and f4 were separate systems, each
stranded resources that could not be shared with other sys-
tems. Haystack overprovisioned storage to accommodate peak
IOPS, whereas f4 had an abundance of IOPS from storing a
large volume of less frequently-accessed data. Moving blob
storage to Tectonic harvested these stranded resources and
resulted in an effective replication factor of ~2.8⇥.

Chunk
Store

Metadata
Store

dc1:blobstore

appA appZ…

dc1:warehouse

Chunk
Store

Metadata
Store

dc2:blobstore
appZ

dc2:warehouse
geo-replication

Tectonic cluster

… … … …… … …

Tectonic cluster

Datacenter 1 Datacenter 2

Figure 1: Tectonic provides durable, fault-tolerant stor-
age inside a datacenter. Each tenant has one or more sep-
arate namespaces. Tenants implement geo-replication.

2.2 Data Warehouse
Data warehouse provides storage for data analytics. Data
warehouse applications store objects like massive map-reduce
tables, snapshots of the social graph, and AI training data
and models. Multiple compute engines, including Presto [3],
Spark [10], and AI training pipelines [4] access this data,
process it, and store derived data. Warehouse data is parti-
tioned into datasets that store related data for different product
groups like Search, Newsfeed, and Ads.

Data warehouse storage prioritizes read and write through-
put over latency, since data warehouse applications often
batch-process data. Data warehouse workloads tend to issue
larger reads and writes than blob storage, with reads averaging
multiple megabytes and writes averaging tens of megabytes.

HDFS for data warehouse storage. Before Tectonic,
data warehouse used the Hadoop Distributed File System
(HDFS) [15, 50]. However, HDFS clusters are limited in size
because they use a single machine to store and serve metadata.

As a result, we needed tens of HDFS clusters per datacenter
to store analytics data. This was operationally inefficient; ev-
ery service had to be aware of data placement and movement
among clusters. Single data warehouse datasets are often large
enough to exceed a single HDFS cluster’s capacity. This com-
plicated compute engine logic, since related data was often
split among separate clusters.

Finally, distributing datasets among the HDFS clusters cre-
ated a two-dimensional bin-packing problem. The packing
of datasets into clusters had to respect each cluster’s capacity
constraints and available throughput. Tectonic’s exabyte scale
eliminated the bin-packing and dataset-splitting problems.

3 Architecture and Implementation
This section describes the Tectonic architecture and imple-
mentation, focusing on how Tectonic achieves exabyte-scale
single clusters with its scalable chunk and metadata stores.

3.1 Tectonic: A Bird’s-Eye View
A cluster is the top-level Tectonic deployment unit. Tectonic
clusters are datacenter-local, providing durable storage that is
resilient to host, rack, and power domain failures. Tenants can
build geo-replication on top of Tectonic for protection against
datacenter failures (Figure 1).

218 19th USENIX Conference on File and Storage Technologies USENIX Association

Chunk Store

Client
Library

Background
Services

(stateless)
Garbage collectors

Rebalancer
Stat service

Disk inventory
Block repair/scan

Storage node health
checker

Metadata Store

Key-value
Store

Name layer

Block layer

File layer

Figure 2: Tectonic architecture. Arrows indicate network
calls. Tectonic stores filesystem metadata in a key-value
store. Apart from the Chunk and Metadata Stores, all
components are stateless.

A Tectonic cluster is made up of storage nodes, metadata
nodes, and stateless nodes for background operations. The
Client Library orchestrates remote procedure calls to the meta-
data and storage nodes. Tectonic clusters can be very large: a
single cluster can serve the storage needs of all tenants in a
single datacenter.

Tectonic clusters are multitenant, supporting around ten
tenants on the same storage fabric (§4). Tenants are distributed
systems that will never share data with one another; tenants
include blob storage and data warehouse. These tenants in turn
serve hundreds of applications, including Newsfeed, Search,
Ads, and internal services, each with varying traffic patterns
and performance requirements.

Tectonic clusters support any number of arbitrarily-sized
namespaces, or filesystem directory hierarchies, on the same
storage and metadata components. Each tenant in a cluster
typically owns one namespace. Namespace sizes are limited
only by the size of the cluster.

Applications interact with Tectonic through a hierarchi-
cal filesystem API with append-only semantics, similar to
HDFS [15]. Unlike HDFS, Tectonic APIs are configurable at
runtime, rather than being pre-configured on a per-cluster or
per-tenant basis. Tectonic tenants leverage this flexibility to
match the performance of specialized storage systems (§4).

Tectonic components. Figure 2 shows the major compo-
nents of Tectonic. The foundation of a Tectonic cluster is the
Chunk Store (§3.2), a fleet of storage nodes which store and
access data chunks on hard drives.

On top of the Chunk Store is the Metadata Store (§3.3),
which consists of a scalable key-value store and stateless
metadata services that construct the filesystem logic over the
key-value store. Their scalability enables Tectonic to store
exabytes of data.

Tectonic is a client-driven microservices-based system, a
design that enables tenant-specific optimizations. The Chunk
and Metadata Stores each run independent services to handle
read and write requests for data and metadata. These services
are orchestrated by the Client Library (§3.4); the library con-

verts clients’ filesystem API calls into RPCs to Chunk and
Metadata Store services.

Finally, each cluster runs stateless background services to
maintain cluster consistency and fault tolerance (§3.5).

3.2 Chunk Store: Exabyte-Scale Storage
The Chunk Store is a flat, distributed object store for chunks,
the unit of data storage in Tectonic. Chunks make up blocks,
which in turn make up Tectonic files.

The Chunk Store has two features that contribute to Tec-
tonic’s scalability and ability to support multiple tenants. First,
the Chunk Store is flat; the number of chunks stored grows
linearly with the number of storage nodes. As a result, the
Chunk Store can scale to store exabytes of data. Second, it
is oblivious to higher-level abstractions like blocks or files;
these abstractions are constructed by the Client Library using
the Metadata Store. Separating data storage from filesystem
abstractions simplifies the problem of supporting good per-
formance for a diversity of tenants on one storage cluster
(§5). This separation means reading to and writing from stor-
age nodes can be specialized to tenants’ performance needs
without changing filesystem management.

Storing chunks efficiently. Individual chunks are stored
as files on a cluster’s storage nodes, which each run a local
instance of XFS [26]. Storage nodes expose core IO APIs
to get, put, append to, and delete chunks, along with APIs
for listing chunks and scanning chunks. Storage nodes are
responsible for ensuring that their own local resources are
shared fairly among Tectonic tenants (§4).

Each storage node has 36 hard drives for storing chunks [5].
Each node also has a 1 TB SSD, used for storing XFS meta-
data and caching hot chunks. Storage nodes run a version
of XFS that stores local XFS metadata on flash [47]. This
is particularly helpful for blob storage, where new blobs are
written as appends, updating the chunk size. The SSD hot
chunk cache is managed by a cache library which is flash
endurance-aware [13].

Blocks as the unit of durable storage. In Tectonic, blocks
are a logical unit that hides the complexity of raw data storage
and durability from the upper layers of the filesystem. To the
upper layers, a block is an array of bytes. In reality, blocks are
composed of chunks which together provide block durability.

Tectonic provides per-block durability to allow tenants to
tune the tradeoff between storage capacity, fault tolerance, and
performance. Blocks are either Reed-Solomon encoded [43]
or replicated for durability. For RS(r,k) encoding, the block
data is split into r equal chunks (potentially by padding the
data), and k parity chunks are generated from the data chunks.
For replication, data chunks are the same size as the block
and multiple copies are created. Chunks in a block are stored
in different fault domains (e.g., different racks) for fault toler-
ance. Background services repair damaged or lost chunks to
maintain durability (§3.5).

USENIX Association 19th USENIX Conference on File and Storage Technologies 219

Layer Key Value Sharded by Mapping
Name (dir_id, subdirname) subdir_info, subdir_id dir_id dir ! list of subdirs (expanded)

(dir_id, filename) file_info, file_id dir_id dir ! list of files (expanded)
File (file_id, blk_id) blk_info file_id file ! list of blocks (expanded)
Block blk_id list<disk_id> blk_id block ! list of disks (i.e., chunks)

(disk_id, blk_id) chunk_info blk_id disk ! list of blocks (expanded)
Table 1: Tectonic’s layered metadata schema. dirname and filename are application-exposed strings. dir_id, file_id,
and block_id are internal object references. Most mappings are expanded for efficient updating.

3.3 Metadata Store: Naming Exabytes of Data
Tectonic’s Metadata Store stores the filesystem hierarchy and
the mapping of blocks to chunks. The Metadata Store uses
a fine-grained partitioning of filesystem metadata for opera-
tional simplicity and scalability. Filesystem metadata is first
disaggregated, meaning the naming, file, and block layers
are logically separated. Each layer is then hash partitioned
(Table 1). As we describe in this section, scalability and load
balancing come for free with this design. Careful handling of
metadata operations preserves filesystem consistency despite
the fine-grained metadata partitioning.

Storing metadata in a key-value store for scalability and
operational simplicity. Tectonic delegates filesystem meta-
data storage to ZippyDB [6], a linearizable, fault-tolerant,
sharded key-value store. The key-value store manages data at
the shard granularity: all operations are scoped to a shard, and
shards are the unit of replication. The key-value store nodes
internally run RocksDB [23], a SSD-based single-node key-
value store, to store shard replicas. Shards are replicated with
Paxos [30] for fault tolerance. Any replica can serve reads,
though reads that must be strongly consistent are served by
the primary. The key-value store does not provide cross-shard
transactions, limiting certain filesystem metadata operations.

Shards are sized so that each metadata node can host several
shards. This allows shards to be redistributed in parallel to
new nodes in case a node fails, reducing recovery time. It
also allows granular load balancing; the key-value store will
transparently move shards to control load on each node.

Filesystem metadata layers. Table 1 shows the filesystem
metadata layers, what they map, and how they are sharded.
The Name layer maps each directory to its sub-directories
and/or files. The File layer maps file objects to a list of blocks.
The Block layer maps each block to a list of disk (i.e., chunk)
locations. The Block layer also contains the reverse index of
disks to the blocks whose chunks are stored on that disk, used
for maintenance operations. Name, File, and Block layers are
hash-partitioned by directory, file, and block IDs, respectively.

As shown in Table 1, the Name and File layer and disk
to block list maps are expanded. A key mapped to a list is
expanded by storing each item in the list as a key, prefixed
by the true key. For example, if directory d1 contains files
foo and bar, we store two keys (d1, foo) and (d1, bar) in d1’s
Name shard. Expanding allows the contents of a key to be

modified without reading and then writing the entire list. In a
filesystem where mappings can be very large, e.g., directories
may contain millions of files, expanding significantly reduces
the overhead of some metadata operations such as file creation
and deletion. The contents of a expanded key are listed by
doing a prefix scan over keys.

Fine-grained metadata partitioning to avoid hotspots.
In a filesystem, directory operations often cause hotspots
in metadata stores. This is particularly true for data ware-
house workloads where related data is grouped into directo-
ries; many files from the same directory may be read in a
short time, resulting in repeated accesses to the directory.

Tectonic’s layered metadata approach naturally avoids
hotspots in directories and other layers by separating search-
ing and listing directory contents (Name layer) from reading
file data (File and Block layers). This is similar to ADLS’s
separation of metadata layers [42]. However, ADLS range-
partitions metadata layers whereas Tectonic hash-partitions
layers. Range partitioning tends to place related data on the
same shard, e.g., subtrees of the directory hierarchy, making
the metadata layer prone to hotspots if not carefully sharded.

We found that hash partitioning effectively load-balances
metadata operations. For example, in the Name layer, the
immediate directory listing of a single directory is always
stored in a single shard. But listings of two subdirectories
of the same directory will likely be on separate shards. In
the Block layer, block locator information is hashed among
shards, independent of the blocks’ directory or file. Around
two-thirds of metadata operations in Tectonic are served by
the Block layer, but hash partitioning ensures this traffic is
evenly distributed among Block layer shards.

Caching sealed object metadata to reduce read load.
Metadata shards have limited available throughput, so to re-
duce read load, Tectonic allows blocks, files, and directories
to be sealed. Directory sealing does not apply recursively, it
only prevents adding objects in the immediate level of the
directory. The contents of sealed filesystem objects cannot
change; their metadata can be cached at metadata nodes and
at clients without compromising consistency. The exception
is the block-to-chunk mapping; chunks can migrate among
disks, invalidating the Block layer cache. A stale Block layer
cache can be detected during reads, triggering a cache refresh.

220 19th USENIX Conference on File and Storage Technologies USENIX Association

Providing consistent metadata operations. Tectonic re-
lies on the key-value store’s strongly-consistent opera-
tions and atomic read-modify-write in-shard transactions for
strongly-consistent same-directory operations. More specif-
ically, Tectonic guarantees read-after-write consistency for
data operations (e.g., appends, reads), file and directory oper-
ations involving a single object (e.g., create, list), and move
operations where the source and destination are in the same
parent directory. Files in a directory reside in the directory’s
shard (Table 1), so metadata operations like file create, delete,
and moves within a parent directory are consistent.

The key-value store does not support consistent cross-shard
transactions, so Tectonic provides non-atomic cross-directory
move operations. Moving a directory to another parent di-
rectory on a different shard is a two-phase process. First, we
create a link from the new parent directory, and then delete
the link from the previous parent. The moved directory keeps
a backpointer to its parent directory to detect pending moves.
This ensures only one move operation is active for a direc-
tory at a time. Similarly, cross directory file moves involve
copying the file and deleting it from the source directory. The
copy step creates a new file object with the underlying blocks
of the source file, avoiding data movement.

In the absence of cross-shard transactions, multi-shard
metadata operations on the same file must be carefully imple-
mented to avoid race conditions. An example of such a race
condition is when a file named f1 in directory d is renamed
to f2. Concurrently, a new file with the same name is created,
where creates overwrite existing files with the same name.
The metadata layer and shard lookup key (shard(x)) are listed
for each step in parentheses.

A file rename has the following steps:
R1: get file ID fid for f1 (Name, shard(d))
R2: add f2 as an owner of fid (File, shard(fid))
R3: create the mapping f2 ! fid and delete f1 ! fid in

an atomic transaction (Name, shard(d))
A file create with overwriting has the following steps:
C1: create new file ID fid_new (File, shard(fid_new))
C2: map f1 ! fid_new; delete f1 ! fid (Name, shard(d))
Interleaving the steps in these transactions may leave the

filesystem in an inconsistent state. If steps C1 and C2 are
executed after R1 but before R3, then R3 will erase the newly-
created mapping from the create operation. Rename step R3
uses a within-shard transaction to ensure that the file object
pointed to by f1 has not been modified since R1.

3.4 Client Library
The Tectonic Client Library orchestrates the Chunk and Meta-
data Store services to expose a filesystem abstraction to appli-
cations, which gives applications per-operation control over
how to configure reads and writes. Moreover, the Client Li-
brary executes reads and writes at the chunk granularity, the
finest granularity possible in Tectonic. This gives the Client
Library nearly free reign to execute operations in the most

performant way possible for applications, which might have
different workloads or prefer different tradeoffs (§5).

The Client Library replicates or RS-encodes data and writes
chunks directly to the Chunk Store. It reads and reconstructs
chunks from the Chunk Store for the application. The Client
Library consults the Metadata Store to locate chunks, and
updates the Metadata Store for filesystem operations.

Single-writer semantics for simple, optimizable writes.
Tectonic simplifies the Client Library’s orchestration by allow-
ing a single writer per file. Single-writer semantics avoids the
complexity of serializing writes to a file from multiple writers.
The Client Library can instead write directly to storage nodes
in parallel, allowing it to replicate chunks in parallel and to
hedge writes (§5). Tenants needing multiple-writer semantics
can build serialization semantics on top of Tectonic.

Tectonic enforces single-writer semantics with a write to-
ken for every file. Any time a writer wants to add a block to a
file, it must include a matching token for the metadata write
to succeed. A token is added in the file metadata when a pro-
cess opens a file for appending, which subsequent writes must
include to update file metadata. If a second process attempts
to open the file, it will generate a new token and overwrite the
first process’s token, becoming the new, and only, writer for
the file. The new writer’s Client Library will seal any blocks
opened by the previous writer in the open file call.

3.5 Background Services
Background services maintain consistency between metadata
layers, maintain durability by repairing lost data, rebalance
data across storage nodes, handle rack drains, and publish
statistics about filesystem usage. Background services are
layered similar to the Metadata Store, and they operate on one
shard at a time. Figure 2 lists important background services.

A garbage collector between each metadata layer cleans
up (acceptable) metadata inconsistencies. Metadata incon-
sistencies can result from failed multi-step Client Library
operations. Lazy object deletion, a real-time latency optimiza-
tion that marks deleted objects at delete time without actually
removing them, also causes inconsistencies.

A rebalancer and a repair service work in tandem to relocate
or delete chunks. The rebalancer identifies chunks that need
to be moved in response to events like hardware failure, added
storage capacity, and rack drains. The repair service handles
the actual data movement by reconciling the chunk list to
the disk-to-block map for every disk in the system. To scale
horizontally, the repair service works on a per-Block layer
shard, per-disk basis, enabled by the reverse index mapping
disks to blocks (Table 1).

Copysets at scale. Copysets are combinations of disks that
provide redundancy for the same block (e.g., a copyset for an
RS(10,4)-encoded block consists of 14 disks) [20]. Having
too many copysets risks data unavailability if there is an un-
expected spike in disk failures. On the other hand, having too

USENIX Association 19th USENIX Conference on File and Storage Technologies 221

few copysets results in high reconstruction load to peer disks
when one disk fails, since they share many chunks.

The Block Layer and the rebalancer service together at-
tempt to maintain a fixed copyset count that balances unavail-
ability and reconstruction load. They each keep in memory
about one hundred consistent shuffles of all the disks in the
cluster. The Block Layer forms copysets from contiguous
disks in a shuffle. On a write, the Block Layer gives the Client
Library a copyset from the shuffle corresponding to that block
ID. The rebalancer service tries to keep the block’s chunks
in the copyset specified by that block’s shuffle. Copysets are
best-effort, since disk membership in the cluster changes con-
stantly.

4 Multitenancy
Providing comparable performance for tenants as they move
from individual, specialized storage systems to a consolidated
filesystem presents two challenges. First, tenants must share
resources while giving each tenant its fair share, i.e., at least
the same resources it would have in a single-tenant system.
Second, tenants should be able to optimize performance as
in specialized systems. This section describes how Tectonic
supports resource sharing with a clean design that maintains
operational simplicity. Section 5 describes how Tectonic’s
tenant-specific optimizations allow tenants to get performance
comparable to specialized storage systems.

4.1 Sharing Resources Effectively
As a shared filesystem for diverse tenants across Facebook,
Tectonic needs to manage resources effectively. In particular,
Tectonic needs to provide approximate (weighted) fair shar-
ing of resources among tenants and performance isolation
between tenants, while elastically shifting resources among
applications to maintain high resource utilization. Tectonic
also needs to distinguish latency-sensitive requests to avoid
blocking them behind large requests.

Types of resources. Tectonic distinguishes two types of
resources: non-ephemeral and ephemeral. Storage capacity
is the non-ephemeral resource. It changes slowly and pre-
dictably. Most importantly, once allocated to a tenant, it can-
not be given to another tenant. Storage capacity is managed
at the tenant granularity. Each tenant gets a predefined ca-
pacity quota with strict isolation, i.e., there is no automatic
elasticity in the space allocated to different tenants. Recon-
figuring storage capacity between tenants is done manually.
Reconfiguration does not cause downtime, so in case of an
urgent capacity crunch, it can be done immediately. Tenants
are responsible for distributing and tracking storage capacity
among their applications.

Ephemeral resources are those where demand changes
from moment to moment, and allocation of these resources
can change in real time. Storage IOPS capacity and meta-
data query capacity are two ephemeral resources. Because
ephemeral resource demand changes quickly, these resources

need finer-grained real-time automated management to ensure
they are shared fairly, tenants are isolated from one another,
and resource utilization is high. For the rest of this section, we
describe how Tectonic shares ephemeral resources effectively.

Distributing ephemeral resources among and within ten-
ants. Ephemeral resource sharing is challenging in Tectonic
because not only are tenants diverse, but each tenant serves
many applications with varied traffic patterns and perfor-
mance requirements. For example, blob storage includes pro-
duction traffic from Facebook users and background garbage
collection traffic. Managing ephemeral resources at the tenant
granularity would be too coarse to account for the varied work-
loads and performance requirements within a tenant. On the
other hand, because Tectonic serves hundreds of applications,
managing resources at the application granularity would be
too complex and resource-intensive.

Ephemeral resources are therefore managed within each
tenant at the granularity of groups of applications. These appli-
cation groups, called TrafficGroups, reduce the cardinality of
the resource sharing problem, reducing the overhead of man-
aging multitenancy. Applications in the same TrafficGroup
have similar resource and latency requirements. For example,
one TrafficGroup may be for applications generating back-
ground traffic while another is for applications generating
production traffic. Tectonic supports around 50 TrafficGroups
per cluster. Each tenant may have a different number of Traffic-
Groups. Tenants are responsible for choosing the appropriate
TrafficGroup for each of their applications. Each TrafficGroup
is in turn assigned a TrafficClass. A TrafficGroup’s Traffic-
Class indicates its latency requirements and decides which
requests should get spare resources. The TrafficClasses are
Gold, Silver, and Bronze, corresponding to latency-sensitive,
normal, and background applications. Spare resources are
distributed according to TrafficClass priority within a tenant.

Tectonic uses tenants and TrafficGroups along with the
notion of TrafficClass to ensure isolation and high resource
utilization. That is, tenants are allocated their fair share of
resources; within each tenant, resources are distributed by
TrafficGroup and TrafficClass. Each tenant gets a guaranteed
quota of the cluster’s ephemeral resources, which is subdi-
vided between a tenant’s TrafficGroups. Each TrafficGroup
gets its guaranteed resource quota, which provides isolation
between tenants as well as isolation between TrafficGroups.

Any ephemeral resource surplus within a tenant is shared
with its own TrafficGroups by descending TrafficClass. Any
remaining surplus is given to TrafficGroups in other tenants
by descending TrafficClass. This ensures spare resources are
used by TrafficGroups of the same tenant first before being
distributed to other tenants. When one TrafficGroup uses
resources from another TrafficGroup, the resulting traffic gets
the minimum TrafficClass of the two TrafficGroups. This
ensures the overall ratio of traffic of different classes does not
change based on resource allocation, which ensures the node
can meet the latency profile of the TrafficClass.

222 19th USENIX Conference on File and Storage Technologies USENIX Association

Enforcing global resource sharing. The Client Library
uses a rate limiter to achieve the aforementioned elastic-
ity. The rate limiter uses high-performance, near-realtime
distributed counters to track the demand for each tracked
resource in each tenant and TrafficGroup in the last small
time window. The rate limiter implements a modified leaky
bucket algorithm. An incoming request increments the de-
mand counter for the bucket. The Client Library then checks
for spare capacity in its own TrafficGroup, then other Traffic-
Groups in the same tenant, and finally other tenants, adhering
to TrafficClass priority. If the client finds spare capacity, the re-
quest is sent to the backend. Otherwise, the request is delayed
or rejected depending on the request’s timeout. Throttling
requests at clients puts backpressure on clients before they
make a potentially wasted request.

Enforcing local resource sharing. The client rate limiter
ensures approximate global fair sharing and isolation. Meta-
data and storage nodes also need to manage resources to
avoid local hotspots. Nodes provide fair sharing and isolation
with a weighted round-robin (WRR) scheduler that provision-
ally skips a TrafficGroup’s turn if it will exceed its resource
quota. In addition, storage nodes need to ensure that small IO
requests (e.g., blob storage operations) do not see higher la-
tency from colocation with large, spiky IO requests (e.g., data
warehouse operations). Gold TrafficClass requests can miss
their latency targets if they are blocked behind lower-priority
requests on storage nodes.

Storage nodes use three optimizations to ensure low latency
for Gold TrafficClass requests. First, the WRR scheduler pro-
vides a greedy optimization where a request from a lower
TrafficClass may cede its turn to a higher TrafficClass if the
request will have enough time to complete after the higher-
TrafficClass request. This helps prevent higher-TrafficClass
requests from getting stuck behind a lower-priority request.
Second, we limit how many non-Gold IOs may be in flight
for every disk. Incoming non-Gold traffic is blocked from
scheduling if there are any pending Gold requests and the non-
Gold in-flight limit has been reached. This ensures the disk is
not busy serving large data warehouse IOs while blob storage
requests are waiting. Third, the disk itself may re-arrange the
IO requests, i.e., serve a non-Gold request before an earlier
Gold request. To manage this, Tectonic stops scheduling non-
Gold requests to a disk if a Gold request has been pending
on that disk for a threshold amount of time. These three tech-
niques combined effectively maintain the latency profile of
smaller IOs, even when outnumbered by larger IOs.

4.2 Multitenant Access Control
Tectonic follows common security principles to ensure that
all communications and dependencies are secure. Tectonic
additionally provides coarse access control between tenants
(to prevent one tenant from accessing another’s data) and fine-
grained access control within a tenant. Access control must
be enforced at each layer of Tectonic, since the Client Library

talks to each layer directly. Since access control is on path for
every read and write, it must also be lightweight.

Tectonic uses a token-based authorization mechanism that
includes which resources can be accessed with the token [31].
An authorization service authorizes top-level client requests
(e.g., opening a file), generating an authorization token for the
next layer in the filesystem; each subsequent layer likewise
authorizes the next layer. The token’s payload describes the re-
source to which access is given, enabling granular access con-
trol. Each layer verifies the token and the resource indicated
in the payload entirely in memory; verification can be per-
formed in tens of microseconds. Piggybacking token-passing
on existing protocols reduces the access control overhead.

5 Tenant-Specific Optimizations
Tectonic supports around ten tenants in the same shared
filesystem, each with specific performance needs and work-
load characteristics. Two mechanisms permit tenant-specific
optimizations. First, clients have nearly full control over how
to configure an application’s interactions with Tectonic; the
Client Library manipulates data at the chunk level, the finest
possible granularity (§3.4). This Client Library-driven de-
sign enables Tectonic to execute operations according to the
application’s performance needs.

Second, clients enforce configurations on a per-call basis.
Many other filesystems bake configurations into the system or
apply them to entire files or namespaces. For example, HDFS
configures durability per directory [7], whereas Tectonic con-
figures durability per block write. Per-call configuration is
enabled by the scalability of the Metadata Store: the Meta-
data Store can easily handle the increased metadata for this
approach. We next describe how data warehouse and blob
storage leverage per-call configurations for efficient writes.

5.1 Data Warehouse Write Optimizations
A common pattern in data warehouse workloads is to write
data once that will be read many times later. For these work-
loads, the file is visible to readers only once the creator closes
the file. The file is then immutable for its lifetime. Because
the file is only read after it is written completely, applications
prioritize lower file write time over lower append latency.

Full-block, RS-encoded asynchronous writes for space,
IO, and network efficiency. Tectonic uses the write-once-
read-many pattern to improve IO and network efficiency,
while minimizing total file write time. The absence of partial
file reads in this pattern allows applications to buffer writes
up to the block size. Applications then RS-encode blocks in
memory and write the data chunks to storage nodes. Long-
lived data is typically RS(9,6) encoded; short-lived data, e.g.,
map-reduce shuffles, is typically RS(3,3)-encoded.

Writing RS-encoded full blocks saves storage space, net-
work bandwidth, and disk IO over replication. Storage and
bandwidth are lower because less total data is written. Disk
IO is lower because disks are more efficiently used. More

USENIX Association 19th USENIX Conference on File and Storage Technologies 223

75

80

85

90

95

800 1000 1200 1400 1600 1800 2000

Pe
rc
en
til
e

72MB block write latency (ms)

Hedging
No Hedging

(a) Data warehouse full block writes

0

25

50

75

100

0 50 100 150 200

Pe
rc
en
til
e

Write Latency (ms)

Haystack
Quorum append
Standard append

(b) Blob storage write latency

0

25

50

75

100

0 20 40 60 80 100

Pe
rc
en
til
e

Read Latency (ms)

Tectonic
Haystack

(c) Blob storage read latency
Figure 3: Tail latency optimizations in Tectonic. (a) shows the improvement in data warehouse tail latency from hedged
quorum writes (72MB blocks) in a test cluster with ~80% load. (b) and (c) show Tectonic blob storage write latency
(with and without quorum appends) and read latency compared to Haystack.

IOPS are needed to write chunks to 15 disks in RS(9,6), but
each write is small and the total amount of data written is
much smaller than with replication. This results in more effi-
cient disk IO because block sizes are large enough that disk
bandwidth, not IOPS, is the bottleneck for full-block writes.

The write-once-read-many pattern also allows applications
to write the blocks of a file asynchronously in parallel, which
decreases the file write latency significantly. Once the blocks
of the file are written, the file metadata is updated all together.
There is no risk of inconsistency with this strategy because a
file is only visible once it is completely written.

Hedged quorum writes to improve tail latency. For full-
block writes, Tectonic uses a variant of quorum writing which
reduces tail latency without any additional IO. Instead of
sending the chunk write payload to extra nodes, Tectonic first
sends reservation requests ahead of the data and then writes
the chunks to the first nodes to accept the reservation. The
reservation step is similar to hedging [22], but it avoids data
transfers to nodes that would reject the request because of
lack of resources or because the requester has exceeded its
resource share on that node (§4).

As an example, to write a RS(9,6)-encoded block, the Client
Library sends a reservation request to 19 storage nodes in
different failure domains, four more than required for the
write. The Client Library writes the data and parity chunks
to the first 15 storage nodes that respond to the reservation
request. It acknowledges the write to the client as soon as a
quorum of 14 out of 15 nodes return success. If the 15th write
fails, the corresponding chunk is repaired offline.

The hedging step is more effective when the cluster is
highly loaded. Figure 3a shows ~20% improvement in 99th
percentile latency for RS(9,6) encoded, 72 MB full-block
writes, in a test cluster with 80% throughput utilization.

5.2 Blob Storage Optimizations
Blob storage is challenging for filesystems because of the
quantity of objects that need to be indexed. Facebook stores
tens of trillions of blobs. Tectonic manages the size of blob

storage metadata by storing many blobs together into log-
structured files, where new blobs are appended at the end of a
file. Blobs are located with a map from blob ID to the location
of the blob in the file.

Blob storage is also on path for many user requests, so low
latency is desirable. Blobs are usually much smaller than Tec-
tonic blocks (§2.1). Blob storage therefore writes new blobs
as small, replicated partial block appends for low latency. The
partial block appends need to be read-after-write consistent
so blobs can be read immediately after successful upload.
However, replicated data uses more disk space than full-block
RS-encoded data.

Consistent partial block appends for low latency. Tec-
tonic uses partial block quorum appends to enable durable,
low-latency, consistent blob writes. In a quorum append, the
Client Library acknowledges a write after a subset of storage
nodes has successfully written the data to disk, e.g., two nodes
for three-way replication. The temporary decrease of durabil-
ity from a quorum write is acceptable because the block will
soon be reencoded and because blob storage writes a second
copy to another datacenter.

The challenge with partial block quorum appends is that
straggler appends could leave replica chunks at different sizes.
Tectonic maintains consistency by carefully controlling who
can append to a block and when appends are made visible.
Blocks can only be appended to by the writer that created
the block. Once an append completes, Tectonic commits the
post-append block size and checksum to the block metadata
before acknowledging the partial block quorum append.

This ordering of operations with a single appender provides
consistency. If block metadata reports a block size of S, then
all preceeding bytes in the block were written to at least two
storage nodes. Readers will be able to access data in the block
up to offset S. Similarly, any writes acknowledged to the ap-
plication will have been updated in the block metadata and so
will be visible to future reads. Figures 3b and 3c demonstrate
that Tectonic’s blob storage read and write latency is compa-
rable to Haystack, validating that Tectonic’s generality does

224 19th USENIX Conference on File and Storage Technologies USENIX Association

Capacity Used bytes Files Blocks Storage Nodes
1590 PB 1250 PB 10.7 B 15 B 4208

Table 2: Statistics from a multitenant Tectonic produc-
tion cluster. File and block counts are in billions.

not have a significant performance cost.

Reencoding blocks for storage efficiency. Directly RS-
encoding small partial-block appends would be IO-inefficient.
Small disk writes are IOPS-bound and RS-encoding results
in many more IOs (e.g, 14 IOs with RS(10, 4) instead of 3).
Instead of RS-encoding after each append, the Client Library
reencodes the block from replicated form to RS(10,4) en-
coding once the block is sealed. Reencoding is IO-efficient
compared to RS-encoding at append time, requiring only a
single large IO on each of the 14 target storage nodes. This
optimization, enabled by Tectonic’s Client Library-driven de-
sign, provides nearly the best of both worlds with fast and
IO-efficient replication for small appends that are quickly
transitioned to the more space-efficient RS-encoding.

6 Tectonic in Production
This section shows Tectonic operating at exabyte scale,
demonstrates benefits of storage consolidation, and discusses
how Tectonic handles metadata hotspots. It also discusses
tradeoffs and lessons from designing Tectonic.

6.1 Exabyte-Scale Multitenant Clusters
Production Tectonic clusters run at exabyte scale. Table 2
gives statistics on a representative multitenant cluster. All
results in this section are for this cluster. The 1250 PB of stor-
age, ~70% of the cluster capacity at the time of the snapshot,
consists of 10.7 billion files and 15 billion blocks.

6.2 Efficiency from Storage Consolidation
The cluster in Table 2 hosts two tenants, blob storage and
data warehouse. Blob storage uses ~49% of the used space in
this cluster and data warehouse uses ~51%. Figures 4a and 4b
show the cluster handling storage load over a three-day period.
Figure 4a shows the cluster’s aggregate IOPS during that time,
and Figure 4b shows its aggregate disk bandwidth. The data
warehouse workload has large, regular load spikes triggered
by very large jobs. Compared to the spiky data warehouse
workload, blob storage traffic is smooth and predictable.

Sharing surplus IOPS capacity. The cluster handles
spikes in storage load from data warehouse using the surplus
IOPS capacity unlocked by consolidation with blob storage.
Blob storage requests are typically small and bound by IOPS
while data warehouse requests are typically large and bound
by bandwidth. As a result, neither IOPS nor bandwidth can
fairly account for disk IO usage. The bottleneck resource in
serving storage operations is disk time, which measures how
often a given disk is busy. Handling a storage load spike re-
quires Tectonic to have enough free disk time to serve the

Warehouse Blob storage Combined
Supply 0.51 0.49 1.00
Peak 1 0.60 0.12 0.72
Peak 2 0.54 0.14 0.68
Peak 3 0.57 0.11 0.68

Table 3: Consolidating data warehouse and blob storage
in Tectonic allows data warehouse to use what would oth-
erwise be stranded surplus disk time for blob storage to
handle large load spikes. This figure shows the normal-
ized disk time demand vs. supply in three daily peaks in
the representative cluster.

spike. For example, if a disk does 10 IOs in one second with
each taking 50 ms (seek and fetch), then the disk was busy for
500 out of 1000 ms. We use disk time to fairly account for
usage by different types of requests.

For the representative production cluster, Table 3 shows
normalized disk time demand for data warehouse and blob
storage for three daily peaks and the supply of disk time each
would have if running on its own cluster. We normalize by
total disktime corresponding to used space in the cluster. The
daily peaks correspond to the same three days of traffic as
in Figures 4a and 4b. Data warehouse’s demand exceeds its
supply in all three peaks and handling it on its own would
require disk overprovisioning. To handle peak data warehouse
demand over the three day period, the cluster would have
needed ~17% overprovisioning. Blob storage, on the other
hand, has surplus disk time that would be stranded if it ran
in its own cluster. Consolidating these tenants into a single
Tectonic cluster allows the blob storage’s surplus disk time to
be used for data warehouse’s storage load spikes.

6.3 Metadata Hotspots
Load spikes to the Metadata Store may result in hotspots in
metadata shards. The bottleneck resource in serving meta-
data operations is queries per second (QPS). Handling load
spikes requires the Metadata Store to keep up with the QPS
demand on every shard. In production, each shard can serve a
maximum of 10 KQPS. This limit is imposed by the current
isolation mechanism on the resources of the metadata nodes.
Figure 4c shows the QPS across metadata shards in the cluster
for the Name, File, and Block layers. All shards in the File
and Block layers are below this limit.

Over this three-day period, around 1% of Name layer shards
hit the QPS limit because they hold very hot directories. The
small unhandled fraction of metadata requests are retried
after a backoff. The backoff allows the metadata nodes to
clear most of the initial spike and successfully serve retried
requests. This mechanism, combined with all other shards
being below their maximum, enables Tectonic to successfully
handle the large spikes in metadata load from data warehouse.

The distribution of load across shards varies between the
Name, File, and Block layers. Each higher layer has a larger
distribution of QPS per shard because it colocates more of a

USENIX Association 19th USENIX Conference on File and Storage Technologies 225

0
200
400
600
800
1000
1200
1400
1600
1800
2000

0 10 20 30 40 50 60 70

IO
PS
(K
)

Time (hours)

Warehouse
Blob storage

(a) Aggregate cluster IOPS

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

0 10 20 30 40 50 60 70

Ba
nd
w
id
th
(T
B/
s)

Time (hours)

Warehouse
Blob storage

(b) Aggregate cluster bandwidth

0

25

50

75

100

0 2 4 6 8 10

max load >

Pe
rc
en
til
e
of
sh
ar
ds

KQPS

Block
Name
File

(c) Peak metadata load (CDF)
Figure 4: IO and metadata load on the representative production cluster over three days. (a) and (b) show the difference
in blob storage and data warehouse traffic patterns and show Tectonic successfully handling spikes in storage IOPS and
bandwidth over 3 days. Both tenants occupy nearly the same space in this cluster. (c) is a CDF of peak metadata load
over three days on this cluster’s metadata shards. The maximum load each shard can handle is 10 KQPS (grey line).
Tectonic can handle all metadata operations at the File and Block layers. It can immediately handle almost all Name
layer operations; the remaining operations are handled on retry.

tenant’s operations. For instance, all directory-to-file lookups
for a given directory are handled by one shard. An alternative
design that used range partitioning like ADLS [42] would
colocate many more of a tenant’s operations together and
result in much larger load spikes. Data warehouse jobs often
read many similarly-named directories, which would lead to
extreme load spikes if the directories were range-partitioned.
Data warehouse jobs also read many files in a directory, which
causes load spikes in the Name layer. Range-partitioning the
File layer would colocate files in a directory on the same shard,
resulting in a much larger load spike because each job does
many more File layer operations than Name layer operations.
Tectonic’s hash partitioning reduces this colocation, allowing
Tectonic to handle metadata load spikes using fewer nodes
than would be necessary with range partitioning.

Tectonic also codesigns with data warehouse to reduce
metadata hotspots. For example, compute engines commonly
use an orchestrator to list files in a directory and distribute
the files to workers. The workers open and process the files
in parallel. In Tectonic, this pattern sends a large number of
nearly-simultaneous file open requests to a single directory
shard (§3.3), causing a hotspot. To avoid this anti-pattern,
Tectonic’s list-files API returns the file IDs along with the file
names in a directory. The compute engine orchestrator sends
the file IDs and names to its workers, which can open the files
directly by file ID without querying the directory shard again.

6.4 The simplicity-performance tradeoffs
Tectonic’s design generally prioritizes simplicity over effi-
ciency. We discuss two instances where we opted for addi-
tional complexity in exchange for performance gains.

Managing reconstruction load. RS-encoded data may be
stored contiguously, where a data block is divided into chunks
that are each written contiguously to storage nodes, or striped,
where a data block is divided into much smaller chunks that

are distributed round-robin across storage nodes [51]. Be-
cause Tectonic uses contiguous RS encoding and the majority
of reads are smaller than a chunk size, reads are usually di-

rect: they do not require RS reconstruction and so consist
of a single disk IO. Reconstruction reads require 10⇥ more
IOs than direct reads (for RS(10,4) encoding). Though com-
mon, it is difficult to predict the fraction of reads that will
be reconstructed, since reconstruction is triggered by hard-
ware failures as well as node overload. We learned that such
a wide variability in resource requirements, if not controlled,
can cause cascading failures that affect system availability
and performance.

If some storage nodes are overloaded, direct reads fail and
trigger reconstructed reads. This increases load to the rest
of the system and triggers yet more reconstructed reads, and
so forth. The cascade of reconstructions is called a recon-

struction storm. A simple solution would be to use striped
RS encoding where all reads are reconstructed. This avoids
reconstruction storms because the number of IOs for reads
does not change when there are failures. However, it makes
normal-case reads much more expensive. We instead prevent
reconstruction storms by restricting reconstructed reads to
10% of all reads. This fraction of reconstructed reads is typ-
ically enough to handle disk, host, and rack failures in our
production clusters. In exchange for some tuning complexity,
we avoid over-provisioning disk resources.

Efficiently accessing data within and across datacenters.
Tectonic allows clients to directly access storage nodes; an
alternative design might use front-end proxies to mediate all
client access to storage. Making the Client Library accessible
to clients introduces complexity because bugs in the library
become bugs in the application binary. However, direct client
access to storage nodes is vastly more network- and hard-
ware resource efficient than a proxy design, avoiding an extra
network hop for terabytes of data per second.

226 19th USENIX Conference on File and Storage Technologies USENIX Association

Unfortunately, direct storage node access is a poor fit for re-
mote requests, where the client is geographically distant from
the Tectonic cluster. The additional network overhead makes
the orchestration round trips prohibitively inefficient. To solve
this problem, Tectonic handles remote data access differently
from local data access: remote requests get forwarded to a
stateless proxy in the same datacenter as the storage nodes.

6.5 Tradeoffs and Compromises
Migrating to Tectonic was not without tradeoffs and compro-
mises. This subsection describes a few areas where Tectonic
is either less flexible or less performant than Facebook’s pre-
vious infrastructure. We also describe the impact of using a
hash-partitioned metadata store.

The impact of higher metadata latency. Migrating to Tec-
tonic meant data warehouse applications saw higher metadata
latency. HDFS metadata operations are in-memory and all
metadata for a namespace is stored on a single node. In con-
trast, Tectonic stores its metadata in a sharded key-value store
instance and disaggregates metadata layers (§3.3). This means
Tectonic metadata operations may require one or more net-
work calls (e.g., a file open operation will interact with the
Name and File layers). Data warehouse had to adjust how
it handled certain metadata operations given the additional
metadata latency. For instance, compute engines rename a set
of files one by one, in sequence, after computation is done.
In HDFS each rename was fast, but with Tectonic, compute
engines parallelize this step to hide the extra latency of indi-
vidual Tectonic rename operations.

Working around hash-partitioned metadata. Because
Tectonic directories are hash sharded, listing directories re-
cursively involves querying many shards. In fact, Tectonic
does not provide a recursive list API; tenants need to build it
as a client-side wrapper over individual list calls. As a result,
unlike HDFS, Tectonic does not have du (directory utilization)
functionality to query aggregate space usage of a directory.
Instead, Tectonic periodically aggregates per-directory usage
statistics, which can be stale.

6.6 Design and Deployment Lessons
Achieving high scalability is an iterative process enabled
by a microservice architecture. Several Tectonic compo-
nents have been through multiple iterations to meet increasing
scalability requirements. For example, the first version of the
Chunk Store grouped blocks to reduce metadata. A number of
blocks with the same redundancy scheme were grouped and
RS-encoded as one unit to store their chunks together. Each
block group mapped to a set of storage nodes. This is a com-
mon technique since it significantly reduces metadata [37, 53],
but it was too inflexible for our production environment. For
example, with only 5% of storage nodes unavailable, 80% of
the block groups became unavailable for writes. This design
also precluded optimizations like hedged quorum writes and

quorum appends (§5).
Additionally, our initial Metadata Store architecture did not

separate the Name and File layers; clients consulted the same
shards for directory lookups and for listing blocks in a file.
This design resulted in unavailability from metadata hotspots,
prompting us to further disaggregate metadata.

Tectonic’s evolution shows the importance of trying new
designs to get closer to performance goals. Our development
experience also shows the value of a microservices-based
architecture for experimentation: we could iterate on compo-
nents transparently to the rest of the system.

Memory corruption is common at scale. At Tectonic’s
scale, with thousands of machines reading and writing a large
amount of data every day, in-memory data corruption is a reg-
ular occurrence, a phenomenon observed in other large-scale
systems [12, 27]. We address this by enforcing checksum
checks within and between process boundaries.

For data D and checksum CD, if we want to perform an in-
memory transformation F such that D

0 = F(D), we generate
checksum CD0 for D

0. To check D
0, we must convert D

0 back to
D with G, the inverse function of F , and compare CG(D0) with
CD. The inverse function, G, may be expensive to compute
(e.g., for RS encoding or encryption), but it is an acceptable
cost for Tectonic to preserve data integrity.

All API boundaries involving moving, copying, or trans-
forming data had to be retrofitted to include checksum infor-
mation. Clients pass a checksum with data to the Client Li-
brary when writing, and Tectonic needs to pass the checksum
not just across process boundaries (e.g., between the client
library and the storage node) but also within the process (e.g.,
after transformations). Checking the integrity of transforma-
tions prevents corruptions from propagating to reconstructed
chunks after storage node failure.

6.7 Services that do not use Tectonic
Some services within Facebook do not use Tectonic for stor-
age. Bootstrap services, e.g., the software binary package
deployment system, which must have no dependencies, can-
not use Tectonic because it depends on many other services
(e.g., the key-value store, configuration management system,
deployment management system). Graph storage [16] also
does not use Tectonic, as Tectonic is not yet optimized for
key-value store workloads which often need the low latencies
provided by SSD storage.

Many other services do not use Tectonic directly. They in-
stead use Tectonic through a major tenant like blob storage or
data warehouse. This is because a core design philosophy of
Tectonic is separation of concerns. Internally, Tectonic aims
for independent software layers which each focus on a narrow
set of a storage system’s core responsibilities (e.g., storage
nodes only know about chunks but not blocks or files). This
philosophy extends to how Tectonic fits in with the rest of
the storage infrastructure. For example, Tectonic focuses on
providing fault tolerance within a datacenter; it does not pro-

USENIX Association 19th USENIX Conference on File and Storage Technologies 227

tect against datacenter failures. Geo-replication is a separate
problem that Tectonic delegates to its large tenants, who solve
it to provide transparent and easy-to-use shared storage for
applications. Tenants are also expected to know details of
capacity management and storage deployments and rebalanc-
ing across different datacenters. For smaller applications, the
complexity and implementation needed to interface directly
with Tectonic in a way that meets their storage needs would
amount to re-implementing features that tenants have already
implemented. Individual applications therefore use Tectonic
via tenants.

7 Related Work
Tectonic adapts techniques from existing systems and the
literature, demonstrating how they can be combined into a
novel system that realizes exabyte-scale single clusters which
support a diversity of workloads on a shared storage fabric.

Distributed filesystems with a single metadata node.
HDFS [15], GFS [24], and others [38, 40, 44] are limited
by the metadata node to tens of petabytes of storage per in-
stance or cluster, compared to Tectonic’s exabytes per cluster.

Federating namespaces for increased capacity. Feder-
ated HDFS [8] and Windows Azure Storage (WAS) [17] com-
bine multiple smaller storage clusters (with a single metadata
node) into larger clusters. For instance, a federated HDFS [8]
cluster has multiple independent single-namenode names-
paces, even though the storage nodes are shared between
namespaces. Federated systems still have the operational
complexity of bin-packing datasets (§2). Also, migrating or
sharing data between instances, e.g., to load-balance or add
storage capacity, requires resource-heavy data copying among
namespaces [33, 46, 54]

Hash-based data location for metadata scalability.
Ceph [53] and FDS [36] eliminate centralized metadata, in-
stead locating data by hashing on object ID. Handling failures
in such systems is a scalability bottleneck. Failures are more
frequent with larger clusters, requiring frequent updates to
the hash-to-location map that must propagate to all nodes.
Yahoo’s Cloud Object Store [41] federates Ceph instances to
isolate the effects of failures. Furthermore, adding hardware
and draining is complicated, as Ceph lacks support for con-
trolled data migration [52]. Tectonic explicitly maps chunks
to storage nodes, allowing controlled migration.

Disaggregated or sharded metadata for scalability. Like
Tectonic, ADLS [42] and HopsFS [35] increase filesystem
capacity by disaggregating metadata into layers in separate
sharded data stores. Tectonic hash-partitions directories, while
ADLS and HopsFS store some related directory metadata on
the same shards, causing metadata for related parts of the
directory tree to be colocated. Hash partitioning helps Tec-
tonic avoid hotspots local to part of the directory tree. ADLS
uses WAS’s federated architecture [17] for block storage. In
contrast, Tectonic’s block storage is flat.

Like Tectonic, Colossus [28, 32] provides cluster-wide
multi-exabyte storage where client libraries directly access
storage nodes. Colossus uses Spanner [21], a globally consis-
tent database to store filesystem metadata. Tectonic metadata
is built on a sharded key-value store, which only provides
within-shard strong consistency and no cross-shard opera-
tions. These limitations have not been a problem in practice.

Blob and object stores. Compared to distributed filesys-
tems, blob and object stores [14, 18, 36, 37] are easier to
scale, as they do not have a hierarchical directory tree or
namespace to keep consistent. Hierarchical namespaces are
required for most warehouse workloads.

Other large-scale storage systems. Lustre [1] and
GPFS [45] are tuned for high-throughput parallel access. Lus-
tre limits the number of metadata nodes, limiting scalability.
GPFS is POSIX-compliant, introducing unnecessary meta-
data management overhead for our setting. HBase [9] is a
key-value store based on HDFS, but its HDFS clusters are
not shared with a warehouse workload. We could not compare
with AWS [2] as its design is not public.

Multitenancy techniques. Tectonic’s multitenancy tech-
niques were co-designed with the filesystem as well as the
tenants, and does not aim to achieve optimal fair sharing.
It is thus easier to provide performance isolation compared
to other systems in the literature. Other systems use more
complex resource management techniques to accommodate
changes in tenancy and resource use policies, or to provide
optimal fair resource sharing among tenants [25, 48, 49].

Some details of Tectonic have previously been described
in talks [39, 47] where the system is called Warm Storage.

8 Conclusion
This paper presents Tectonic, Facebook’s distributed filesys-
tem. A single Tectonic instance can support all Facebook’s
major storage tenants in a datacenter, enabling better resource
utilization and less operational complexity. Tectonic’s hash-
sharded disaggregated metadata and flat data chunk storage
allow it to address and store exabytes. Its cardinality-reduced
resource management allows it to efficiently and fairly share
resources and distribute surplus resources for high utiliza-
tion. Tectonic’s client-driven tenant-specific optimizations
allow it to match or exceed the performance of the previous
specialized storage systems.

Acknowledgements. We are grateful to our shepherd, Pe-
ter Macko, and the anonymous reviewers of the FAST pro-
gram committee whose extensive comments substantially im-
proved this work. We are also grateful to Nar Ganapathy, Mi-
hir Gorecha, Morteza Ghandehari, Bertan Ari, John Doty, and
other colleagues at Facebook who contributed to the project.
We also thank Jason Flinn and Qi Huang for suggestions for
improving the paper. Theano Stavrinos was supported by the
National Science Foundation grant CNS-1910390 while at
Princeton University.

228 19th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Lustre Wiki. https://wiki.lustre.org/images/6/

64/LustreArchitecture-v4.pdf, 2017.

[2] AWS Documentation. https://

docs.aws.amazon.com/, 2020.

[3] Presto. https://prestodb.io/, 2020.

[4] Aditya Kalro. Facebook’s FBLearner Platform with
Aditya Kalro. https://twimlai.com/twiml-talk-
197-facebooks-fblearner-platform-with-

aditya-kalro/, 2018.

[5] J. Adrian. Introducing Bryce Canyon: Our next-
generation storage platform. https://tinyurl.com/
yccx2x7v, 2017.

[6] M. Annamalai. ZippyDB - A Distributed key
value store. https://www.youtube.com/embed/
ZRP7z0HnClc, 2015.

[7] Apache Software Foundation. HDFS Erasure
Coding. https://hadoop.apache.org/docs/
r3.1.1/hadoop-project-dist/hadoop-hdfs/
HDFSErasureCoding.html, 2018.

[8] Apache Software Foundation. HDFS Fed-
eration. https://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-hdfs/

Federation.html, 2019.

[9] Apache Software Foundation. Apache HBase. https:
//hbase.apache.org/, 2020.

[10] Apache Software Foundation. Apache Spark. https:
//spark.apache.org/, 2020.

[11] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Va-
jgel. Finding a Needle in Haystack: Facebook’s Photo
Storage. In Proceedings of the 9th USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI’10), Vancouver, BC, Canada, 2010. USENIX As-
sociation.

[12] D. Behrens, M. Serafini, F. P. Junqueira, S. Arnautov,
and C. Fetzer. Scalable error isolation for distributed
systems. In Proceedings of the 12th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI’15), Oakland, CA, USA, 2015. USENIX Associ-
ation.

[13] B. Berg, D. S. Berger, S. McAllister, I. Grosof, J. Gu-
nasekar, Sathya Lu, M. Uhlar, J. Carrig, N. Beckmann,
M. Harchol-Balter, and G. R. Ganger. The CacheLib
Caching Engine: Design and Experiences at Scale. In
14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’20), Online, 2020. USENIX
Association.

[14] A. Bigian. Blobstore: Twitter’s in-house photo storage
system. https://blog.twitter.com/engineering/
en_us/a/2012/blobstore-twitter-s-in-house-

photo-storage-system.html, 2012.

[15] D. Borthakur. HDFS Architecture Guide.
https://hadoop.apache.org/docs/r1.2.1/
hdfs_design.html, 2019.

[16] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. TAO: Facebook’s Distributed Data
Store for the Social Graph. In Proceedings of the 2013

USENIX Annual Technical Conference. USENIX, 2013.

[17] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas. Windows Azure
Storage: A Highly Available Cloud Storage Service
with Strong Consistency. In Proceedings of the 23rd

ACM Symposium on Operating Systems Principles

(SOSP’11), Cascais, Portugal, 2011. Association for
Computing Machinery (ACM).

[18] J. Chen, C. Douglas, M. Mutsuzaki, P. Quaid, R. Ra-
makrishnan, S. Rao, and R. Sears. Walnut: a unified
cloud object store. 2012.

[19] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson. RAID: High-performance, reliable
secondary storage. ACM Computing Surveys (CSUR),
26(2):145–185, 1994.

[20] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ouster-
hout, and M. Rosenblum. Copysets: Reducing the Fre-
quency of Data Loss in Cloud Storage. In Proceed-

ings of the 2013 USENIX Annual Technical Conference

(USENIX ATC’13), San Jose, CA, USA, 2013. USENIX
Association.

[21] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally
distributed database. ACM Trans. Comput. Syst., 31(3),
Aug. 2013. ISSN 0734-2071. doi: 10.1145/2491245.
URL https://doi.org/10.1145/2491245.

[22] J. Dean and L. A. Barroso. The tail at scale. Com-

mun. ACM, 56(2):74–80, Feb. 2013. ISSN 0001-

USENIX Association 19th USENIX Conference on File and Storage Technologies 229

0782. doi: 10.1145/2408776.2408794. URL http:

//doi.acm.org/10.1145/2408776.2408794.

[23] Facebook Open Source. RocksDB. https://

rocksdb.org/, 2020.

[24] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
File System. In Proceedings of the 19th ACM Sym-

posium on Operating Systems Principles (SOSP’03),
Bolton Landing, NY, USA, 2003. Association for Com-
puting Machinery (ACM).

[25] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sánchez-
Artigas, P. García-López, Y. Moatti, and E. Rom. Crystal:
Software-defined storage for multi-tenant object stores.
In Proceedings of the 15th USENIX Conference on File

and Storage Technologies (FAST’17), Santa Clara, CA,
USA, 2017. USENIX Association.

[26] X. F. Group. The XFS Linux wiki. https://

xfs.wiki.kernel.org/, 2018.

[27] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai,
S. Wu, S. Dhoot, A. Kumar, A. Agiwal, S. Bhansali,
M. Hong, J. Cameron, M. Siddiqi, D. Jones, J. Shute,
A. Gubarev, S. Venkataraman, and D. Agrawal. Mesa:
Geo-replicated, near real-time, scalable data warehous-
ing. In Proceedings of the 40th International Confer-

ence on Very Large Data Bases (VLDB’14), Hangzhou,
China, 2014. VLDB Endowment.

[28] D. Hildebrand and D. Serenyi. A peek behind the
VM at the Google Storage infrastructure. https:

//www.youtube.com/watch?v=q4WC_6SzBz4, 2020.

[29] Q. Huang, P. Ang, P. Knowles, T. Nykiel, I. Tverdokhlib,
A. Yajurvedi, P. Dapolito IV, X. Yan, M. Bykov, C. Liang,
M. Talwar, A. Mathur, S. Kulkarni, M. Burke, and
W. Lloyd. SVE: Distributed video processing at Face-
book scale. In Proceedings of the 26th ACM Symposium

on Operating Systems Principles (SOSP’17), Shang-
hai, China, 2017. Association for Computing Machinery
(ACM).

[30] L. Leslie. The part-time parliament. ACM Transactions

on Computer Systems, 16(2):133–169, 1998.

[31] K. Lewi, C. Rain, S. A. Weis, Y. Lee, H. Xiong, and
B. Yang. Scaling backend authentication at facebook.
IACR Cryptol. ePrint Arch., 2018:413, 2018. URL
https://eprint.iacr.org/2018/413.

[32] M. K. McKusick and S. Quinlan. GFS: Evolution on
Fast-forward. Queue, 7(7):10:10–10:20, Aug. 2009.
ISSN 1542-7730. doi: 10.1145/1594204.1594206. URL
http://doi.acm.org/10.1145/1594204.1594206.

[33] P. A. Misra, I. n. Goiri, J. Kace, and R. Bianchini. Scal-
ing Distributed File Systems in Resource-Harvesting
Datacenters. In Proceedings of the 2017 USENIX An-

nual Technical Conference (USENIX ATC’17), Santa
Clara, CA, USA, 2017. USENIX Association.

[34] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,
S. Pan, S. Shankar, V. Sivakumar, L. Tang, and S. Ku-
mar. f4: Facebook’s Warm BLOB Storage System. In
Proceedings of the 11th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI’14),
Broomfield, CO, USA, 2014. USENIX Association.

[35] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohss-
chmiedt, and M. Ronström. HopsFS: Scaling hierarchi-
cal file system metadata using NewSQL databases. In
Proceedings of the 15th USENIX Conference on File

and Storage Technologies (FAST’17), Santa Clara, CA,
USA, 2017. USENIX Association.

[36] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. How-
ell, and Y. Suzue. Flat Datacenter Storage. In Pro-

ceedings of the 10th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’12), Holly-
wood, CA, USA, 2012. USENIX Association.

[37] S. A. Noghabi, S. Subramanian, P. Narayanan,
S. Narayanan, G. Holla, M. Zadeh, T. Li, I. Gupta, and
R. H. Campbell. Ambry: Linkedin’s scalable geo-
distributed object store. In Proceedings of the 2016

International Conference on Management of Data (SIG-

MOD’16), San Francisco, California, USA, 2016. Asso-
ciation for Computing Machinery (ACM).

[38] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao,
and J. Kelly. The Quantcast File System. In Proceedings

of the 39th International Conference on Very Large Data

Bases (VLDB’13), Riva del Garda, Italy, 2013. VLDB
Endowment.

[39] K. Patiejunas and A. Jaiswal. Facebook’s disag-
gregated storage and compute for Map/Reduce.
https://atscaleconference.com/videos/
facebooks-disaggregated-storage-and-

compute-for-mapreduce/, 2016.

[40] A. J. Peters and L. Janyst. Exabyte scale storage at
CERN. Journal of Physics: Conference Series, 331
(5):052015, dec 2011. doi: 10.1088/1742-6596/331/
5/052015. URL https://doi.org/10.1088/1742-
6596/331/5/052015.

[41] N. P.P.S, S. Samal, and S. Nanniyur. Yahoo Cloud
Object Store - Object Storage at Exabyte Scale. https:
//yahooeng.tumblr.com/post/116391291701/
yahoo-cloud-object-store-object-storage-at,
2015.

230 19th USENIX Conference on File and Storage Technologies USENIX Association

[42] R. Ramakrishnan, B. Sridharan, J. R. Douceur, P. Kas-
turi, B. Krishnamachari-Sampath, K. Krishnamoorthy,
P. Li, M. Manu, S. Michaylov, R. Ramos, N. Sharman,
Z. Xu, Y. Barakat, C. Douglas, R. Draves, S. S. Naidu,
S. Shastry, A. Sikaria, S. Sun, and R. Venkatesan. Azure
Data Lake Store: a hyperscale distributed file service
for big data analytics. In Proceedings of the 2017 In-

ternational Conference on Management of Data (SIG-

MOD’17), Chicago, IL, USA, 2017. Association for
Computing Machinery (ACM).

[43] I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal of the Society for Industrial

and Applied Mathematics, 8(2):300–304, 1960.

[44] Rousseau, Hervé, Chan Kwok Cheong, Belinda, Con-
tescu, Cristian, Espinal Curull, Xavier, Iven, Jan, Gon-
zalez Labrador, Hugo, Lamanna, Massimo, Lo Presti,
Giuseppe, Mascetti, Luca, Moscicki, Jakub, and van der
Ster, Dan. Providing large-scale disk storage at cern.
EPJ Web Conf., 214:04033, 2019. doi: 10.1051/epjconf/
201921404033. URL https://doi.org/10.1051/
epjconf/201921404033.

[45] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceed-

ings of the 1st USENIX Conference on File and Stor-

age Technologies (FAST’02), Monterey, CA, USA, 2002.
USENIX Association.

[46] R. Shah. Enabling HDFS Federation Having 1B File
System Objects. https://tech.ebayinc.com/
engineering/enabling-hdfs-federation-

having-1b-file-system-objects/, 2020.

[47] S. Shamasunder. Hybrid XFS—Using SSDs
to Supercharge HDDs at Facebook. https:

//www.usenix.org/conference/srecon19asia/
presentation/shamasunder, 2019.

[48] D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In
Proceedings of the 10th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI’12),
Hollywood, CA, USA, 2012. USENIX Association.

[49] A. K. Singh, X. Cui, B. Cassell, B. Wong, and K. Daud-
jee. Microfuge: A middleware approach to providing
performance isolation in cloud storage systems. In Pro-

ceedings of the 34th IEEE International Conference on

Distributed Computing Systems (ICDCS’14), Madrid,
Spain, 2014. IEEE Computer Society.

[50] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain,
J. Sarma, R. Murthy, and H. Liu. Data warehousing
and analytics infrastructure at facebook. In Proceedings

of the 2010 ACM SIGMOD International Conference

on Management of Data (SIGMOD’10), Indianapolis,
IN, USA, 2010. Association for Computing Machinery
(ACM).

[51] A. Wang. Introduction to HDFS Erasure Coding
in Apache Hadoop. https://blog.cloudera.com/
introduction-to-hdfs-erasure-coding-in-

apache-hadoop/, 2015.

[52] L. Wang, Y. Zhang, J. Xu, and G. Xue. MAPX: Con-
trolled Data Migration in the Expansion of Decentral-
ized Object-Based Storage Systems. In Proceedings

of the 18th USENIX Conference on File and Storage

Technologies (FAST’20), Santa Clara, CA, USA, 2020.
USENIX Association.

[53] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceedings of the 7th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI’06), Seattle, WA, USA, 2006.
USENIX Association.

[54] A. Zhang and W. Yan. Scaling Uber’s Apache
Hadoop Distributed File System for Growth. https:

//eng.uber.com/scaling-hdfs/, 2018.

USENIX Association 19th USENIX Conference on File and Storage Technologies 231

Exploiting Combined Locality for Wide-Stripe Erasure Coding
in Distributed Storage

Yuchong Hu†, Liangfeng Cheng†, Qiaori Yao†, Patrick P. C. Lee‡, Weichun Wang∗, Wei Chen∗
†Huazhong University of Science & Technology ‡The Chinese University of Hong Kong ∗HIKVISION

Abstract

Erasure coding is a low-cost redundancy mechanism for dis-
tributed storage systems by storing stripes of data and par-
ity chunks. Wide stripes are recently proposed to suppress
the fraction of parity chunks in a stripe to achieve extreme
storage savings. However, wide stripes aggravate the repair
penalty, while existing repair-efficient approaches for erasure
coding cannot effectively address wide stripes. In this paper,
we propose combined locality, the first mechanism that sys-
tematically addresses the wide-stripe repair problem via the
combination of both parity locality and topology locality. We
further augment combined locality with efficient encoding
and update schemes. Experiments on Amazon EC2 show that
combined locality reduces the single-chunk repair time by up
to 90.5% compared to locality-based state-of-the-arts, with
only a redundancy of as low as 1.063×.

1 Introduction
Erasure coding is an established low-cost redundancy mech-
anism for protecting data storage against failures in modern
distributed storage systems [25, 34, 47]; in particular, Reed-
Solomon (RS) codes [61] are widely adopted in today’s era-
sure coding deployment [26, 45, 47, 59, 72]. At a high level,
for some configurable parameters n and k (where k < n), RS
codes compose multiple stripes of n chunks, including k orig-
inal uncoded data chunks and n−k coded parity chunks, such
that any k out of n chunks of the same stripe suffice to recon-
struct the original k data chunks (see §2.1 for details). Each
stripe of n chunks is distributed across n nodes to tolerate
any n− k node failures. RS codes incur a minimum redun-
dancy of n

k× (i.e., no other erasure codes can have a lower
redundancy than RS codes while tolerating any n− k node
failures). In contrast, traditional replication incurs a redun-
dancy of (n−k+1)× to tolerate the same number of any n−k
node failures. For example, Facebook f4 [47] uses (14,10)
RS codes to tolerate any four node failures with a redundancy
of 1.4×, while replication needs a redundancy of 5× for the
same four-node fault tolerance. With proper parameterization
of (n,k), erasure coding can limit the redundancy to at most
1.5× (see Table 1).

Conventional wisdom suggests that erasure coding param-
eters should be configured in a medium range [53]. Table 1
lists the parameters (n,k) used by state-of-the-art production
systems. We see that the number of tolerable failures n− k is

Storage systems (n,k) Redundancy
Google Colossus [25] (9,6) 1.50
Quantcast File System [49] (9,6) 1.50
Hadoop Distributed File System [3] (9,6) 1.50
Baidu Atlas [36] (12,8) 1.50
Facebook f4 [47] (14,10) 1.40
Yahoo Cloud Object Store [48] (11,8) 1.38
Windows Azure Storage [34] (16,12) 1.33
Tencent Ultra-Cold Storage [8] (12,10) 1.20
Pelican [12] (18,15) 1.20
Backblaze Vaults [13] (20,17) 1.18

Table 1: Common parameters of (n,k) in state-of-the-art erasure
coding deployment. Note that a similar table is also presented in [22],
while we add Azure and Pelican here.

typically three or four, while the stripe size n is no more than
20. One major reason of choosing a moderate stripe size is
to limit the repair penalty of erasure coding, in which repair-
ing any single lost chunk needs to retrieve multiple available
chunks of the same stripe for decoding the lost chunk (e.g., k
chunks are retrieved in (n,k) RS codes). A larger stripe size
n, and hence a larger k for tolerating the same n− k node fail-
ures, implies more severe bandwidth and I/O amplifications
in repair and hence compromises storage reliability.

While erasure coding effectively mitigates storage redun-
dancy, we explore further redundancy reduction under erasure
coding to achieve extreme storage savings; for example, a
redundancy reduction of 14% (from 1.5× to 1.33×) can trans-
late to millions of dollar savings in production [52]. This
motivates us to explore wide stripes, in which n and k are
very large, while the number of tolerable failures n− k re-
mains three to four as in state-of-the-art production systems.
Wide stripes are studied in storage industry (e.g., VAST [9]),
and provide an opportunity to achieve near-optimal redun-
dancy (i.e., n

k approaches one) with the maximum possible
storage savings. For example, VAST [9] considers a setting
of (n,k) = (154,150), thereby incurring only a redundancy
of 1.027× . We argue that the significant storage efficiency
of wide stripes is attractive for both cold and hot distributed
storage systems. Erasure coding is traditionally used by cold
storage systems (e.g., backup and archival applications), in
which data needs to be persistently stored but is rarely ac-
cessed [2, 10, 12]. Wide stripes allow cold storage systems
to achieve long-term data durability at extremely low cost.
Erasure coding is also adopted by hot storage systems (e.g.,

USENIX Association 19th USENIX Conference on File and Storage Technologies 233

in-memory key-value stores) to provide data availability for
key-value objects that are frequently accessed in the face of
failures and stragglers [18, 57, 73, 74]. Wide stripes allow hot
storage systems to significantly reduce expensive hardware
footprints (e.g., DRAM for in-memory key-value stores).

While wide stripes achieve extreme storage savings, they
further aggravate the repair penalty, as the repair bandwidth
(i.e., the amount of data transfers during repair) increases with
k. Many existing repair-efficient approaches for erasure-coded
storage leverage locality to reduce the repair bandwidth. There
are two types of locality: (i) parity locality, which introduces
extra local parity chunks to reduce the number of available
chunks to retrieve for repairing a lost chunk [14,27,34,39,51,
63]; and (ii) topology locality, which takes into account the
hierarchical nature of the system topology and performs local
repair operations to mitigate the cross-rack (or cross-cluster)
repair bandwidth [31, 32, 56, 65, 66, 68].

However, existing locality-based repair approaches still
mainly focus on stripes with a small k (e.g., k = 12 [34]
and k = 6 [32]). They inevitably increase the redundancy or
degrade the repair performance for wide stripes as k increases
(§2.3). The reason is that the near-optimal redundancy of wide
stripes reduces the benefits brought by either parity locality
or topology locality (§3.5).

In this paper, we present combined locality, a new repair
mechanism that systematically combines both parity local-
ity and topology locality to address the repair problem in
wide-stripe erasure coding. Combined locality associates lo-
cal parity chunks with a small subset of data chunks (i.e.,
parity locality) and localizes a repair operation in a limited
number of racks (i.e., topology locality), so as to provide bet-
ter trade-offs between redundancy and repair performance
than existing locality-based state-of-the-arts. In addition, we
revisit the classical encoding and update problems for wide-
stripe erasure coding under combined locality and design the
corresponding efficient schemes. Our contributions include:

• We are the first to systematically address the wide-stripe
repair problem. We propose combined locality, which miti-
gates the cross-rack repair bandwidth under ultra-low stor-
age redundancy. We examine the trade-off between redun-
dancy and cross-rack repair bandwidth for different locality-
based schemes (§3).

• We design ECWide, which realizes combined locality to
address two types of repair: single-chunk repair and full-
node repair. We also design (i) an efficient encoding scheme
that allows the parity chunks of a wide stripe to be encoded
across multiple nodes in parallel, and (ii) an inner-rack
parity update scheme that allows parity chunks to be locally
updated within racks to reduce cross-rack transfers (§4).

• We implement two ECWide prototypes, namely ECWide-C
and ECWide-H, to realize combined locality. The former
is designed for cold storage, while the latter builds on a
Memcached-based [5, 6] in-memory key-value store for

hot storage (§5). The source code of our prototypes is now
available at https://github.com/yuchonghu/ecwide.

• We compare via Amazon EC2 experiments ECWide-C and
ECWide-H with two existing locality-based schemes: (i)
Azure’s Local Reconstruction Codes (Azure-LRC) [34]
adopted in production, and (ii) the recently proposed
topology-locality-based repair approach [32, 65] that min-
imizes the cross-rack repair bandwidth for fast repair.
We show that combined locality significantly reduces the
single-chunk repair time by up to 87.9% and 90.5% of
the above two schemes, respectively, while incurring a re-
dundancy of as low as 1.063× only. We also validate the
efficiency of our encoding and update schemes (§6).

2 Background and Motivation
We provide the background details of erasure coding for dis-
tributed storage (§2.1), and state the challenges of deploying
wide-stripe erasure coding (§2.2). We describe how existing
studies exploit locality to address the repair problem (§2.3),
and motivate the idea of our combined locality design (§2.4).

2.1 Erasure Coding for Distributed Storage
Consider a distributed storage system that organizes data in
fixed-size chunks spanning across a number of storage nodes,
such that erasure coding operates in units of chunks. Depend-
ing on the types of storage workloads, the chunk size used
for erasure coding can vary significantly, ranging from as
small as 4 KiB in in-memory key-value storage (i.e., hot stor-
age) [18, 73, 74], to as large as 256 MiB [59] in persistent file
storage (i.e., cold storage) for small I/O seek costs. Erasure
coding can be constructed in different forms, among which
RS codes [61] are the most popular erasure codes and widely
deployed (§1).

To deploy RS codes in distributed storage, we configure
two integer parameters n and k (where k < n). An (n,k) RS
code works by encoding k fixed-size (uncoded) data chunks
into n−k (coded) parity chunks of the same size. RS codes are
storage-optimal (a.k.a. maximum distance separable (MDS)
in coding theory terms), meaning that any k out of the n
chunks suffice to reconstruct all k data chunks (i.e., any n−
k lost chunks can be tolerated for data availability), while
the redundancy (i.e., n

k times the original data size) is the
minimum among all possible erasure code constructions. We
call each set of n chunks a stripe. A distributed storage system
contains multiple stripes that are independently encoded, and
the n chunks of each stripe are stored in n different nodes to
provide fault tolerance against any n− k node failures.

Mathematically, each parity chunk in an (n,k) RS code
is formed by a linear combination of the k data chunks of
the same stripe based on the arithmetic of the Galois Field
GF(2w) in w-bit words [53] (where n≤ 2w). Specifically, let
D1, D2, · · · , Dk be the k data chunks of a stripe, and P1, P2, · · · ,
Pn−k be the n−k parity chunks of the same stripe. Each parity

234 19th USENIX Conference on File and Storage Technologies USENIX Association

chunk Pi (1≤ i≤ n−k) can be expressed as Pi = ∑
k
j=1 αi, jD j,

where αi, j denotes some encoding coefficient. In this work,
we focus on Cauchy RS codes [15, 55], where the encoding
coefficients are defined based on the Cauchy matrix, so that
we can construct systematic RS codes (i.e., the k data chunks
are included in a stripe for direct access).

2.2 Challenges of Wide-Stripe Erasure Coding
We explore wide-stripe erasure coding with both large n and k,
so as to achieve an ultra-low redundancy n

k (i.e., approaching
one). However, it poses three performance challenges.

Expensive repair. Erasure coding is known to incur the re-
pair penalty, and it is even more severe for wide stripes. For
an (n,k) RS code, the conventional approach for repairing
a single lost chunk is to retrieve k available chunks from
other non-failed nodes, implying that the bandwidth and
I/O costs are amplified k times. Even though new erasure
code constructions can mitigate the repair bandwidth and
I/O costs (e.g., regenerating codes [23] or locally repairable
codes [27,33,34,51,63]), the repair bandwidth and I/O ampli-
fications still exist and become more prominent as k increases,
as proven by theoretical analysis [23].

The high repair penalty of wide stripes manifests differently
in cold and hot storage workloads. For cold storage workloads
with large chunk sizes, the repair bandwidth is much more
significant for large k. For example, if we configure a wide
stripe with k = 128 and the chunk size is 256 MiB [59], the
single-chunk repair bandwidth becomes 32 GiB. We may in-
terpolate that the daily repair bandwidth of 180 TiB for the
(14,10) RS code [59] will increase to 2.25 PiB for k = 128.
For hot storage workloads with small chunk sizes, although
its single-chunk repair bandwidth is much less than in cold
storage, a large k incurs a significant tail latency under fre-
quent accesses, as the repair is now more likely bottlenecked
by any straggler node out of the k non-failed nodes.

Expensive encoding. The (per-stripe) encoding overhead of
erasure coding becomes more prominent as k increases (the
same arguments hold for decoding). In an (n,k) RS code,
each parity chunk is a linear combination of k data chunks
(§2.1), so the computational overhead increases linearly with
k. Most importantly, as k increases, it becomes more difficult
for the encoding process to fit the input data of a wide stripe
into CPU cache, leading to significant encoding performance
degradations. Figure 1 shows the encoding throughput on
three Intel CPU families versus k, using the Intel ISA-L en-
coding APIs [4]. Here, we fix a chunk size of 64 MiB and
n− k = 4. We see that the encoding throughput remains high
from k = 4 to k = 16, but drops dramatically as k further in-
creases from k = 32 onwards; for example, the throughput
drops by 43-70% from k = 4 to k = 128.

Expensive updates. The (per-stripe) update overhead of era-
sure coding is significant: if any data chunk of the same stripe
has been updated, all n− k parity chunks need to be updated.

0

2000

4000

6000

8000

4 8 16 32 64 128

k

T
h
ro

u
g
h
p
u
t
(M

iB
/s

)

Intel Xeon CPU E3−1225 v5 @ 3.30GHz

Intel Xeon CPU E5−2630 v3 @ 2.40GHz

Intel Xeon Silver 4110 @ 2.10GHz

Figure 1: Encoding throughput on different Intel CPU families
versus k for a chunk size of 64 MiB and n− k = 4.

Wide stripes suffer the same expensive update issue as in
traditional stripes of moderate sizes.

2.3 Locality in Erasure-coded Repair
The main challenge of wide-stripe erasure coding is the repair
problem. Existing studies on the erasure-coded repair problem
have led to a rich body of literature, and many of them focus
on using locality to reduce the repair bandwidth, including
parity locality and topology locality.
Parity locality. Recall that an (n,k) RS code needs to retrieve
k chunks for repairing a lost chunk. Parity locality adds local
parity chunks to reduce the number of surviving chunks (and
hence the repair bandwidth and I/O) for repairing a lost chunk.
Its representative erasure code construction is the locally
repairable codes (LRCs) [27, 33, 34, 51, 63]. Take Azure’s
Local Reconstruction Codes (Azure-LRC) [34] as an example.
Given three configurable parameters n, k, and r (where r <
k < n), an (n,k,r) Azure-LRC encodes each local group of
r data chunks (except the last group, which may have fewer
than r data chunks) into a local parity chunk, so that the repair
of a lost chunk now only accesses r surviving chunks (r < k).
It also contains n− k−d k

r e global parity chunks encoded
from all data chunks. Azure-LRC satisfies the Maximally
Recoverable property [34] and can tolerate any n−k−d k

r e+1
node failures.

Figure 2(a) shows the (32,20,2) Azure-LRC [34]. It has
20 data chunks (denoted by D1,D2, . . . ,D20). It has 10 local
parity chunks, in which the `-th local parity chunk P̀ [i- j]
(where 1 ≤ ` ≤ 10) is a linear combination of data chunks
Di,Di+1, . . . ,D j. It also has two global parity chunks Q1[1-20]
and Q2[1-20], each of which is a linear combination of all 20
data chunks. All the above 32 chunks are placed in 32 nodes
to tolerate any three node failures. Thus, the (32,20,2) Azure-
LRC has a single-chunk repair bandwidth of two chunks (e.g.,
repairing D1 needs to access D2 and P1[1-2]), while incurring
a redundancy of 1.6×. In contrast, the (23,20) RS code also
has 20 data chunks and is tolerable against any three node
failures. Its single-chunk repair bandwidth is 20 chunks, yet
its redundancy is only 1.15×. In short, parity locality reduces
the repair bandwidth but incurs high redundancy.
Topology locality. Existing erasure-coded storage systems
[34, 47, 58, 60, 63] (including Azure-LRC) place each chunk
of a stripe in a distinct node residing in a distinct rack. This

USENIX Association 19th USENIX Conference on File and Storage Technologies 235

P1[1-2]D1 D2

P2[3-4]D3 D4

P3[5-6]D5 D6

P4[7-8]D7 D8

P5[9-10]D9 D10

P6[11-12]D11 D12

P7[13-14]D13 D14

P8[15-16]D15 D16

P9[17-18]D17 D18

P10[19-20]D19 D20

Q1[1-20] Q2[1-20]

2 chunks

D19 D20

D3D1 D2

D6D4 D5

D9D7 D8

D12D10 D11

D15D13 D14

D18D16 D17

Q1[1-20] Q2[1-20] Q3[1-20]

RackNode

7 chunks

Q1[1-20]

D16 D17

D3D1 D2

P1 [1-5]D4 D5

D8D6 D7

P2 [6-10]D9 D10

D13D11 D12

P3 [11-15]D14 D15

D19 D20 P4[16-20]

1 chunk

Q1[1-20] Q2[1-20]

D18

(a) Parity locality: (32, 20, 2) Azure-LRC (b) Topology locality: (23, 20, 8) TL (c) Combined locality: (26, 20, 5, 9) CL

Figure 2: Examples of three locality-based schemes, each of which stores 20 data chunks and can tolerate any three node failures.

provides tolerance against the same numbers of node failures
and rack failures, but the repair incurs substantial cross-rack
bandwidth, which is often much more constrained than inner-
rack bandwidth [20].

Recent studies [31, 32, 65] exploit topology locality to re-
duce the cross-rack repair bandwidth by localizing the repair
operations within racks, at the expense of reduced rack-level
fault tolerance. They store the chunks of a stripe in multiple
nodes within a rack, and split a repair operation into inner-rack
and cross-rack repair sub-operations. The cross-rack repair
bandwidth is provably minimized, subject to the minimum
redundancy [31, 32, 65]. Some similar studies focus on min-
imizing the cross-cluster repair bandwidth via inner-cluster
repair sub-operations [56, 66, 68]. We define a topology local-
ity scheme as (n,k,z) TL, in which (n,k) RS-coded chunks
are placed in z racks (or clusters).

Figure 2(b) shows the (23,20,8) TL that places 20 data
chunks and three RS-coded parity chunks in 23 nodes that
reside in eight racks, so as to tolerate any three node failures
and one rack failure. The (23,20,8) TL has the minimum
redundancy of 1.15×, but transfers seven cross-rack chunks
to repair a lost chunk. For example, repairing D1 needs to
retrieve Q1[1-20] and six chunks that are linear parts of Q1[1-
20] from other racks, so that D1 can be solved from Q1[1-20]
by canceling out the linear parts, D2, and D3. The single-
chunk repair bandwidth is higher than that of the (32,20,2)
Azure-LRC (i.e., two chunks). In short, topology locality
achieves the minimum redundancy, but incurs high cross-rack
repair bandwidth.

2.4 Motivating Example
For wide stripes with a large k, neither parity locality (high
redundancy) nor topology locality (high repair penalty) can
effectively balance the trade-off between redundancy and
repair penalty. This motivates us to combine both types of
locality to obtain a better trade-off and hence make wide
stripes practically applicable.

Figure 2(c) shows the idea. We encode 20 data chunks
into 26 chunks via the (26,20,5) Azure-LRC. We place the
chunks across nine racks, and denote the scheme by the
(26,20,5,9) CL (see §3.1 for definition). In this case, re-
pairing the lost chunk D1 can be solved by canceling out
D2, D3, D4, and D5 from P1[1-5]. The single-chunk repair
bandwidth is only one cross-rack chunk, less than both the
(32,20,2) Azure-LRC (two chunks) and the (23,20,8) TL
(seven chunks). Meanwhile, the redundancy is 1.3×, much
closer to the minimum redundancy than the (32,20,2) Azure-
LRC (1.6×).

3 Combined Locality
In this section, we present combined locality, which exploits
the combination of parity locality and topology locality to re-
duce the cross-rack repair bandwidth subject to limited redun-
dancy for wide-stripe erasure coding. We provide definitions
and state our design objective (§3.1), and show our design
idea of combined locality (§3.2). We analyze and select the
suitable LRC construction for combined locality (§3.3). We
present the details of the combined locality mechanism (§3.4),
and analyze its trade-off between redundancy and cross-rack
repair bandwidth (§3.5). Finally, we present reliability anal-
ysis on combined locality (§3.6). Table 2 summarizes the
notation.

3.1 Design Objective
We define the combined locality mechanism as (n,k,r,z) CL,
which combines (n,k,r) Azure-LRC and (n,k,z) TL across z
racks (note that we justify our choice of Azure-LRC in §3.3).
Our primary objective of the combined locality mechanism
is to determine the parameters (n,k,r,z) that minimize the
cross-rack repair bandwidth, subject to: (i) the number of
tolerable node failures (denoted by f) and (ii) the maximum
allowed redundancy (denoted by γ). For wide-stripe erasure
coding, we consider a large k (e.g., k = 128) for a typical fault
tolerance level shown in Table 1 (e.g., f = 4).

236 19th USENIX Conference on File and Storage Technologies USENIX Association

Notation Description
n total number of chunks of a stripe
k number of data chunks of a stripe
r number of retrieved chunks to repair a lost chunk
z number of racks to store a stripe
c number of chunks of a stripe in a rack
f number of tolerable node failures of a stripe
γ maximum allowed redundancy

Table 2: Notation for combined locality.

Here, we ensure that the maximum number of chunks of a
stripe residing in each rack (denoted by c) cannot be larger
than the number of tolerable node failures f of a stripe; other-
wise, a rack failure can lead to data loss. Thus, we require:

c≤ f . (1)

Each of the first z−1 racks stores c chunks of a stripe and the
last rack stores the n− c(z−1) (≤ c) remaining chunks.

We focus on optimizing two types of repair operations:
single-chunk repair and full-node repair (§4.1). Both repair
operations assume that each failed stripe has exactly one failed
chunk as in most prior studies (§7), including those on parity
locality [27, 33, 34, 51, 63] and topology locality [31, 32, 65].
For the failed stripes with multiple failed chunks, we resort to
the conventional repair that retrieves k available chunks for
reconstructing all failed chunks as in RS codes.

3.2 Design Idea
To achieve the objective of combined locality, we observe
from Figure 2 that combined locality repairs a data chunk by
downloading r−1 data chunks plus one local parity chunk
(i.e., the repair bandwidth is r chunks). Since combined local-
ity places some of the r chunks in identical racks, it can apply
a local repair to the chunks in each rack, so as to reduce the
cross-rack repair bandwidth. Intuitively, if c increases (i.e.,
more chunks of a stripe can reside in one rack), a local re-
pair can include more chunks, thereby further reducing the
cross-rack repair bandwidth. Thus, we aim to find the largest
possible c. Recall that c≤ f (Equation (1)). If c = f , then the
cross-rack repair bandwidth can be minimized.

Thus, the construction of (n,k,r,z) CL is to ensure c = f .
However, there are different constructions of (n,k,r) LRCs
that provide different levels of fault tolerance f [35]. Thus,
our idea is to select the appropriate LRC construction that has
the highest fault tolerance (§3.3).

3.3 LRC Selection
We consider four representative LRCs discussed in [35].

• Azure-LRC [34]: It computes a local parity chunk as a
linear combination of r data chunks of each local group,
and computes the global parity chunks via RS codes. Note
that repairing a global parity chunk needs to retrieve k
chunks.

(n,k,r) (16,10,5)

Azure-LRC [34] f = n− k−dk/re+1 f = 5
Xorbas [63] f ≤ n− k−dk/re+1 f = 4
Optimal-LRC [69] f ≤ n− k−dk/re+1 f = 4
Azure-LRC+1 [35] f = n− k−dk/re f = 4

Table 3: Number of tolerable node failures f for different LRCs for
(n,k,r) = (16,10,5) [35].

• Xorbas [63]: It differs from Azure-LRC in that it allows
each global parity chunk to be repairable by at most r
chunks, which may include the other global parity chunks
and the local parity chunks.

• Optimal-LRC [69]: It divides all data chunks and global
parity chunks into local groups of size r, and adds a local
parity to each local group to allow the repair of any lost
chunk by at most r chunks.

• Azure-LRC+1 [35]: It builds on Azure-LRC by adding a
new local parity chunk for all global parity chunks, allowing
the local repair of any lost global parity chunk.

Table 3 shows the number of tolerable node failures f for a
practical setting (n,k,r) = (16,10,5) [35]. Note that Xorbas
and Optimal-LRC give their upper bounds of f , but in fact
the bounds are not attainable for some parameters, including
(n,k,r) = (16,10,5) [35]. Table 3 shows that Azure-LRC
has the largest f under the same (n,k,r), so it can be the
appropriate selection of LRC for combined locality.

The reason why Azure-LRC achieves the highest fault tol-
erance f is that it neither introduces extra local parity chunks
that are linearly dependent on the global parity chunks (e.g.,
Optimal-LRC and Azure-LRC+1), nor makes the global par-
ity chunks linearly dependent on the local parity chunks (e.g.,
Xorbas). In fact, for a given level of redundancy, adding linear
dependency does not improve fault tolerance.

Note that Azure-LRC needs to download k chunks to repair
a global parity chunk, which may be inefficient in repairing
a failed node that stores multiple global parity chunks. Nev-
ertheless, we argue that the number of global parity chunk
accounts for a small fraction for wide stripes with a large k.
For example, in the (128,120,24) Azure-LRC, which con-
tains three global parity chunks, only 3/128 = 2.34% of the
chunks stored in each node are global parity chunks. Also, the
cross-rack repair bandwidth of a single global parity chunk
can be significantly reduced via topology locality. In our fol-
lowing discussion, unless otherwise specified, we focus on a
single-chunk repair for a data chunk or a local parity chunk.

3.4 Construction of (n,k,r,z) CL
We provide the construction of (n,k,r,z) CL as follows. Here,
we focus on one stripe that has k data chunks with a fixed
number of tolerable node failures f subject to the maximum al-
lowed redundancy γ (i.e., n

k ≤ γ). The construction comprises
two steps: (i) finding the parameters for (n,k,r) Azure-LRC,
and (ii) placing all n chunks across z racks for local repair
operations.

USENIX Association 19th USENIX Conference on File and Storage Technologies 237

Step 1. Given (n,k,r) Azure-LRC, Table 3 states that:

n = k+ dk/re+ f −1. (2)

Due to n
k ≤ γ , we have:

dk/re ≤ k(γ−1)− f +1. (3)

We can obtain the minimum value of r that satisfies Equa-
tion (3), denoted by rmin. Since r represents the single-chunk
repair bandwidth (§3.2), rmin refers to the minimum single-
chunk repair bandwidth.
Step 2. Based on rmin, we proceed to minimize the cross-
rack repair bandwidth. First, we can obtain the value of n
from Equation (2) and rmin. Next, we place these n chunks
across n nodes that reside in z racks as follows. For each
local group, we put r + 1 chunks (note that r = rmin here),
including r data chunks and the corresponding local parity
chunk, into (r + 1)/c different racks (for the simplicity of
discussion, we assume that r+ 1 is divisible by c to have a
symmetric distribution of chunks across racks). Thus, for any
lost chunk in a rack, we can perform a local repair over the
(r+1)/c racks, such that the cross-rack repair bandwidth is
(r+ 1)/c− 1 chunks collected from the other (r+ 1)/c− 1
racks. By setting c = f to minimize the cross-rack repair
bandwidth (§3.2), the minimum cross-rack repair bandwidth
is (r+1)/ f −1 chunks.

Figure 2(c) illustrates the (26,20,5,9) CL with k = 20
and f = 3. Each local group of r + 1 = 6 chunks (where
r = rmin = 5) is stored in (r+1)/ f = 2 racks. The cross-rack
repair bandwidth is only one chunk (i.e., (r+1)/ f −1 = 1).

3.5 Trade-off Analysis
Each set of the parameters (n,k,r,z) in combined locality
yields the corresponding set of values of redundancy and
cross-rack repair bandwidth based on the results in §3.4. We
can also derive the values for Azure-LRC and topology lo-
cality in terms of k and f . For Azure-LRC, we obtain its
redundancy via Equation (2) and cross-rack repair bandwidth
as r chunks (assuming each chunk is stored in a distinct rack).
For topology locality, we obtain its redundancy subject to
f = n− k and cross-rack repair bandwidth as the number of
racks minus one (in chunks) (i.e., dn/ f e− 1) (Figure 2(b)).
Table 4 lists the redundancy and cross-rack repair bandwidth
for Azure-LRC, topology locality, and combined locality, rep-
resented as (n,k,r) Azure-LRC, (n,k,z) TL, and (n,k,r,z)
CL, respectively.

Figure 3 plots the results of Table 4 for k = 128 and f =
2,3,4 subject to the maximum allowed redundancy γ = 1.1.
We set k as a sufficiently large value for wide stripes, and set
f as in state-of-the-arts (Table 1). We set γ to close to one to
achieve extreme storage savings with wide stripes.

Each point in Figure 3 represents a trade-off between re-
dundancy and cross-rack repair bandwidth for a specific set
of parameters. Note that topology locality has three points for

Redundancy Cross-rack
repair bandwidth

(n,k,r) Azure-LRC k+dk/re+ f−1
k r

(n,k,z) TL k+ f
k d(k+ f)/ f e−1

(n,k,r,z) CL k+dk/re+ f−1
k (r+1)/ f −1

Table 4: Redundancy and cross-rack repair bandwidth (in chunks)
given k and f for (n,k,r) Azure-LRC, (n,k,z) TL, and (n,k,r,z) CL.

0

10

20

30

40

50

60

70

80

1 1.02 1.04 1.06 1.08 1.1C
ro

s
s
-r

a
c
k
 R

e
p
a
ir
 B

an
dw

id
th

 (
in

 c
h
u
n
k
s
)

Redundancy

TL, f=2 TL, f=3 TL, f=4

LRC, f=2 LRC, f=3 LRC, f=4

CL, f=2 CL, f=3 CL, f=4

(132,128,33)TL

(140,128,15)LRC

(136,128,27,34)CL

Figure 3: Trade-off between redundancy and cross-rack repair band-
width for Azure-LRC (LRC), topology locality (TL), and combined
locality (CL) for k = 128 and f = 2,3,4.

the three respective values of f ; in contrast, Azure-LRC and
combined locality have three curves for the three respective
values of f , since they have an additional parameter r that
leads to different points along each curve for different val-
ues of r. We only plot the points that satisfy r = rmin for the
minimum cross-rack repair bandwidth.

Combined locality outperforms both Azure-LRC and topol-
ogy locality in terms of the trade-off between redundancy
and cross-rack repair bandwidth via the combination of both
parity locality and topology locality. Take f = 4 as an ex-
ample. For topology locality, the (132,128,33) TL has the
minimum redundancy 1.031×, yet its cross-rack repair band-
width reaches 32 chunks, even though many racks perform
local repair operations. The (140,128,15) Azure-LRC largely
reduces the cross-rack repair bandwidth to r = 15 chunks via
parity locality, yet its redundancy (1.094×) is not close to
the minimum one. The reason is that Azure-LRC’s redun-
dancy is ∝ (1/r), while its cross-rack repair bandwidth is ∝ r
(Table 4), so r should be small for small cross-rack repair
bandwidth, at the expense of incurring higher redundancy. In
contrast, for combined locality, the (136,128,27,34) CL not
only has closer redundancy (i.e., 1.063×) to the minimum
one, but also further significantly reduces the cross-rack repair
bandwidth to at most (r+1)/ f −1 = 6 chunks (we show a
more precise calculation in §3.6), a reduction of 60% com-
pared to Azure-LRC. The reason is that the cross-rack repair
bandwidth of combined locality is ∝ (r/ f) (Table 4), so it has
lower cross-rack repair bandwidth under limited redundancy.

238 19th USENIX Conference on File and Storage Technologies USENIX Association

136 135 134 133 131

136λ 135λ 134λ 132λ

μ μ' μ'

Data Loss

132

133λ

μ'

Figure 4: Markov model for (136,128,27,34) CL.

3.6 Reliability Analysis
We analyze the mean-time-to-data-loss (MTTDL) metric via
Markov modeling as in prior studies [19,26,32,34,63,67]. We
compare six different codes with f = 4: (i) (16,12) RS, (ii)
(16,12,6) Azure-LRC, (iii) (132,128) RS, (iv) (132,128,33)
TL, (v) (140,128,15) Azure-LRC, and (vi) (136,128,27,34)
CL. The former two codes are moderate-stripe codes, while
the latter four codes are wide-stripe codes.

Figure 4 shows the Markov model for (136,128,27,34)
CL; other codes are modeled similarly. Each state repre-
sents the number of available nodes of a stripe. For example,
State 136 means that all nodes are healthy, while State 131
means data loss. We make two assumptions to simplify our
analysis. First, we assume that data loss always occurs when-
ever there exist five failed nodes, yet in reality some com-
binations of five failed nodes remain repairable [34] (e.g.,
the loss of five local parity chunks). Thus, the reliability of
(136,128,27,34) CL is an underestimate; we make similar
treatments when we model Azure-LRC. Second, we only fo-
cus on independent node failures, but do not consider rack
failures with multiple nodes failing simultaneously (e.g., a
power outage [19]). Our justification is that node failures are
much more common than rack failures [47]. We plan to relax
the assumptions in our future work.

Our reliability modeling follows the prior work [34]. Let
λ be the failure rate of each node. Thus, the state transition
rate from State i to State i− 1 (where 132 ≤ i ≤ 136) is iλ ,
since any one of the i nodes in State i fails independently. To
model repair, let µ be the repair rate of a failed node from
State 135 to State 136, and µ ′ be the repair rate for each node
from State i to State i+1 (where 132≤ i≤ 134). We assume
that the repair time of a single-node failure is proportional
to the amount of repair traffic. Specifically, let N be the total
number of nodes in a storage system, S be the capacity of
each node, B be the network bandwidth of each node, and ε

be the fraction of available network bandwidth of each node
for repair due to rate throttling. If a single node fails, the
repair load is evenly distributed over the remaining N − 1
nodes, and the total available network bandwidth for repair
is ε(N − 1)B. Thus, we have µ = ε(N − 1)B/(CS), where
C is the single-node repair cost (which is derived below).
If multiple nodes fail, we set µ ′ = 1/T , where T denotes
the time of detecting multiple node failures and triggering
a multi-node repair, based on the assumption that the multi-
node repair is prioritized over the single-node repair [34].

We compute C as the average cross-rack repair bandwidth.
Take (136,128,27,34) CL as an example. There exist d k

r e= 5
local groups, in which the first four local groups (each with

1/λ (years) 2 4 10

(16,12) RS 2.47e+11 7.87e+12 7.66e+14
(16,12,6) Azure-LRC 4.38e+11 1.40e+13 1.36e+15
(132,128) RS 6.33e+05 1.53e+07 1.20e+09
(132,128,33) TL 1.61e+06 4.64e+07 4.24e+09
(140,128,15) Azure-LRC 2.06e+06 6.20e+07 5.82e+09
(136,128,27,34) CL 5.82e+06 1.82e+08 1.75e+10

Table 5: MTTDLs of codes (in years) for varying 1/λ (years) and
B = 1 Gb/s.

B (Gb/s) 0.5 1 10

(16,12) RS 3.96e+12 7.87e+12 7.83e+13
(16,12,6) Azure-LRC 7.00e+12 1.40e+13 1.39e+14
(132,128) RS 1.01e+07 1.53e+07 1.09e+08
(132,128,33) TL 2.57e+07 4.64e+07 4.20e+08
(140,128,15) Azure-LRC 3.29e+07 6.20e+07 5.85e+08
(136,128,27,34) CL 9.30e+07 1.82e+08 1.78e+09

Table 6: MTTDLs of codes (in years) for varying B (Gb/s) and
1/λ = 4 years.

r+1= 28 chunks) span seven racks (i.e., the cross-rack repair
bandwidth is six chunks), while the last local group (with 21
chunks) spans six racks (i.e., the cross-rack repair bandwidth
is five chunks). For the remaining n− k−d k

r e = 3 global
parity chunks (which reside in one rack), we repair each of
them by accessing the other z−1 = 33 racks, each of which
sends one cross-rack chunk computed from an inner-rack
repair sub-operation as in topology locality. Thus, we have
C = (6×112+5×21+33×3)/136 = 6.44 chunks.

We configure the default parameters as follows. We set N =
400, S= 16 TB, ε = 0.1, and T = 30 minutes [34]. We also set
the mean-time-to-failure 1/λ = 4 years and B = 1 Gb/s [63].
We show the MTTDL results for varying λ (Table 5) and
varying B (Table 6).

We see that (136,128,27,34) CL has a lower MTTDL than
(16,12) RS and (16,12,6) Azure-LRC with moderate stripes,
but achieves a significantly higher MTTDL than other locality-
based schemes for wide stripes by minimizing the cross-
rack repair bandwidth for a single-node repair. For example,
when B = 1 Gb/s and 1/λ = 4 years, the MTTDL gain of
(136,128,27,34) CL is 10.90× of (132,128) RS, 2.92× of
(132,128,33) TL, and 1.94× of (140,128,15) Azure-LRC.

In general, combined locality achieves a higher MTTDL
gain when 1/λ increases or B decreases. The former implies
that multiple node failures are less probable, while the latter
implies that the cross-rack bandwidth is more constrained. In
either case, minimizing the cross-rack repair bandwidth for a
single-node repair is critical for a high MTTDL gain.

4 Design
We design ECWide, a wide-stripe erasure-coded storage sys-
tem that realizes combined locality. ECWide addresses the
challenges of achieving efficient repair, encoding, and updates
in wide-stripe erasure coding (§2.2), with the following goals:

USENIX Association 19th USENIX Conference on File and Storage Technologies 239

D1N1 D1(Requestor) N1

D2N2

D3N3

D4(Local repairer) N4

D5N5

P1[1-5]N6

R1

R2
P1[1-5]-D4-D5

Figure 5: Repair in ECWide.

• Minimum cross-rack repair bandwidth: ECWide mini-
mizes the cross-rack repair bandwidth via combined local-
ity (§4.1).

• Efficient encoding: ECWide applies multi-node encoding
that supports efficient encoding for wide stripes (§4.2).

• Efficient parity updates: ECWide applies inner-rack par-
ity updates that allow both global and local parity chunks
to be updated mostly within local racks (§4.3).

4.1 Repair
ECWide realizes combined locality for two types of repair
operations: single-chunk repair and full-node repair.

Single-chunk repair. ECWide realizes two steps of com-
bined locality in repair (§3.4). Consider a storage system that
organizes data in fixed-size chunks given k, f , and γ . In Step 1,
ECWide determines the parameters n and r via Equations (2)
and (3). It then encodes k data chunks into n− k local/global
parity chunks. In Step 2, ECWide selects (r+1)/ f racks for
each local group, and places all r+ 1 chunks of each local
group into r + 1 different nodes evenly across these racks
(i.e., f chunks per rack). Since the above two steps ensure
that the cross-rack repair bandwidth for a single-chunk repair
is minimized as (r+ 1)/ f − 1 chunks (§3.4), ECWide only
needs to provide the following details for the repair operation.

Figure 5 describes the repair of a lost chunk D1 in rack
R1. Specifically, ECWide selects one node N1 (called the
requestor) in R1 to be responsible for reconstructing the
lost chunk. It also selects one node N4 (called the local re-
pairer) in rack R2 to perform local repair. N4 then collects all
chunks D5 and P1[1-5] within R2, computes an encoded chunk
P1[1-5]−D4−D5 (assuming that P1[1-5] is the XOR-sum of
D1,D2, . . . ,D5 for simplicity), and sends the encoded chunk
to the requestor N1. Finally, N1 collects data chunks D2 and
D3 within R1, and solves for D1 by cancelling out D2 and D3
from the received encoded chunk P1[1-5]−D4−D5.

Full-node repair. A full-node repair can be viewed as mul-
tiple single-chunk repairs for multiple stripes (i.e., one lost
chunk per stripe), which can be parallelized. However, each
single-chunk repair involves one requestor and multiple lo-
cal repairers, so multiple single-chunk repairs may choose
identical nodes as requestors or local repairers, thereby over-
loading the chosen nodes and degrading the overall full-node
repair performance. Thus, our goal is to choose as many dif-

Rack

N2

Q1[17-32]

Q2[17-32]

D17-D32

N3

Q1[33-48]

Q2[33-48]

D33-D48

N1

Q1[1-16]

Q2[1-16]

D1-D16

N4

Q1[49-64]

Q2[49-64]

D49-D64

Q1[1-64]

Q2[1-64]

Q1[1-16]

Q2[1-16]

Q1[1-32]

Q2[1-32]

Q1[1-48]

Q2[1-48]

Figure 6: Multi-node encoding in ECWide.

ferent nodes to be requestors and local repairers as possible
for effective parallelization of multiple single-chunk repairs.

To this end, ECWide designs a least-recently-selected
method to select nodes as requestors or local repairers, and
implements it via a doubly-linked list and a hashmap. The
doubly-linked list holds all node IDs to track which node has
been recently selected or otherwise, and the hashmap holds
the node ID and the node address of the list. We can then ob-
tain the least-recently-selected node as the requestor or local
repairer by simply selecting the bottom one of the list and
updating the list via hashmap in O(1) time.

4.2 Encoding

Recall from §2.2 that single-node encoding for wide stripes
leads to significant performance degradation for a large k. We
observe that the current encoding implementation (e.g., Intel
ISA-L [4] and QFS [49]) often splits data chunks of large
size (e.g., 64 MiB) into smaller-size data slices and performs
slice-based encoding with hardware acceleration (e.g., Intel
ISA-L) or parallelism (e.g., QFS). To encode a set of k data
slices that are parts of k data chunks, the CPU cache of the
encoding node prefetches successive slices from each of the
k data chunks. If k is large, the CPU cache may not be able
to hold all prefetched slices, thereby degrading the encoding
performance of the successive slices.

To overcome the limitation of single-node encoding, we
consider a multi-node encoding scheme that aims to achieve
high encoding throughput for wide-stripes. Its idea is to divide
a single-node encoding operation with a large k into multiple
encoding sub-operations for a small k across different nodes.
It is driven by three observations: (i) the encoding perfor-
mance of stripes with a small k (e.g., k = 16) is fast (Figure 1
in §2.2); (ii) the parity chunks are linear combinations of data
chunks (§2.1), so a parity chunk can be combined from mul-
tiple partially encoded chunks of different subsets of k data
chunks; and (iii) the bandwidth among the nodes within the
same rack is often abundant.

Figure 6 depicts the multi-node encoding scheme with
k = 64, assuming that two global parity chunks Q1[1-64] and
Q2[1-64] are to be generated. ECWide first evenly distributes
all 64 data chunks across four nodes N1, N2, N3, and N4 in
the same rack. It lets each node (e.g., N1) encode its 16 local
data chunks (e.g., D1,D2, . . . ,D16) into two partially encoded
chunks (e.g., Q1[1-16] and Q2[1-16]). The first node N1 sends
Q1[1-16] and Q2[1-16] to its next node N2. N2 combines the

240 19th USENIX Conference on File and Storage Technologies USENIX Association

...

D1'-D1
D1->D1' D2 D3

D4 D5 P1[1-5]

Q1[1-20] Q2[1-20]

D1'-D1

...

Q1[1-20] Q2[1-20]

D4 D5 D3

D1->D1' D2 P1[1-5]

D1'-D1

(a) Global parity updates (b) Local parity updates

Figure 7: Inner-rack parity updates in ECWide.

two received partially encoded chunks with its local partially
encoded chunks Q1[17-32] and Q2[17-32] to form two new
partially encoded chunks Q1[1-32] and Q2[1-32], which are
sent to the next node N3. Similar operations are performed in
N3 and N4. Finally, N4 generates the final global parity chunks
Q1[1-64] and Q2[1-64]. Note that the partially encoded chunks
are encoded in parallel and forwarded from N1 to N4 via fast
inner-rack links, so as to efficiently calculating the global
parity chunks of wide stripes.

ECWide needs to generate local parity chunks under com-
bined locality, yet the local parity chunks can be more effi-
ciently encoded from r data chunks of each local group in a
single node, as r is typically much smaller than k. In addi-
tion, ECWide needs to distribute all data chunks, local parity
chunks, and global parity chunks to different racks. Such a
distribution incurs cross-rack data transfers; minimizing the
cross-rack data transfers for the encoding of wide stripes is
our future work.

4.3 Updates
To alleviate the expensive parity update overhead in wide
stripes (§2.2), we present an inner-rack parity update scheme
for wide stripes. Its idea is to limit both global and local parity
updates within the same rack as much as possible, so as to
mitigate cross-rack data transfers.

Figure 7(a) depicts how to perform inner-rack parity up-
dates for two global parity chunks Q1[1-20] and Q2[1-20]
(also shown in Figure 2(c)). ECWide places all the global
parity chunks Q1[1-20] and Q2[1-20] in the same rack, which
is always feasible without violating rack-level tolerance given
that c = f and the number of global parity chunks is often no
more than f . In this case, when a data chunk D1 is updated to
D′1, ECWide first transfers a delta chunk D′1−D1 across racks
for the global chunk Q1[1-20] (§2.1). It updates Q1[1-20] by
adding α(D′1−D1), where α is the encoding coefficient of D1
in Q1[1-20]. ECWide updates the other global parity chunk
Q2[1-20] by transferring the delta chunk only via inner-rack
data transfers. Note that ECWide only incurs one cross-rack
transferred chunk for updating all global parity chunks.

Figure 7(b) depicts how to perform inner-rack parity up-
dates for the local parity chunk P1[1-5]. For each stripe,
ECWide first records the update frequency of data chunks
of each rack and finds the most update-intensive rack for each
local group. If P1[1-5] does not reside in the most update-

ECWide-HECWide-C

Scheduler

MasterNode

...

Encode
Module

DataNode
Repair

Module
Encode
Module

DataNode
Repair

Module
... Rack

...

Rack

MemcachedServer

...

Scheduler

Coordinator

Updater

Repair
Module

Update
Module

MemcachedClient
...

Figure 8: Architecture of ECWide.

intensive rack of its group, then ECWide swaps P1[1-5] for
a random data chunk (say D3) in the most update-intensive
rack. In this way, P1[1-5] is moved to the rack that is the most
update-intensive, so that the local parity updates can mostly
be performed within the rack without incurring cross-rack
data transfers.

If a data chunk is updated, it is important to ensure that
all global and local parity chunks of the same stripe are con-
sistently updated. ECWide may handle consistent parity up-
dates in a state-of-the-art manner, for example, by leveraging
a piggybacking method to improve the classical two-phase
commits as one-phase commits [74].

5 Implementation
We implement ECWide (§4) in three major modules: a repair
module that performs the repair operations based on combined
locality, an encode module that performs multi-node encoding,
and an update module that performs inner-rack parity updates.
We implement two prototypes of ECWide, namely ECWide-C
and ECWide-H, for cold and hot storage systems, respectively,
as shown in Figure 8.
ECWide-C. ECWide-C is mainly implemented in Java with
about 1,500 SLoC, while the encode module is implemented
in C++ with about 300 SLoC based on Intel ISA-L [4]. It has
a MasterNode that stores metadata and organizes the repair
and encoding operations with a Scheduler daemon, as well
as multiple DataNodes that store data and perform the repair
and multi-node encoding operations. Note that ECWide-C
does not consider the update module, assuming that updates
are rare in cold storage.

For the repair operation, the Scheduler triggers the repair
module of each DataNode that serves as a local repairer. Such
DataNodes (which serve as local repairers) send the partially
repaired results to the DataNode that serves as the requestor,
which finally reconstructs the lost chunk. For the encoding
operation, the Scheduler selects a rack and triggers the en-
code module of each involved DataNode in the rack. Those
involved DataNodes perform multi-node encoding, and the
DataNode that serves as the destination node generates all
global parity chunks.
ECWide-H. ECWide-H builds on the Memcached in-
memory key-value store (v1.4) [6] and libMemcached
(v1.0.18) [5] for hot storage. It is implemented in C with about
3,000 SLoC. It follows a client-server architecture. It contains

USENIX Association 19th USENIX Conference on File and Storage Technologies 241

MemcachedServers that store key-value items, as well as
MemcachedClients that perform the repair and parity up-
date operations. It also includes the Coordinator for man-
aging metadata. The Coordinator includes a Scheduler

daemon that coordinates the repair and parity update opera-
tions and an Updater daemon that analyzes the update fre-
quency status. Note that ECWide-H does not include the
encode module as in ECWide-C, since the chunk size in
erasure-coded in-memory key-value stores is often small (e.g.,
4 KiB [18, 73, 74]) and a single-node CPU cache is large
enough to prefetch all data chunks of a wide stripe for high
encoding performance (§4.2).

For the repair operation, ECWide-H performs the same
way as ECWide-C, except that it uses MemcachedClients
as local repairers. For the updates of global parity chunks, the
Scheduler locates the rack where the global parity chunks re-
side, and triggers the update modules of MemcachedClients
to perform the inner-rack parity updates. For the updates of
local parity chunks, the Updater first triggers the swapping,
in which the two involved MemcachedClients exchange the
corresponding chunks. The inner-rack parity updates for the
local parity chunks can be later performed. Note that some
existing in-memory systems (e.g., Cocytus [74]) also deploy
multiple Memcached instances in a single physical node and
have a form of hierarchical topology that is suitable for topol-
ogy locality.

6 Evaluation
We conduct our experiments on Amazon EC2 [1] with a
number of m5.xlarge instances connected by a 10 Gb/s net-
work. One instance represents a MasterNode for ECWide-
C or a Coordinator for ECWide-H (§5), while the other
instances represent the DataNodes for ECWide-C or the
MemcachedClients/MemcachedServers for ECWide-H.
To simulate the heterogeneous bandwidth within a rack and
across racks, we partition nodes into logical racks and as-
sign one dedicated instance as a gateway in each rack. The
instances within the same logical rack can communicate di-
rectly via the 10 Gb/s network, while the instances in different
racks communicate via the gateways. We use the Linux traf-
fic control command tc [7] to limit the outgoing bandwidth
of each gateway to make cross-rack bandwidth constrained.
In our experiments, we vary the gateway bandwidth from
500 Mb/s up to 10 Gb/s.

We set the chunk size as 64 MiB for ECWide-C and 4 KiB
for ECWide-H (§2.2). We plot the average results of each
experiment over ten runs. We also plot the error bars for the
minimum and maximum results over the ten runs. Note that
the error bars may be invisible in some plots due to the small
variance.

We present the experimental results of ECWide-C and
ECWide-H for combined locality (CL), compared with Azure-
LRC (LRC) and topology locality (TL) that represent state-of-
the-art locality-based schemes. We show that CL outperforms

LRC and TL for both single-chunk repair and full-node repair.
We also show the efficiency of our multi-node encoding and
inner-rack parity update schemes.

6.1 ECWide-C Performance
Experiment A.1 (Repair). We evaluate the repair perfor-
mance of LRC, TL, and CL using ECWide-C. Here, we let
32≤ k ≤ 64 and 2≤ f ≤ 4, and configure different gateway
bandwidth settings. For (n,k,r,z) CL, we deploy n+ 1 in-
stances, including n instances as DataNodes and one instance
as MasterNode. We select two types of LRC and two types of
CL for each set of f and k with different r. We also compute
the corresponding redundancy of each scheme based on Ta-
ble 4. Given k, f , and r, we can compute n = k+ d k

r e+ f −1
and z = d n

f e. Thus, in the following discussion, we only show
the values of k, f , and r.

Figures 9(a)-9(e) show the average single-chunk repair
times of LRC, TL, and CL for different values of k and f ,
under the gateway bandwidth of 1 Gb/s and 500 Mb/s. CL
always outperforms LRC and TL under the same k, f , and the
gateway bandwidth, while TL with the minimum redundancy
often performs the worst. For example, in Figure 9(c), when
the gateway bandwidth is 1 Gb/s, the single-chunk repair time
of CL with r = 7 is 0.8 s, while those of LRC with r = 7 and
TL are 3.9 s and 9.0 s, respectively; equivalently, CL reduces
the single-chunk repair times of LRC and TL by 79.5% and
91.1%, respectively.

CL shows a higher gain compared to LRC under smaller
gateway bandwidth. For example, in Figure 9(c), when the
gateway bandwidth is 500 Mb/s, the gain of CL over LRC
is 82.1%, which is higher than 79.5% when the gateway
bandwidth is 1 Gb/s. The reason is that CL minimizes the
cross-rack repair bandwidth, so its performance gain is more
obvious when the gateway bandwidth is more constrained.

Also, the single-chunk repair time of CL increases when
only r increases (see r = 7 and r = 11 in Figure 9(c)), and
keeps stable when only k changes (see Figure 9(a)-9(c)). The
empirical results are consistent with the theoretical results in
Table 4, as the single-chunk cross-rack repair bandwidth is
equal to (r+1)/ f −1.

Figure 9(f) shows the average full-node repair rates of LRC,
TL, and CL for different values of f ; we also compare CL with
and without the least-recently-selected (LRS) method (§4.1).
We fix k = 64, r = 11, and the gateway bandwidth as 1 Gb/s.
To mimic a single node failure, we erase 64 chunks from
64 stripes (i.e., one chunk per stripe) in one node. We then
repair all the erased chunks simultaneously. Note that practical
storage systems often store many more chunks per node, yet
each chunk of the failed node is independently associated with
one stripe. Thus, we expect that using 64 chunks sufficiently
provides stable performance. From the figure, we see that CL
shows a higher full-node repair rate than TL and LRC. Its full-
node repair rate increases with f , as the single-chunk cross-
rack repair bandwidth is equal to (r + 1)/ f − 1. Also, CL

242 19th USENIX Conference on File and Storage Technologies USENIX Association

4.
6 9.

0

3.
9 7.

8

6.
2

12
.2

0.
8 1.
4

1.
4 2.
6

0

10

20

30

40

50

1 Gbps 500 Mbps
Gateway Bandwidth

Av
er

ag
e

R
ep

ai
r T

im
e

(s
)

TL (1.125x)
LRC (r=7, 1.25x)
LRC (r=11, 1.188x)
CL (r=7, 1.25x)
CL (r=11, 1.188x)

6.
8

13
.4

3.
9 7.

8

6.
2

12
.2

0.
8 1.
4

1.
4 2.
6

0

10

20

30

40

50

1 Gbps 500 Mbps
Gateway Bandwidth

Av
er

ag
e

R
ep

ai
r T

im
e

(s
)

TL (1.083x)
LRC (r=7, 1.208x)
LRC (r=11, 1.167x)
CL (r=7, 1.208x)
CL (r=11, 1.167x)

9.
0

17
.9

3.
9 7.

8

6.
2

12
.2

0.
8 1.
4

1.
5 2.
6

0

10

20

30

40

50

1 Gbps 500 Mbps
Gateway Bandwidth

Av
er

ag
e

R
ep

ai
r T

im
e

(s
)

TL (1.063x)
LRC (r=7, 1.203x)
LRC (r=11, 1.141x)
CL (r=7, 1.203x)
CL (r=11, 1.141x)

(a) k = 32, f = 4 (b) k = 48, f = 4 (c) k = 64, f = 4

12
.3

24
.4

2.
8 5.

6

4.
5 8.

9

0.
8 1.
3

1.
4 2.
4

0

10

20

30

40

50

1 Gbps 500 Mbps
Gateway Bandwidth

Av
er

ag
e

R
ep

ai
r T

im
e

(s
)

TL (1.031x)
LRC (r=5, 1.234x)
LRC (r=8, 1.156x)
CL (r=5, 1.234x)
CL (r=8, 1.156x)

17
.7

35
.4

1.
7 3.
4

2.
8 5.

6

0.
7 1.
2

1.
2 2.
4

0

10

20

30

40

50

1 Gbps 500 Mbps
Gateway Bandwidth

Av
er

ag
e

R
ep

ai
r T

im
e

(s
) TL (1.016x)

LRC (r=3, 1.359x)
LRC (r=5, 1.219x)
CL (r=3, 1.359x)
CL (r=5, 1.219x)

3.
6

10
.4

21
.4 23

.2

5.
2

10
.4

32
.8 36

.3

7.
1 10

.4

43
.9

50
.1

0

10

20

30

40

50

60

f=2 f=3 f=4

N
od

e
R

ep
ai

r R
at

e
(M

iB
/s

)

TL
LRC
CL w/o LRS
CL w/ LRS

(d) k = 64, f = 3 (e) k = 64, f = 2 (f) Full-node repair

Figure 9: Experiment A.1: Average single-chunk repair time (in seconds) for different k and f under the gateway bandwidth of 1 Gb/s and
500 Mb/s (figures (a)-(e)), and average full-node repair rate for different f (figure (f)).

0.0

2.5

5.0

7.5

10.0

1 2 5 10
Gateway Bandwidth (Gbps)

Av
er

ag
e

R
ep

ai
r T

im
e

(s
)

TL (1.125x)
LRC (r=7, 1.25x)
LRC (r=11, 1.188x)
CL (r=7, 1.25x)
CL (r=11, 1.188x)

0

50

100

150

200

250

1 2 5 10
Gateway Bandwidth (Gbps)

N
od

e
R

ep
ai

r R
at

e
(M

iB
/s

) TL
LRC
CL w/o LRS
CL w/ LRS

(a) Single chunk repair (b) Full-node repair

Figure 10: Experiment A.1: Single-chunk repair time and full-node
repair rate for different gateway bandwidth.

with LRS increases the full-node repair rate by 14.1% when
f = 4 compared to CL without LRS, thereby demonstrating
the efficiency of the LRS method.

Finally, Figure 10 shows how the average single-chunk
repair time and the average full-node repair rate vary with the
gateway bandwidth, ranging from 1 Gb/s to 10 Gb/s. Here,
we fix k = 64 and f = 4. From Figure 10(a), CL still outper-
forms LRC and TL in single-chunk repair under all gateway
bandwidth settings, although the difference becomes smaller
as the gateway bandwidth increases. For example, when the
gateway bandwidth is 10 Gb/s, the single-chunk repair time
of CL with r = 7 (0.34 s) reduces those of LRC with r = 7
(0.49s) and TL (1.11s) by 30.6% and 69.4%, respectively.
Also, from Figure 10(b), CL maintains its performance gain
in full-node repair over LRC and TL, and LRS brings further
improvements.

One limitation of our current implementation is that the full-
node repair performance is not fully optimized. We can further
improve the throughput by state-of-the-art repair paralleliza-
tion techniques, such as parity declustering [30], PPR [46],
and repair pipelining [41]. Nevertheless, all coding schemes

3.
61

3.
59

3.
58

0.
57 0.
66 0.
71

0

1

2

3

4

5

6

r=11 r=15 r=19
CL schemes

En
co

di
ng

 T
im

e
(s

) Single−node
Multi−node

0

2000

4000

6000

8000

4 8 16 32 64
kEn

co
di

ng
 T

hr
ou

gh
pu

t (
M

iB
/s

)

Single−node
Multi−node

(a) Encoding time (b) Encoding throughput

Figure 11: Experiment A.2: Encoding time and encoding throughput
for single-node encoding and multi-node encoding.

are fairly evaluated under the same implementation setting.
If we use parallelization techniques for all coding schemes,
we expect that CL should maintain its performance gain by
reducing the cross-rack repair bandwidth and I/O. We pose
this issue as future work.

Experiment A.2 (Encoding). We measure the average en-
coding time of CL per stripe. Here, we fix k = 64 and f = 4,
and let 11≤ r ≤ 19. Figure 11(a) shows the results of single-
node encoding and multi-node encoding. We see that multi-
node encoding shows significantly lower encoding time than
single-node encoding. For example, when r = 11, multi-node
encoding reduces 84% of the encoding time compared to
single-node encoding.

We further measure the average encoding throughput. Here,
we fix 4≤ k≤ 64 and f = 4. Figure 11(b) shows the results of
single-node encoding and multi-node encoding. Multi-node
encoding achieves significantly high encoding throughput
when k is large, since many nodes in the same rack can share
their computational resources to accelerate the encoding op-
eration. On the other hand, single-node encoding has low
throughput when k is large, consistent with our findings in

USENIX Association 19th USENIX Conference on File and Storage Technologies 243

2
.8

2
.1

6
.5

3
.1

9
.2

4
.6

3
.7

1
7
.1

8
.8

2
4
.6

0

10

20

30

40

50

Light Heavy

Backgroud Traffic

A
v
e
ra

g
e
 R

e
p
a
ir
 T

im
e
 (

m
s
)

TL (1.063x)
LRC (r=7, 1.203x)
LRC (r=11, 1.141x)
CL (r=7, 1.203x)
CL (r=11, 1.141x)

1
9
.3

5
.6

3
8
.4

2
2
.43

5
.6

2
7
.1

1
0
.1

8
7
.8

6
2
.2

8
0
.1

0

50

100

150

Light Heavy

Backgroud Traffic

A
v
e
ra

g
e
 R

e
p
a
ir
 T

im
e
 (

m
s
)

TL (1.042x)
LRC (r=19, r=1.094x)
LRC (r=27, 1.073x)
CL (r=27, 1.073x)
CL (r=51, 1.052x)

1
2
.8

5
.8

3
8
.6

1
3
.2

4
7
.7

2
4
.2

1
0
.3

8
5
.5

4
4
.5

1
0
8
.4

0

50

100

150

200

250

Light Heavy

Backgroud Traffic

A
v
e
ra

g
e
 R

e
p
a
ir
 T

im
e
 (

m
s
)

TL (1.031x)
LRC (r=15, 1.094x)
LRC (r=27, 1.063x)
CL (r=27, 1.063x)
CL (r=43, 1.047x)

(a) k = 64, f = 4 (b) k = 96, f = 4 (c) k = 128, f = 4

1
1
.6

5
.9

3
3
.2

1
0
.5

6
2
.3

1
8
.8

1
2
.4

6
6
.5

3
5
.1

1
2
6
.4

0

50

100

150

200

250

Light Heavy

Backgroud Traffic

A
v
e
ra

g
e
 R

e
p
a
ir
 T

im
e
 (

m
s
)

TL (1.031x)
LRC (r=14, 1.094x)
LRC (r=23, 1.063x)
CL (r=23, 1.063x)
CL (r=32, 1.047x)

1
6
.6

7
.3

2
8
.8

1
1
.3

9
5
.2

2
5
.2

1
4
.5

6
2
.1

3
2
.9

1
9
8
.2

0

50

100

150

200

250

Light Heavy

Backgroud Traffic

A
v
e
ra

g
e
 R

e
p
a
ir
 T

im
e
 (

m
s
)

TL (1.031x)
LRC (r=13, 1.086x)
LRC (r=19, 1.063x)
CL (r=19, 1.063x)
CL (r=27, 1.047x)

1
8
.9

1
5
.4

4
.6

2
.0

2
6
.1

2
0
.7

4
.6

3
.1

4
1
.1

3
1
.7

4
.6

3
.6

0

10

20

30

40

50

f=2 f=3 f=4

N
o
d
e
 R

e
p
a
ir
 R

a
te

 (
M

iB
/s

)

TL
LRC
CL w/o LRS
CL w/ LRS

(d) k = 128, f = 3 (e) k = 128, f = 2 (f) Node repair

Figure 12: Experiment B.1: Average single-chunk repair time (in milliseconds) for different k and f under different types of background traffic
(figures (a)-(e)), and average full-node repair rate for different f .

Figure 1. Note that Figure 1 shows higher throughput than
Figure 11(b), since the former only considers the computation
part of the encoding operations, while the latter also includes
disk I/O for reading chunks for encoding in addition to encod-
ing computation.

6.2 ECWide-H Performance

Experiment B.1 (Repair). We evaluate the repair perfor-
mance of LRC, TL, and CL using ECWide-H. For (n,k,z)
TL and (n,k,r,z) CL, we deploy n + 8z + 1 instances, in-
cluding n instances as MemcachedServers, 8z instances as
MemcachedClients (with eight instances in each of the z
racks), and one instance as Coordinator.

We consider two deployment scenarios of ECWide-H with
different loads of background traffic. To mimic background
traffic, in addition to the existing MemcachedClients in
ECWide-H, we add extra Memcached clients in the back-
ground (called background clients) that continuously is-
sue read requests to MemcachedServers. Specifically, we
consider a case of light background traffic where each
MemcachedServer serves 20 background clients, and a case
of heavy background traffic where each MemcachedServer

serves 80 background clients.
Figures 12(a)-12(e) show the average single-chunk repair

times of LRC, TL, and CL for different k and f under the light
and heavy background traffic loads. Here, we let 64≤ k≤ 128
and 2 ≤ f ≤ 4. As in Experiment A.1 (§6.1), we select two
types of LRC and two types of CL for each set of k and f with
different r. We also compute the corresponding redundancy of
each scheme based on Table 4. Similar to Experiment A.1, we
see that CL still performs the best in hot storage workloads.
For example, in Figure 12(c) under heavy background traffic,

the single-chunk repair time of CL with r = 27 is 10.3 ms,
while those of LRC with r = 27 and TL are 85.5 ms and
108.4 ms, respectively; equivalently, CL reduces the single-
chunk repair times of LRC and TL by 87.9% and 90.5%,
respectively. Also, CL with r = 27 only incurs a redundancy
of 1.063×, close to the minimum redundancy of TL (1.031×).

In addition, CL under heavy background traffic shows a
higher performance gain compared to the light one, similar
to Experiment A.1 that compares the gateway bandwidth of
500 Mb/s to that of 1 Gb/s. The reason is that the single-chunk
repair performance is more likely bottlenecked by the limited
available bandwidth under heavy background traffic, in which
the performance gain of CL is more prominent.

Figure 12(f) shows the average full-node repair rate for
different values of f . Here, we fix k = 64 and r = 7, and
focus on light background traffic. From the figure, CL shows
a higher full-node repair rate than LRC and TL, and CL with
LRS increases the full-node repair rate by 29.7% when f =
4 compared to CL without LRS. Also, the full-node repair
rate of CL increases with f , consistent with the results in
Figure 9(f) (see Experiment A.1 in §6.1) for the same reason.

Experiment B.2 (Updates). We evaluate the update time
of a chunk with and without the inner-rack parity updates
for global and local parity chunks using (136,128,27,34) CL
(§4.3); without the inner-rack parity updates, we assume that
each parity chunk is updated directly by the corresponding
delta chunk. We use workloads generated by Yahoo! Cloud
Serving Benchmark (YCSB) [21] with two read-to-update
ratios, namely read-mostly (95%:5%) and update-intensive
(50%:50%).

Figure 13 shows the average update times of different up-
date schemes. Compared to without inner-rack parity updates,

244 19th USENIX Conference on File and Storage Technologies USENIX Association

1
4
4
5
.9

1
2
5
1
.6

9
6
5
.6

7
7
1
.3

0

500

1000

1500

2000

2500

Update Schemes

A
v
e
ra

g
e
 U

p
d
a
te

 T
im

e
 (

m
s
)

w/o any methods
w/ local method
w/ global method
w/ both methods

1
4
4
8
.3

1
2
3
9
.4

9
7
0
.5

7
5
9
.1

0

500

1000

1500

2000

2500

Update Schemes

A
v
e
ra

g
e
 U

p
d
a
te

 T
im

e
 (

m
s
)

w/o any methods
w/ local method
w/ global method
w/ both methods

(a) read:update = 95%:5% (b) read:update = 50%:50%

Figure 13: Experiment B.2: Average update time (in milliseconds)
with inner-rack parity update methods for local and global parity
chunks under different read/update ratios, using (136,128,27,34) CL.

the inner-rack parity updates for global parity chunks reduce
the update time by up to 33.2%, the inner-rack parity updates
for local parity chunks reduce the update time by up to 14.4%,
and the inner-rack parity updates for both local and global
parity chunks reduce the update time by up to 47.6%.

7 Related Work
Wide-stripe erasure coding. Wide stripes have been com-
mercially adopted (e.g., VAST [9]), but little is known about
the design details, and there is no rigorous analysis on the
fundamental properties of wide-stripe erasure coding in real
deployment. Some studies in the literature address the wide-
stripe problem from different perspectives. Li et al. [42] ad-
dress the read-retry problem in hard disks using local erasure
coding, where n = 1024 and n− k ≤ 20. Haddock et al. [28]
use general-purpose GPUs to improve encoding/decoding
efficiency, where n = 24 and k = 20. Some studies consider
large stripes, where both k and n− k are large, for distributed
storage using low-density parity-check (LDPC) codes [54] or
rateless codes [44], but the minimum redundancy that they
consider (e.g., 1.167× [44] and 1.5× [54]) remains higher
than that in our wide-stripe problem. Our work is the first to
systematically study the performance issues in wide-stripe
erasure coding, including repair, encoding, and updates.
Erasure coding in distributed storage. Erasure coding has
been widely studied in distributed storage (see surveys [11,
52]). As erasure coding has higher performance overhead
than replication, it is often used in cold storage that treats
data persistence as a first-class citizen as opposed to access
performance [10, 12]. To ensure data reliability, fast repair
is critical for erasure coding in cold storage. Most studies
address the repair issue via either proposing new erasure codes
that minimize the repair bandwidth [23, 34, 50, 58, 60, 63,
71], or designing repair-efficient techniques that mitigate the
repair time [41, 46]. Erasure coding is also considered in
hot storage that requires high data access performance. One
notable example is erasure coding in in-memory key-value
storage, in which existing studies mainly address caching [57],
data management [43,73,74], and consistent hashing [18,70].
Some studies focus on updates in erasure-coded storage, and
mainly address performance [16, 37] and consistency [17].
Existing studies on erasure coding mainly focus on small k

and m. In contrast, we focus on the application of wide stripes
in both cold and hot storage.

Locality in erasure coding. Many studies exploit either par-
ity locality or topology locality to improve the performance of
erasure coding. In terms of parity locality, locally repairable
codes [27, 33, 34, 51, 63] reduce the repair bandwidth and I/O
costs by associating local parity chunks with different groups
of fewer than k data chunks. Product codes [24, 29, 40] asso-
ciate local parities with both horizontal and vertical groups of
data chunks for high fault tolerance. Several studies exploit
hierarchical parity locality to associate local parity chunks
with different levels of groups of data chunks to handle mul-
tiple failures [38, 62]. In terms of topology locality, existing
studies exploit rack-level locality to reduce cross-rack data
transfers in repair or update operations. Some studies propose
repair-optimal erasure code constructions [31,32,56] that min-
imize the cross-rack repair bandwidth, while the others design
new techniques for efficient repair [65, 66] or updates [64].
Our work combines both parity locality and topology locality
to solve the wide-stripe problem, especially on reducing the
repair bandwidth for wide stripes.

8 Conclusions
Wide stripes are a new notion for erasure-coded distributed
storage to achieve extreme storage savings. We propose com-
bined locality, a novel repair mechanism that combines parity
locality and topology locality to address the repair problem
effectively for wide stripes. We design ECWide, a prototype
system that realizes combined locality. We further design
multi-node encoding and inner-rack parity updates to improve
the encoding and update performance, respectively. We im-
plement ECWide for both cold and hot storage systems, and
our Amazon EC2 experiments demonstrate the efficiency of
ECWide in repair, encoding, and updates.

Acknowledgement
We thank our shepherd, Cheng Huang, and the anonymous
reviewers for their comments. This work was supported by
National Natural Science Foundation of China (61872414),
Key Laboratory of Information Storage System Ministry of
Education of China, and the Research Grants Council of Hong
Kong (AoE/P-404/18). The corresponding author is Yuchong
Hu.

References
[1] Amazon Elastic Compute Cloud (EC2). http://aws.

amazon.com/ec2/, Retrieved in Jan 2021.

[2] Amazon S3 Glacier & S3 Glacier Deep Archive.
https://aws.amazon.com/glacier/, Retrieved in
Jan 2021.

[3] HDFS erasure coding. https://hadoop.

apache.org/docs/current/hadoop-project-

USENIX Association 19th USENIX Conference on File and Storage Technologies 245

dist/hadoop-hdfs/HDFSErasureCoding.html,
Retrieved in Jan 2021.

[4] Intel ISA-L. https://github.com/intel/isa-l,
Retrieved in Jan 2021.

[5] libMemcached. https://libmemcached.org/

libMemcached.html, Retrieved in Jan 2021.

[6] Memcached. https://memcached.org, Retrieved in
Jan 2021.

[7] tc. https://linux.die.net/man/8/tc, Retrieved
in Jan 2021.

[8] Tencent ultra-cold storage system optimiza-
tion with Intel ISA-L - a case study. https:

//software.intel.com/content/www/us/

en/develop/articles/tencent-ultra-cold-

storage-system-optimization-with-intel-

isa-l-a-case-study.html, Retrieved in Jan 2021.

[9] VastData. https://vastdata.com/providing-

resilience-efficiently-part-ii/, Retrieved in
Jan 2021.

[10] F. André, A.-M. Kermarrec, E. Le Merrer,
N. Le Scouarnec, G. Straub, and A. Van Kem-
pen. Archiving cold data in warehouses with clustered
network coding. In Proc. of ACM Eurosys, page 21,
2014.

[11] S. B. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar,
B. Sasidharan, and P. V. Kumar. Erasure coding for dis-
tributed storage: An overview. CoRR, abs/1806.04437,
2018. http://arxiv.org/abs/1806.04437.

[12] S. Balakrishnan, R. Black, A. Donnelly, P. England,
A. Glass, D. Harper, S. Legtchenko, A. Ogus, E. Pe-
terson, and A. Rowstron. Pelican: A building block for
exascale cold data storage. In Proc. of USENIX OSDI,
2014.

[13] B. Beach. Backblaze Vaults: Zettabyte-Scale Cloud Stor-
age Architecture. https://www.backblaze.com/

blog/vault-cloud-storage-architecture/,
2017.

[14] M. Blaum, J. L. Hafner, and S. Hetzler. Partial-MDS
codes and their application to RAID type of architec-
tures. IEEE Trans. on Information Theory, 59(7):4510–
4519, 2013.

[15] J. Blömer, M. Kalfane, R. Karp, M. Karpinski, M. Luby,
and D. Zuckerman. An XOR-based erasure-resilient
coding scheme. Technical Report TR-95-048, Interna-
tional Computer Science Institute, UC Berkeley, Aug
1995.

[16] J. C. Chan, Q. Ding, P. P. C. Lee, and H. H. Chan. Parity
logging with reserved space: Towards efficient updates
and recovery in erasure-coded clustered storage. In Proc.
of USENIX FAST, pages 163–176, 2014.

[17] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and
D. Phillips. Giza: Erasure coding objects across global
data centers. In Proc. of USENIX ATC, pages 539–551,
2017.

[18] L. Cheng, Y. Hu, and P. P. C. Lee. Coupling decentral-
ized key-value stores with erasure coding. In Proc. of
ACM SoCC, pages 377–389, 2019.

[19] A. Cidon, R. Escriva, S. Katti, M. Rosenblum, and E. G.
Sirer. Tiered replication: A cost-effective alternative to
full cluster geo-replication. In Proc. of USENIX ATC,
pages 31–43, 2015.

[20] Cisco Systems. Oversubscription and density
best practices. https://www.cisco.com/c/

en/us/solutions/collateral/data-center-

virtualization/storage-networking-

solution/net_implementation_white_

paper0900aecd800f592f.html, 2015.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
YCSB. In Proc. of ACM SoCC, pages 143–154, 2010.

[22] H. Dau, I. M. Duursma, H. M. Kiah, and O. Milenkovic.
Repairing Reed-Solomon codes with multiple erasures.
IEEE Trans. on Information Theory, 64(10):6567–6582,
2018.

[23] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright,
and K. Ramchandran. Network coding for distributed
storage systems. IEEE Trans. on Information Theory,
56(9):4539–4551, Sep 2010.

[24] K. S. Esmaili, L. Pamies-Juarez, and A. Datta. CORE:
Cross-object redundancy for efficient data repair in stor-
age systems. In Proc. of IEEE BigData, 2013.

[25] A. Fikes. Storage architecture and challenges.
http://cloud.google.com/files/storage_

architecture_and_challenges.pdf, 2010.

[26] D. Ford, F. Labelle, F. I. Popovici, M. Stokel, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan. Avail-
ability in globally distributed storage systems. In Proc.
of USENIX OSDI, Oct 2010.

[27] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On
the locality of codeword symbols. IEEE Trans. on In-
formation theory, 58(11):6925–6934, 2012.

[28] W. Haddock, P. V. Bangalore, M. L. Curry, and A. Skjel-
lum. High performance erasure coding for very large
stripe sizes. In Proc. of IEEE SpringSim, pages 1–12,
2019.

[29] J. L. Hafner. HoVer erasure codes for disk arrays. In
Proc. of IEEE/IFIP DSN, 2006.

[30] M. Holland, G. A. Gibson, and D. P. Siewiorek. Archi-
tectures and algorithms for on-line failure recovery in

246 19th USENIX Conference on File and Storage Technologies USENIX Association

redundant disk arrays. Distributed Parallel Databases,
2(3):295–335, 1994.

[31] H. Hou, P. P. C. Lee, K. W. Shum, and Y. Hu. Rack-
aware regenerating codes for data centers. IEEE Trans.
on Information Theory, 65(8):4730–4745, 2019.

[32] Y. Hu, X. Li, M. Zhang, P. P. C. Lee, X. Zhang, P. Zhou,
and D. Feng. Optimal repair layering for erasure-coded
data centers: From theory to practice. ACM Trans. on
Storage, 13(4):33, 2017.

[33] C. Huang, M. Chen, and J. Li. Pyramid codes: Flexible
schemes to trade space for access efficiency in reliable
data storage systems. ACM Trans. on Storage, 9(1):3,
Mar 2013.

[34] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure coding
in Windows Azure Storage. In Proc. of USENIX ATC,
Jun 2012.

[35] O. Kolosov, G. Yadgar, M. Liram, I. Tamo, and A. Barg.
On fault tolerance, locality, and optimality in locally
repairable codes. In Proc. of USENIX ATC, pages 865–
877, 2018.

[36] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui,
and J. Cong. Atlas: Baidu’s key-value storage system
for cloud data. In Proc. of IEEE MSST, pages 1–14,
2015.

[37] H. Li, Y. Zhang, Z. Zhang, S. Liu, D. Li, X. Liu, and
Y. Peng. PARIX: Speculative partial writes in erasure-
coded systems. In Proc. of USENIX ATC, 2017.

[38] J. Li and B. Li. Beehive: Erasure codes for fixing multi-
ple failures in distributed storage systems. IEEE Trans.
on Parallel and Distributed Systems, 28(5):1257–1270,
2016.

[39] M. Li, R. Li, and P. P. C. Lee. Relieving both storage
and recovery burdens in big data clusters with R-STAIR
codes. IEEE Internet Computing, 22(4):15–26, 2018.

[40] M. Li, J. Shu, and W. Zheng. GRID codes: Strip-based
erasure codes with high fault tolerance for storage sys-
tems. ACM Trans. on Storage, 4(4):1–22, 2009.

[41] R. Li, X. Li, P. P. C. Lee, and Q. Huang. Repair pipelin-
ing for erasure-coded storage. In Proc. of USENIX ATC,
pages 567–579, 2017.

[42] Y. Li, H. Wang, X. Zhang, N. Zheng, S. Dahandeh,
and T. Zhang. Facilitating magnetic recording tech-
nology scaling for data center hard disk drives through
filesystem-level transparent local erasure coding. In
Proc. of USENIX FAST, 2017.

[43] W. Litwin, R. Moussa, and T. Schwarz. LH*RS:
A highly-available scalable distributed data structure.
ACM Trans. on Database Systems, 30(3):769–811, 2005.

[44] M. Luby, R. Padovani, T. J. Richardson, L. Minder, and
P. Aggarwal. Liquid cloud storage. ACM Trans. on
Storage, 15(1):2, 2019.

[45] P. Luse and K. Greenan. Swift object storage: Adding
erasure code. SNIA Education September, 2014.

[46] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi. Partial-
parallel-repair (PPR): a distributed technique for repair-
ing erasure coded storage. In Proc. of ACM Eurosys,
page 30. ACM, 2016.

[47] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,
S. Pan, S. Shankar, V. Sivakumar, L. Tang, et al. f4:
Facebook’s Warm BLOB Storage System. In Proc. of
USENIX OSDI, pages 383–398, 2014.

[48] P. Narayanan, S. Samal, and S. Nanniyur. Ya-
hoo cloud object store-object storage at exabyte
scale. https://yahooeng.tumblr.com/post/

116391291701/yahoo-cloud-object-store-

object-storage-at, 2017.

[49] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao,
and J. Kelly. The Quantcast File System. In Proc. of
ACM VLDB, 2013.

[50] L. Pamies-Juarez, F. Blagojevic, R. Mateescu, C. Guyot,
E. E. Gad, and Z. Bandic. Opening the chrysalis: On
the real repair performance of MSR codes. In Proc. of
USENIX FAST, 2016.

[51] D. S. Papailiopoulos and A. G. Dimakis. Locally re-
pairable codes. IEEE Trans. on Information Theory,
60(10):5843–5855, Oct 2014.

[52] J. S. Plank and C. Huang. Tutorial: Erasure coding for
storage applications. Slides presented at USENIX FAST
2013, Feb 2013.

[53] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and
Z. OHearn. A Performance Evaluation and Examination
of Open-Source Erasure Coding Libraries for Storage.
In Proc. of USENIX FAST, 2009.

[54] J. S. Plank and M. G. Thomason. A practical analysis
of low-density parity-check erasure codes for wide-area
storage applications. In Proc. of IEEE/IFIP DSN, 2004.

[55] J. S. Plank and L. Xu. Optimizing Cauchy Reed-
Solomon codes for fault-tolerant network storage appli-
cations. In Proc. of IEEE NCA, pages 173–180, 2006.

[56] N. Prakash, V. Abdrashitov, and M. Médard. The stor-
age versus repair-bandwidth trade-off for clustered stor-
age systems. IEEE Trans. on Information Theory,
64(8):5783–5805, 2018.

[57] K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and
K. Ramchandran. EC-Cache: Load-balanced, low-
latency cluster caching with online erasure coding. In
Proc. of USENIX OSDI, pages 401–417, 2016.

USENIX Association 19th USENIX Conference on File and Storage Technologies 247

[58] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and
K. Ramchandran. Having your cake and eating it
too: Jointly optimal erasure codes for I/O, storage, and
network-bandwidth. In Proc. of USENIX FAST, 2015.

[59] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur,
and K. Ramchandran. A solution to the network chal-
lenges of data recovery in erasure-coded distributed stor-
age systems: A study on the Facebook warehouse cluster.
In Proc. of USENIX HotStorage, 2013.

[60] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur,
and K. Ramchandran. A hitchhiker’s guide to fast and ef-
ficient data reconstruction in erasure-coded data centers.
In Proc. of ACM SIGCOMM, 2014.

[61] I. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of the Society for Industrial and
Applied Mathematics, 8(2):300–304, 1960.

[62] B. Sasidharan, G. K. Agarwal, and P. V. Kumar. Codes
with hierarchical locality. In Proc. of IEEE ISIT, pages
1257–1261, 2015.

[63] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G.
Dimakis, R. Vadali, S. Chen, and D. Borthakur. XORing
elephants: Novel erasure codes for big data. In Proc. of
ACM VLDB Endowment, pages 325–336, 2013.

[64] Z. Shen and P. P. C. Lee. Cross-rack-aware up-
dates in erasure-coded data centers: Design and evalua-
tion. IEEE Trans. on Parallel and Distributed Systems,
31(10):2315–2328, Oct 2020.

[65] Z. Shen, P. P. C. Lee, J. Shu, and W. Guo. Cross-rack-
aware single failure recovery for clustered file systems.
IEEE Trans. on Dependable and Secure Computing,
17(2):248–261, Mar/Apr 2020.

[66] Z. Shen, J. Shu, Z. Huang, and Y. Fu. ClusterSR: Cluster-
aware scattered repair in erasure-coded storage. In Proc.
of IEEE IPDPS, pages 42–51. IEEE, 2020.

[67] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and
M. Dahlin. Lazy means smart: Reducing repair band-
width costs in erasure-coded distributed storage. In Proc.
of ACM SYSTOR, pages 1–7, 2014.

[68] J.-y. Sohn, B. Choi, S. W. Yoon, and J. Moon. Capacity
of clustered distributed storage. IEEE Trans. Informa-
tion Theory, 65(1):81–107, 2018.

[69] I. Tamo and A. Barg. A family of optimal locally re-
coverable codes. IEEE Trans. on Information Theory,
60(8):4661–4676, 2014.

[70] K. Taranov, G. Alonso, and T. Hoefler. Fast and strongly-
consistent per-item resilience in key-value stores. In
Proc. of ACM EuroSys, page 39, 2018.

[71] M. Vajha, V. Ramkumar, B. Puranik, G. Kini, E. Lobo,
B. Sasidharan, P. V. Kumar, A. Barg, M. Ye, S. Narayana-
murthy, S. Hussain, and S. Nandi. Clay codes: moulding

MDS codes to yield an MSR code. In Proc. of USENIX
FAST, page 139, 2018.

[72] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn. Ceph: A scalable, high-performance dis-
tributed file system. In Proc. of USENIX OSDI, pages
307–320, 2006.

[73] M. M. Yiu, H. H. Chan, and P. P. C. Lee. Erasure coding
for small objects in in-memory KV storage. In Proc. of
ACM SYSTOR, page 14, 2017.

[74] H. Zhang, M. Dong, and H. Chen. Efficient and available
in-memory KV-store with hybrid erasure coding and
replication. In Proc. of USENIX FAST, pages 167–180,
2016.

248 19th USENIX Conference on File and Storage Technologies USENIX Association

On the Feasibility of Parser-based Log Compression in Large-Scale Cloud Systems

Junyu Wei†, Guangyan Zhang†∗, Yang Wang‡, Zhiwei Liu¶, Zhanyang Zhu†,
Junchao Chen†, Tingtao Sun§, Qi Zhou§

†Tsinghua University, ‡The Ohio State University, ¶China University of Geosciences, §Alibaba Cloud

Abstract
Given the tremendous scale of today’s system logs, compres-
sion is widely used to save space. While parser-based log
compressor reported promising results, we observe less in-
triguing performance when applying it to our production logs.

Our detailed analysis shows that, first, some problems are
caused by a combination of sub-optimal implementation and
assumptions that do not hold on our large-scale logs. We
address these issues with a more efficient implementation.
Furthermore, our analysis reveals new opportunities for fur-
ther improvement. In particular, numerical values account
for a significant percentage of space and classic compres-
sion algorithms, which try to identify duplicate bytes, do not
work well on numerical values. We propose three techniques,
namely delta timestamps, correlation identification, and elas-
tic encoding, to further compress numerical values.

Based on these techniques, we have built LogReducer. Our
evaluation on 18 types of production logs and 16 types of
public logs shows that LogReducer achieves the highest com-
pression ratio in almost all cases and on large logs, its speed
is comparable to the general-purpose compression algorithm
that targets a high compression ratio.

1 Introduction

Most systems log internal events for various reasons, such
as diagnosing system errors [9, 36, 48], profiling user behav-
iors [10, 11, 28], modeling system performance [2, 15], and
detecting potential security problems [12, 37].

In today’s datacenters, the size of such logs can grow large.
In 2016, Feng. et al reported their system can generate 100GB
of logs per day [13], and in 2019, this number increased to
2TB per day [30]. AliCloud, a major cloud provider and our
collaborator, can generate several PBs of logs per day.

These logs usually need to be stored for a long time for
multiple reasons: sometimes an anomaly is detected much
later than it was logged, so the developer needs to analyze the

∗Corresponding author: gyzh@tsinghua.edu.cn

past logs [1, 9, 21, 24]; certain analysis may require statistics
over a long period of time to generate a conclusion [10,14,45];
for the purpose of the audition, local laws require a cloud
provider to store these logs for a certain amount of time. As
a result, AliCloud has decided to store its logs for 180 days.
Considering it’s generating several PBs of logs per day, storing
these logs is a considerable overhead even for a big company.

To reduce log size, a classic solution is to compress these
logs. General-purpose lossless compression methods, such as
LZMA [40], gzip [6], PPMd [4], and bzip [41], can compress a
file by identifying and replacing duplicate bytes. A number of
recent works observe that most system logs are generated by
adding variables to a string template (e.g. printf("value=%d",
v)), and thus by separating them, they only need to store the
variables [23, 30, 31, 33, 46]. We call these approaches parser-
based log compression in this paper.

While these works report promising results, we observe
less intriguing performance when applying this method to
production logs from AliCloud: when applying Logzip [30],
the latest one in this line of work, to our logs, we find it’s
seven times slower than LZMA, a general-purpose compres-
sion method targeting a high compression ratio, and Logzip’s
compression ratio is worse than LZMA on 13 out of the 18
types of the logs.

To understand whether such problems are fundamental or
due to engineering issues, we perform a detailed analysis of
Logzip. Our analysis shows that, first, some problems are in-
deed caused by a combination of sub-optimal implementation
and undesirable limits: Logzip is implemented in Python and
uses several notoriously slow libraries and data structures like
Pandas DataFrame [5]; Logzip limits a log entry to have no
more than 5 variables, which is too small for our logs; increas-
ing the limit will further slow down Logzip, which is already
seven times slower than LZMA. We address these issues by
re-implementing the whole algorithm in C/C++, which signif-
icantly improves the compression speed. It further allows us
to remove the limit on the number of variables to improve the
compression ratio as well.

Second, our analysis reveals new opportunities for further

USENIX Association 19th USENIX Conference on File and Storage Technologies 249

improvement. At a high level, Logzip uses general-purpose
compression methods to further compress variables: while
this works well for string variables, it does not work well
for numerical variables, since general-purpose compression
methods target finding duplicate bytes, and there are not much
duplication in numerical data in our experiments. We incor-
porate three techniques to further compress numerical data:

• We observe timestamps account for over 20% of the space
in 8 out of 18 types (even 70% in one type) in the com-
pressed files, mainly because AliCloud needs micro-second
level timing information to accurately identify the order of
events, for the purposes like performance debugging and
resolving conflicts. To compress timestamps, we use the
classic differential method to compute and store the delta
value of two consecutive timestamps.

• We observe that numerical data are often correlated. A
typical example is in an I/O log: when the user performs
sequential I/Os, the offset of the next I/O is equal to the
sum of the offset and length of the previous I/O. Such corre-
lation provides an obvious opportunity to further compress
numerical data. Following this idea, we have developed a
novel algorithm to identify simple numerical correlation in
log samples and apply the found rules during compression.

• We observe most numerical values are small and using
fixed-length coding (e.g. 32 bits for an integer) will gener-
ate many 0 bits at the beginning. We propose elastic cod-
ing, which represents a number with an elastic number of
bytes, to trim leading zeroes. Compared to general-purpose
compression algorithms, elastic coding is more efficient at
trimming leading zeroes; compared to fixed-length coding,
elastic coding can reduce the length when the value is small
but may increase the length when the value is large, which
is a beneficial trade-off given our observation.

By combining all the efforts mentioned above, we have
built LogReducer. We have applied LogReducer to 18 types
of AliCloud logs (1.76TB in total) and 16 types of public logs
(77GB in total). Compared with LZMA, LogReducer can
achieve 1.19× to 5.30× compression ratio on all cases and
0.56× to 3.16× compression speed on logs over 100MB (Lo-
gReducer is comparably slower on smaller logs because of its
initialization overhead). Compared with Logzip, LogReducer
can achieve 1.03× to 4.01× compression ratio and 2.05×
to 182.31× compression speed. Such results have confirmed
that, with proper implementation and optimization, parser-
based log compression is promising to compress large-scale
production logs.

The contribution of this paper is three-fold. First, we study
why state-of-the-art parser-based compression methods do
not perform well on our production logs. Second, based on
the study, we build LogReducer by improving the implemen-
tation of existing methods, applying proper techniques based

on the characteristics of the logs, and introducing new tech-
niques. Finally, we demonstrate the efficacy of LogReducer
on a variety of logs. LogReducer is open source [39].

2 Background

2.1 Structure of Cloud Logs
We collect a large set of logs generated in AliCloud. They
are from different applications developed by different teams,
which serve for various purposes, e.g., warning and error re-
porting, infrastructure monitoring, user behavior tracing, and
periodical summary. Table 1 shows examples of three types
of logs. Samples of all 18 types can be found in [38].

The basic structure of these logs contains three parts:
header, template and variable. A header includes the times-
tamp and the corresponding log level. The header is added
by AliCloud’s logging system automatically and its format is
relatively static, which allows us to use a regular expression
to separate the header from the remaining part. The rest of
this section mainly discusses how to parse the remaining part
into templates and variables.

Templates are the formalized output statements of logs. In
Log F, “Write chunk %s Offset %d Length %d” and “Read
chunk %s Offset %d” are two templates. Variables refer to
the part which varies in each instance of the same template.
In Log F, they include “3242513_B”, “339911”, “11” ,etc.

User behavior tracing (Log F)
[2019-08-27 15:21:24.456234] [INFO] Write chunk: 3242513_B
Offset: 339911 Length: 11
[2019-08-27 15:21:24.463321] [INFO] Read chunk: 3242514_C
Offset: 272633
[2019-08-27 15:21:24.464322] [INFO] Write chunk: 3242512_F
Offset: 318374 Length: 7
[2019-08-27 15:21:24.474433] [INFO] Write chunk: 3242513_B
Offset: 339922 Length: 55

Infrastructure monitoring (Log D)
[2018-01-12 08:53:12.188370] [10593] project:393 logstore:
XDoFiqnlmZd shard:78 inflow:3376 dataInflow:18869
[2018-01-12 08:53:12.188390] [10593] project:656 logstore:
lOdMafL31Pg shard:37 inflow:7506 dataInflow:42712

Warning and error reporting (Log Q)
Aug 28 03:09:02 h10c10322.et15 su[57118]: (to nobody) root on
none
Aug 28 03:09:02 h10c10322.et15 su[57118]: session opened for
user nobody by (uid=0)

Table 1: Examples of logs in AliCloud.

2.2 Parser-based Log Compressor
Parser-based log compression first uses a log parser to iden-
tify the template of each log entry and extract the correspond-
ing variables; it then replaces the template string with a tem-
plate ID to save space; it finally applies general-purpose com-
pression methods to variables to further reduce space.

250 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: Parser tree architecture.

Log parser can be implemented using longest common
string [8], clustering [35], and parser tree [23], among them
parser tree shows better effectiveness [49]. Here we first
present the concept of parser tree and then show how to build
the parser tree and use it to separate templates and variables.

Parser tree. Given a list of templates and log entries, a
naive approach to match the entry to a template is to compare
the entry to each template and find the template which is most
similar to the entry. However, when there are many templates,
such one-by-one comparison is inefficient.

To improve the efficiency of template matching, several
works [23, 30] use a parser tree to facilitate the matching: as
shown in Figure 1, each leaf of the parser tree is a group of
templates sharing the same length (i.e., the number of tokens
in a log message); the first layer of internal nodes use the
length of the log entry to categorize the entry; the following
layers of internal nodes form multiple paths, each of them
leads to a leaf node in the parser tree. Both the internal node
and the template use “<*>” to represent a variable.

Assuming we have built a parser tree as shown in Figure 1,
and we have a log entry “Read chunk 3242514_C Offset
272633”: since its length is 5, we will first go to the internal
node “Length=5”; since its first token is “Read”, we will then
go to the internal node “Read”; and then “chunk”; finally
we will compare the log entry with each template in the leaf
node and find “Read chunk <*> Offset <*>” is closest to
the log entry, so we will choose this template and identify
“3242514_C” and “272633” as variables.

Building the parser tree. Parser-based log compressor first
builds the parser tree by parsing a sample of the log entries.
For each log entry, the log parser performs four steps, and we
use log entry “Read chunk 3242514_C Offset 272633” as an
example to explain these steps. In the beginning, the parser
tree just has one root node.

In the first step, the log parser uses predefined split charac-
ters, such as empty space or comma, to split a log entry into
a list of strings called tokens. In our example, the raw log

message will be divided into “Read”, “chunk”, “3242514_C”,
“Offset”, “272633” accordingly.

In the second step, the log parser will check whether the
internal node of the length exists (Length=5 in our case). If
not, the log parser will create a new internal node. Finally, it
moves to the corresponding internal node.

In the third step, the log parser traverses the tree according
to the tokens in the log entry and moves to corresponding
internal nodes (“Read” and “chunk” in our example). After
reaching the limitation of tree depth, it reaches a leaf node,
which contains a group of templates. If the corresponding
internal node does not exist, the log parser will build the
internal node and add the node to the prefix tree.

Definition 1. Similarity between log L and template T (li is
the ith token in L; ti is the ith token in T; φ(a,b) = 1 if a = b,
otherwise φ(a,b) = 0, | · | is the number of tokens in a log)

Similarity(L,T) =
∑φ(li, ti)
|L|

(1)

In the fourth step, the log parser searches for the most
similar template in this template group using a similarity
function defined in equation 1. If the largest similarity is
smaller than a threshold ε, the log parser will create a new
template, which is the same as the log entry. Note that at this
moment the log parser cannot tell which tokens of the log
entry are variables. If the largest similarity is larger than ε,
the log parser will regard this log entry as an instance of the
matching template and update the template accordingly to
mark different parts as variables.

For example, suppose the log parser first parses “Read
chunk 3242514_C Offset 272633”: since there is no template
yet, the log parser will create a new template “Read chunk
3242514_C Offset 272633”. Then suppose the log parser
processes “Read chunk 3242514_B Offset 268832”: its simi-
larity to “Read chunk 3242514_C Offset 272633” is 0.6, so
if ε is smaller than 0.6, the log parser will consider “Read
chunk 3242514_B Offset 268832” as an instance of “Read
chunk 3242514_C Offset 272633” and update the template
into “Read chunk <*> Offset <*>”; if ε is larger than 0.6, the
log parser will treat “Read chunk 3242514_B Offset 268832”
as a new template.

Compressing logs. Then the compressor uses the parser
tree to compress logs [30]. The procedure is similar to build-
ing a parser tree, except that in this phase, the compressor
will not update the parser tree. It will first utilize the parser
tree to try to match each log entry to a template. If a match is
found, the log entry will be converted to the template ID and
the variables; if no template is matched, the log entry will be
regarded as a mismatch and will not be converted.

Afterward the compressor will group log entries according
to their template IDs and store their variables in a column
manner, i.e., it first stores the first variable of each log entry

USENIX Association 19th USENIX Conference on File and Storage Technologies 251

in the group, then stores the second variable, and so on. The
column-based storage is based on the observation that vari-
ables at the same position of the same template are prone
to have more redundancy, so that sliding window based al-
gorithms such as LZ77 [40] will have more chances to trim
redundancy. Finally the compressor concatenates everything
and compresses it with a general-purpose compressor.

3 Restore the Promise of Parser-based Log
Compression

We tested Logzip, the most recent parser-based log compres-
sion implementation, on 18 types of AliCloud’s production
logs. First, we find the value of the similarity threshold ε has
a critical impact on the performance of Logzip. When using
Logzip’s default value 0.5, we find Logzip takes nearly 20
days to build the parser tree and can generate tens of thou-
sands of templates, which impairs both the speed and the
compression ratio. We tuned this value on our logs and found
a value of 0.1 works well for almost all of our logs. This is
due to the following reason: Logzip was mainly tested on PC
logs, which usually are short and only contain a small number
of variables; AliCloud’s logs usually have more variables (see
Table 2), and thus logs within the same templates are quite
different from each other, i.e., they share only a small number
of common tokens. Therefore, to extract the correct templates,
we need a smaller ε. Manual tuning is always undesirable in
a production environment: while we find the value 0.1 works
well, for environments with more versatile logs, an automatic
tuning procedure might be beneficial.

We continued testing Logzip with ε = 0.1 and found the
result is still not ideal in terms of both compression ratio
and compression speed: compared with LZMA, the general-
purpose compression algorithm that can achieve the highest
compression ratio on our logs, Logzip is seven times slower,
and on 13 out of the 18 types of logs, Logzip’s compression ra-
tio is lower (§6.1). Our detailed analysis revealed a correlated
problem between compression ratio and speed:

Logzip implementation assumes that a log entry usually has
no more than five variables: for log entries with more than five
variables, Logzip will regard content after the first variable as
a large variable, and feed it to the general-purpose compressor.
However, as shown in Table 2, this assumption does not hold
on most of our logs (many have over 10 variables and one has
176 variables). As a result, Logzip loses its effectiveness on
our logs, which can explain its poor compression ratio.

We tried to increase this limit and found it further exacer-
bates the speed problem of Logzip: while Logzip is already
seven times slower than LZMA with the limit of five variables,
increasing the limit to 256 will make Logzip unbearably slow,
which might be the reason Logzip sets a small limit. We pro-
filed Logzip to understand its bottleneck and found it has used
several notoriously slow libraries or data structures including

Pandas DataFrame, Python array append, etc. To address this
problem, we re-implement the whole algorithm in C/C++ and
dramatically improve the speed. The increased speed allows
us to remove the limit of five variables as well. We further
improve the speed with the following techniques:

Cutting the Parser Tree. We have observed that the total
number of templates in our production logs is usually small: as
shown in Table 2, 15 types of logs have less than 50 templates.
If we group them based on length, the number of templates in
one group is even smaller.

The reason behind this observation is that these cloud logs
are generated by developers in the operation engineering
group of AliCloud, and thus their patterns are relatively static
compared to logs generated by cloud users.

Based on this observation, we cut the parser tree into only
one layer in the compression phase: we only take length into
consideration and we store templates with the same length
together and search them one by one. This optimization has
improved compression speed and avoided the tuning of the
depth of the parser tree.

Batch processing. If we need to compress a large number
of small log files, and we start one compressor process to
compress each log, we observe the overhead to start and stop
processes could slow down the whole compression signifi-
cantly. Therefore, we allow our compressor to take a batch of
log files as inputs and compress them together.

With all the efforts mentioned above, we have restored
the promise of parser-based compression: as shown in §6.2,
compared with LZMA, our implementation (i.e., LogReducer-
B) can achieve 1.16× - 3.73× compression ratio and 0.51× -
2.01× compression speed.

4 Further Compressing Numerical Variables

We have done a detailed analysis on the compressed files gen-
erated by the previous step and found that in 10 of the 18 types
of logs, numerical variables account for over 50% space after
compression; for other types of logs the rate is at least 20%;
in three cases, the rate is over 80% (Table 3). This is because
1) our logs have a large number of numerical variables and 2)
general-purpose compression methods, which try to identify
redundant bytes, do not work well with numerical variables.

4.1 Compressing Timestamps
Our analysis shows that timestamps are the first dominant
numerical data in our logs. As shown in Table 3, in eight types
of logs, timestamps account for more than 20% of space. In
one case, this rate can reach close to 70%.

This is because AliCloud needs precise timing information
to order events, for purposes like debugging and auditing.
In its environment, system logs can be generated at a high

252 19th USENIX Conference on File and Storage Technologies USENIX Association

Log type Log A Log B Log C Log D Log E Log F Log G Log H Log I
of templates 42 29 3 6 74 7 202 39 48

Avg. # of variables 14 5 10 13 22 12 7 57 176
Log type Log J Log K Log L Log M Log N Log O Log P Log Q Log R

of templates 29 10 4 16 49 1 20 43 130
Avg. # of variables 3 46 7 9 4 13 22 2 5

Table 2: Template information on 18 types of logs in AliCloud.

Log type Log A Log B Log C Log D Log E Log F Log G Log H Log I
Number Rate(%) 46.63 68.51 52.19 82.86 51.69 88.42 33.92 45.51 31.65

Time Rate(%) 36.75 38.97 15.28 15.49 10.42 10.07 22.88 31.23 4.22
Log type Log J Log K Log L Log M Log N Log O Log P Log Q Log R

Number Rate(%) 39.27 69.85 24.89 53.54 53.40 78.47 27.30 29.36 84.96
Time Rate(%) 26.96 7.18 9.32 21.53 25.63 14.79 15.77 14.90 68.27

Table 3: Space consumption of numerical variables and timestamps in compressed file.

speed, up to one million entries per second, which motivates
AliCloud to record timestamps at micro-second level. As a
result, first, it takes more bits to store the microsecond level
timestamps than millisecond or second level timestamps, and
second, there is not much redundancy in the timestamps.

To compress timestamps, we use the classical differential
method, which records the delta value between two consec-
utive timestamps. This method can significantly reduce the
size of timestamps when the target system generates logs fre-
quently, namely the delta value will be small. By using this
method, we can reduce the space overhead and pass a much
smaller number to the general-purpose compressor, which can
improve both compression ratio and compression speed.

4.2 Correlation Identification and Utilization
We observe numerical variables sometimes are correlated. For
example, in an I/O trace, if the user performs sequential I/Os,
the offset of the next I/O will be equal to the sum of the offset
and length of the previous I/O.

Such correlation provides an obvious opportunity to com-
press numerical data. If most values of certain variables follow
certain kind of correlation, we only need to store how values
deviate from the correlation in a residue vector; since most
values of the residue vector will be zeroes, they will be effec-
tively compressed by a general-purpose compressor.

For example, for logs of type Log F with templates “Write
Chunk <*> Length <*> Offset <*> Version <*>”, we can
extract four variables from the template and three of them
are numerical variables, namely ~L (Length), ~O (Offset), ~V
(Version). In our logs, we find three types of correlations in
these variables. Note that the values of each variable form a
vector since there are multiple log entries.

• Inter-variable correlation: Version is often equal to the sum
of Offset and Length, namely ~V =~L+ ~O, and its residue
vector is ~V −~L− ~O.

Figure 2: Numerical correlations observed on Log F.

• Intra-variable correlation: Lengths of the same Chunk ID
are often close. We can compute its residue vector as~L[i]−
~L[i−1] = ~∆L.

• Mixed correlation: if the user is performing sequential I/Os
to a chunk, then its lengths and offsets have the following
correlation: ~O[i] = ~O[i−1]+~L[i−1]. Its residue vector is
~O[i]− ~O[i−1]−~L[i−1] = ~∆O−~L.

Correlation identification. We propose a novel method to
identify such correlation. The goal of correlation identifica-
tion process is to find the relationship across and within dif-
ferent variables so that we can represent some variables with
residue vectors, which can be compressed more effectively. To
achieve this goal, we first enumerate different combinations
of variables, the IDs to group different entries (e.g. ChunkID
in Figure 2), and the aforementioned correlation rules, and
compute the corresponding residue vectors. Then we select
vectors from the original vectors and the residue vectors with
the goals of 1) maximizing compression ratio and 2) being
able to recover all original vectors.

The whole identification process is illustrated in algorithm
1, which maintains three sets: the target set ψ; the recover

USENIX Association 19th USENIX Conference on File and Storage Technologies 253

set R including all original vectors that can be recovered
from the current ψ; the total candidate set T including all
candidate vectors. One of its key data structure is a map from
the candidate vectors to original vectors: map(~C) will return
all original vectors that ~C is built from (e.g., map(~A−~B) = ~A
and ~B).

Algorithm 1 Correlation identification algorithm
1: Recoverable set R= /0

2: Final vector set Ψ = /0

3: Initialize candidate set T
4: repeat
5: C = {~C ∈ T : |map(~C)−R|= 1}
6: ~Cmin = vector with the smallest entropy in C.
7: Ψ←Ψ∪~Cmin
8: R← R∪map(~Cmin)
9: until R contains all original vectors

10: Output Ψ

The algorithm works in iterations: in each iteration, it first
tries to find all candidate vectors ~C that can recover one more
variable compared to the current recoverable set R (line 5);
then among them, it chooses the one with the highest com-
pression ratio (line 6). Here we predict the compression ratio
of a candidate using its Shannon Entropy [26], defined in
Definition 2; finally it updates Ψ and R accordingly (lines 7
and 8); it repeats this until Ψ can recover all original vectors
(line 9). The cost of enumeration is acceptable, since it is
performed on samples of logs.

Definition 2. Entropy for a variable vector. SA denotes the
set of all values appearing in ~A and #(s) denotes the number
of times the value s appears in ~A.

E(~A) =− ∑
s∈SA

#(s)
|A|

log
#(s)
|A|

(2)

In Figure 2, Ψ will finally contain three residue vectors,
namely:{ ~∆L, ~∆O−~L,~V −~L− ~O}. These three residue vectors
are enough to recover all original variable vectors~L, ~O,~V , and
will have a higher compression ratio than the original variable
vectors.

Correlation utilization. The output of the training phase
for numerical correlations is the target vector set Ψ. In the
compression phase, we calculate each residue vector in set
Ψ and discard original vectors that do not appear in Ψ. If we
apply three correlations in Ψ to our example in Figure 2, the
result is shown in Figure 3. As one can see, for variables that
perfectly match certain rules, their residue vectors contain
many zeroes; even for those that do not perfectly match the
rules, their values are smaller, which facilitates the elastic
encoder discussed in the following section.

Figure 3: Processing result of logs in Figure 2.

4.3 Elastic Encoder
The simplest way to represent numerical variables is to use
fixed number of bytes (e.g. 4 bytes to represent an integer,
8 bytes to represent a long value, etc). However, if most
numbers are small, these bytes will contain many leading
zeroes (for positive numbers) or ones (for negative numbers).
General-purpose compression may be able to find such con-
secutive zeroes or ones, but since it needs to search for such
zeroes/ones and store additional metadata to record the length
of zeroes/ones, we design a dedicated encoding algorithm to
trim leading zeroes.

To efficiently exploit such opportunity, we apply an elastic
encoding method to store numbers according to their size.
We cut the 32-bit integer into 7-bit segments and add one bit
to each segment, indicating whether the segment is the last
segment (1 means it is the last). Then we discard the prefix of
segments containing only zeroes. Here we choose the number
7 because, after adding one bit, each segment takes a byte,
which is easy to handle.

For a negative number represented by two-complement
encoding, it is not trivial to just change all ones to zeroes,
since the leading ones include the first bit which indicates this
number is a negative number. To overcome this problem, we
adopt a shifting operator [43] to move the first bit to the last
position and reverse all other bits if the original number is
negative. By adopting this method, we will process negative
numbers in the same way as processing positive ones.

By using elastic encoding, we will trim the leading ze-
ros/ones at the cost of adding one-bit metadata for every re-
maining 7 bits. Therefore, the smaller the number is, the more
redundancy we can trim. More precisely, for an integer be-
tween [−27n,−27(n−1))∪ (27(n−1)− 1,27n− 1](0 < n < 6),
elastic encoding can save (32−8n) bits compared with using
fixed 32 bits. In our logs, we find this method can save 24 bits
(i.e., n = 1) for more than 60% of the numbers.

Note that both delta timestamps and applying correlation
contribute to the effectiveness of elastic encoding since these
techniques tend to make numbers smaller.

5 Architecture and Implementation

Based on the observations and ideas mentioned previously,
we have built LogReducer, a parser-based log compressor,

254 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 4: LogReducer architecture.

with about 3,000 lines of C/C++ code. Figure 4 shows its
architecture. LogReducer contains two phases, training phase
and compression phase.

Training. Training phase is done over sampled data. It uses
a parser to extract templates (§2) and a correlation miner to
find possible correlations (§4.2). At the end of this phase,
LogReducer may find a list of templates and correlation rules.

Just like any other methods relying on sampling, we expect
such samples to capture the properties of real logs as much
as possible. Traditional parser-based compression methods
like Logzip only need to extract templates during the training
phase, and since the template of a log entry only depends
on the entry itself, these methods can use random sampling.
LogReducer, however, tries to identify data correlation across
adjacent log entries, and random sampling will lose such
relationship. To address this challenge, we first randomly pick
several starting points and then choose a contiguous sequence
of logs from each starting point. This method shows good
performance on both extracting templates and identifying
correlations across adjacent log entries.

Compression. In the compression phase, for each log en-
try, LogReducer will first extract its header. LogReducer will
further extract the timestamps from the headers and compute
the delta values of consecutive timestamps (§4.1). Then Lo-
gReducer will try to match the log entry to templates using
the parser (§3) and apply founded correlations to numerical
variables (§4.2). Then LogReducer will encode all numerical
data, including timestamps, numerical variables, and template
IDs, using elastic encoder (§4.3). Finally, LogReducer will
pack all data using LZMA since we find it can almost always
achieve the highest compression ratio on our logs.

In order to illustrate the whole process of compression,
we exhibit a complete compression case. Suppose we have
four input log entries of Log F shown in Table 1 (§2) and the
templates and correlations founded in the training phase.

LogReducer first extracts their headers and matches their
bodies to templates. The results are shown in Table 4, in which

each log entry is divided into three parts, namely log header,
template ID, and corresponding variables. Here the second
log entry belongs to template:"Read chunk <*> Offset:<*>",
whose template ID is 2 and the other three log entries be-
long to template: "Write chunk <*> Offset:<*> Length:<*>",
whose template ID is 1. As a result, template 2 has two vari-
ables and template 1 has three variables.

Headers Template ID V1 V2 V3
[2019-08-27 15:21:24.456234]
[INFO] 1 3242513_B 339911 11

[2019-08-27 15:21:24.463321]
[INFO] 2 3242514_C 272633 -

[2019-08-27 15:21:24.464322]
[INFO] 1 3242512_F 318374 7

[2019-08-27 15:21:24.474433]
[INFO] 1 3242513_B 339922 55

Table 4: Extracting headers and matching templates.

Then LogReducer will compute the difference of adjacent
timestamps and utilize correlations over numerical variables.
Table 5 shows the result of these steps: all timestamps become
much smaller except the first one; since LogReducer identifies
the sequential access pattern for 3242513_B, it does not need
to store the offset of the second access and we calculate the
delta result for write length of the same chunk (i.e., log entry
4). Finally LogReducer encodes all numerical results using
elastic encoder, organizes all variables in a column manner,
and packs them with LZMA.

Time Other Header Template ID V1 V2 V3
2019 08 27 15 21 24
456234 [INFO] 1 3242513_B 339911 11

0 0 0 0 0 0
7087 [INFO] 2 3242514_C 272633 -

0 0 0 0 0 0
1001 [INFO] 1 3242512_F 318374 7

0 0 0 0 0 0
10111 [INFO] 1 3242513_B 0 44

Table 5: Computing the delta values of timestamps and apply-
ing correlation.

Others. In cloud environments, logs usually contain a large
amount of information. To make such information easy to be
understood by humans, logs often need to be truncated into
several lines. Such multi-line log entries do not exist in the PC
logs where Logzip was tested upon. Logzip simply treats them
as a mismatch, which obviously reduces its effectiveness.

We calculate the rate of multi-line logs in our production
logs and find in Log H and Log R, the rate of multi-line
logs have reached up to 5% of the whole size. To support
multi-line log entries, we do not split log entries based on a
new line symbol; instead, we split log entries based on log
headers, as we discussed in §2.1. Doing so achieves both
higher compression ratio and higher compression speed.

Besides, to improve the generality of LogReducer beyond
AliCloud logs, we implement a head-format adaptor: based on
the assumption that the number of tokens in the head is static

USENIX Association 19th USENIX Conference on File and Storage Technologies 255

for the same type of logs, this adaptor tries to treat the first n
tokens as the head (it tries n = 1 to 10 in our experiments) to
see which n value can achieve the best compression ratio.

6 Evaluation

Our evaluation tries to answer three questions:

• What is the overall performance of LogReducer in terms
of compression ratio and compression speed on AliCloud
logs? (§6.1)

• What is the effect of each individual technique of LogRe-
ducer? (§6.2)

• How does LogReducer perform on logs beyond AliCloud
logs? (§6.3)

To answer these questions, we measure the performance of
LogReducer on 18 types of production logs from AliCloud
with a total size of about 1.76TB (Table 6). We measure both
the compression ratio (i.e., Original size

Compressed size) and the compres-
sion speed (MB/s).

For comparison, we also measure the performance of two
general-purpose compression algorithms (gzip and LZMA)
and two log-specific compression algorithms (LogArchive [3]
and Logzip [30]). gzip is a classical compression tool. It tar-
gets high compression speed instead of a high compression
ratio. We use "tar" [7] command to compress log dataset with
gzip. LZMA is a well-studied general-purpose compression
method based on LZ77 [40] algorithm. It has a high com-
pression ratio but a relatively low compression speed. We use
7z [50] to compress the log data with LZMA. LogArchive
is a bucket-based log compression method. We use its open-
source code to compress our logs data [17]. Logzip is the
latest implementation of parser-based compressor. We use
its open-source code [19]. Note that as discussed in §3, we
change the ε value of Logzip from 0.5 to 0.1.

Testbed. We perform all experiments using 4 Linux servers,
each with 2× Intel Xeon E5-2682 2.50GHz CPUs (with 16
cores), 188GB RAM, and Red Hat 4.8.5 with Linux kernel
3.10.0. For each method, we use 4 threads to compress the
log data in parallel and sum their total time.

6.1 Overall Performance
Compression ratio. As shown in Figure 5(a), LogReducer
has the highest compression ratio on all logs. It can achieve
1.54× to 6.78× compression ratio compared to gzip, 1.19×
to 4.80× compared to LZMA, 1.11× to 3.60× compared to
LogArchive, and 1.45× to 4.01× compared to Logzip.

In our experiments, Logzip failed on Log I; LogArchive
failed on Log I and Log J. Both of these two logs have much
longer log entries than others, which causes buffer overflow
in Logzip and LogArchive. We use LZMA to compress failed
logs, since it is the default setting of Logzip and LogArchive.

LogReducer can compress all 1.76TB log dataset into
34.25GB, which takes only 1.90% space after compression.
gzip, LZMA, LogArchive, and Logzip can compress all
1.76TB into 152.03GB, 107.22GB, 91.54GB, and 89.86GB
respectively. As a result, their space consumption is 4.44×,
3.13×, 2.67× and 2.62× as much as LogReducer respec-
tively.

We further compute the improvement of LogReducer over
the best of the other four algorithms on all 18 logs. LogRe-
ducer has the highest improvement on Log F and lowest im-
provement on Log L due to the following reasons: Log F
has several typical correlations we discussed in §4.2 and Lo-
gReducer can identify them and trim redundancy effectively,
while other works cannot utilize such correlation. Log L has
a low percentage of numerical values (only 24.89%) and
timestamps (only 9.32%), which means the new techniques
introduced by LogReducer are not very effective.

Compression speed. As shown in Figure 5(b), LogReducer
is 4.01×-182.31× as fast as Logzip and 4.49×-11.65× as
fast as LogArchive. LogReducer is comparable to LZMA in
compression speed (0.56×-3.16×): it is slower than LZMA
on 8 out of 18 logs; in some special cases (Log K, Log F, Log
O) LogReducer is 2×-3× as fast as LZMA. LogReducer is
slower than gzip, as gzip is optimized for speed. We do not
show the speed of gzip in Figure 5(b) since its high value will
make other bars hard to distinguish.

To compress all 1.76TB logs, LogReducer takes 58.19
hours; Logzip takes nearly 27 days; LogArchive takes nearly
23 days; LZMA takes 91.54 hours; gzip takes 25.35 hours. In
other words, LogReducer is 11.22×, 9.43×, and 1.57× as fast
as Logzip, LogArchive, and LZMA respectively; it is about
60% slower than gzip.

6.2 Effects of Individual Techniques

This section measures the effects of individual techniques
presented in §3 and §4.

We use an efficient re-implementation of parser-based com-
pressor as our baseline (LogReducer-NB), which includes the
C/C++ implementation, removing the limit on the number
of variables, and cutting the parser tree (§3). We add batch
processing on LogReducer-NB to get LogReducer-B (§3),
add delta timestamps on LogReducer-B to get LogReducer-D
(§4.1), add elastic encoding approach on LogReducer-D to get
LogReducer-ED (§4.3) and finally add numerical correlation
utilization (§4.2) on LogReducer-ED to get the full version
of LogReducer. The result is shown in Table 7.

As one can see, the efficient re-implementation (NB ver-
sion) significantly improves the compression ratio and com-
pression speed over Logzip in almost every type of logs. This
has confirmed one of our key observations: an efficient imple-
mentation is critical to realize the full potential of parser-based
log compression.

256 19th USENIX Conference on File and Storage Technologies USENIX Association

Log type Log A Log B Log C Log D Log E Log F Log G Log H Log I
Total Size(GB) 18.67 16.05 45.82 65.74 34.98 443.30 148.88 0.19 14.20
Total Line(106) 74.74 72.60 231.43 406.98 77.56 1425.37 579.94 1.08 8.65
Time Span(H) 476 75 87 20 6 8 1563 32 8977

Log type Log J Log K Log L Log M Log N Log O Log P Log Q Log R
Total Size(GB) 18.67 16.05 45.82 65.74 34.98 443.30 148.88 0.19 14.20
Total Line(106) 74.74 72.60 231.43 406.98 77.56 1425.37 579.94 1.08 8.65
Time Span(H) 85 3335 238 30 174 1512 62 165 722

Table 6: Log dataset description.

 gzip LZMA LogArchive LogZip LogReducer

Log

(a) Compression ratio

A B C D E F G H I J K L M N O P Q R
0

2

4

6

8

10

Co
m

pr
es

sio
n

Sp
ee

d(
M

B/
s)

Log

(b) Compression speed

Figure 5: Performance on AliCloud logs

The B version (batch processing) is over 1.5× as fast as the
NB version on 10 logs. In particular, it is 1.99× and 1.82×
as fast as the NB version on Log D and Log C. These two
logs have many files and thus LogReducer can save much
time by batch processing. Batch processing has no impact
on compression ratio as it does not change the logic of the
compression algorithm.

The compression ratio of the D version (delta timestamps)
is over 1.1× as high as the B version on 3 logs and over
1.05× as high on 7 logs. In particular, its compression ratio is
1.24× as high as the B version on Log R. Delta timestamps
can bring significant improvement to logs which have a large
percentage of timestamp values: Log R, Log A and Log H
have the highest, third highest and fourth highest timestamp
percentage among all 18 logs (see Table 3) and thus can
benefit from delta timestamps. Log B, which has the second
highest timestamp percentage, is relatively sparser and does
not benefit much from delta timestamps. Delta timestamps
improves compression speed as well by feeding a smaller
intermediate result to the general-purpose compressor: it is

over 1.05× as fast as the B version on 6 logs.
The compression ratio of the ED version (elastic encoding)

is over 1.05× as high as the D version on 12 logs. It mainly
improves compression ratio on logs with a large percentage
of small numbers, such as Log D, Log R, and Log M. The
ED version is over 1.5× as fast as the D version on 5 logs
and 1.2× as fast on 11 logs, since elastic encoding provides a
dedicated and thus more efficient way to trim leading zeroes
or ones compared with general-purpose methods.

The compression ratio of the LR version (correlation iden-
tification and utilization) is over 1.05× as high as the ED
version on 4 logs. In particular, it is 2.07× as high as the ED
version on Log F and 1.13× as high on Log O, because corre-
lations are common in these two logs. It will incur overhead,
its speed is 0.7× to 1.05× compared with ED version.

6.3 Performance on Public Logs
To examine the generality of LogReducer beyond AliCloud
logs, we evaluate LogReducer on 16 types of public logs [18]

USENIX Association 19th USENIX Conference on File and Storage Technologies 257

Compression Ratio Compression Speed (MB/s)
LZMA Logzip B & NB D ED LR LZMA Logzip NB B D ED LR

Log A 19.30 37.34 53.96 61.94 63.79 63.86 7.03 0.22 3.99 6.42 6.31 7.58 7.23
Log B 17.91 17.64 32.66 33.55 35.63 35.67 7.25 0.79 3.80 6.75 7.21 9.52 8.63
Log C 15.48 12.61 30.36 32.30 34.80 35.81 5.06 0.68 3.47 6.31 6.17 9.50 8.22
Log D 12.16 11.57 23.08 24.50 26.56 27.26 4.08 0.66 2.84 5.64 5.29 9.80 7.83
Log E 14.19 7.73 22.99 23.35 24.73 25.22 4.89 0.64 4.33 5.34 5.42 6.93 6.22
Log F 11.58 10.69 16.32 16.47 17.62 36.42 3.60 0.81 3.32 4.33 4.33 8.00 8.44
Log G 16.58 13.42 30.23 31.76 33.00 32.99 7.35 0.34 4.07 5.89 6.52 7.27 7.17
Log H 17.73 27.73 34.85 38.58 40.05 40.08 7.15 0.99 3.71 3.64 3.83 3.96 3.98
Log I 11.95 / 13.88 13.88 14.03 14.26 4.05 / 5.26 3.81 3.57 3.85 3.81
Log J 17.46 9.04 31.16 33.25 34.94 36.22 7.76 0.03 2.72 4.37 4.60 4.82 4.78
Log K 12.14 11.20 23.88 24.51 25.74 26.97 3.39 0.67 4.53 6.82 6.24 10.76 10.72
Log L 12.38 11.62 17.75 17.96 18.43 18.48 6.01 1.17 2.55 4.74 4.80 5.47 4.71
Log M 18.42 14.20 37.56 39.14 43.56 43.99 7.10 0.67 4.90 5.22 6.55 7.21 5.75
Log N 14.11 13.64 22.43 22.63 23.71 25.01 5.28 0.77 3.56 5.68 5.66 7.61 7.38
Log O 8.25 5.23 11.35 11.28 12.05 13.67 2.48 0.64 2.52 3.42 3.44 7.15 5.98
Log P 22.73 10.61 34.90 35.98 36.92 37.58 8.22 0.63 5.75 5.52 7.14 9.32 6.64
Log Q 20.55 31.27 76.72 79.05 83.09 84.25 6.78 0.68 2.41 3.67 3.72 3.76 3.77
Log R 22.82 55.63 80.73 100.44 109.21 109.51 7.67 1.07 4.94 8.23 7.85 10.87 9.95

Table 7: Effects of individual techniques on compression ratio and compression speed. X is short for LogReducer-X (X∈{B, NB,
D, ED}). LR stands for the full version of LogReducer. “/”: Logzip failed on Log I.

from diverse sources [25, 49]. As shown in Figure 6, the com-
pression ratio of LogReducer is 1.03×–3.15× compared with
Logzip, 1.19×–5.14× compared with LogArchive, 1.23×–
5.30× compared with LZMA, and 1.79×–20.27× compared
with gzip. We further investigate the logs on which LogRe-
ducer has less improvement: some of them have too many
templates (e.g. Android, Thunderbird), which causes all parse-
based methods, including LogReducer, to have many mis-
matches; some of them have only a few variables and even
fewer numerical variables (e.g., Thunderbird, Proxifer), which
causes LogReducer’s optimizations to be less effective; in
addition, LogZip has a specific optimization for HDFS log,
which improves the compression ratio of LogZip.

In terms of compression speed, LogReducer is 2.05×–
101.12× as fast as Logzip and 1.79×–9.95× as fast as Log-
Archive. LogReducer is slower than LZMA by up to 5.88×
and than gzip by up to 36.16× due to two reasons. First, since
over half of the logs are smaller than 100MB, the initializa-
tion overhead of LogReducer (e.g. space allocation) becomes
significant, taking over 40% of the time. Second, some cases
have too many templates (e.g. Android, Thunderbird), which
causes a low matching rate and a waste of time.

Such results have confirmed the assumptions of LogRe-
ducer: LogReducer is mainly designed for large-scale logs
with a small number of templates and many variables. When
such assumptions hold, LogReducer can perform significantly
better than existing methods; when such assumptions do not
hold, LogReducer is less effective but can still achieve the
highest compression ratio.

7 Related Work

Log parser. Log parser focuses on the extraction process
of log templates, which can be divided into three types:
cluster-based methods (LKE [14], LogSig [44], SHISO [34],
LenMa [42], LogMine [20]), frequent-pattern-based methods
(SLCT [46], LFA [35]), and heuristic-structure-based methods
(IPLoM [32], AEL [27], Drain [23]).

Cluster-based methods divide the logs into clusters and ex-
tract templates for each cluster. Pattern-based methods try to
extract frequent patterns from log entries and regard them as
constant templates. Heuristic methods will extract log struc-
ture based on observations of log entries. Zhu et al. [49]
compare these methods and find that Drain performs better
than others. As a result, both Logzip and our implementation
are based on Drain.

Number encoding methods. LevelDB [16] has used vari-
ant encoding to represent numbers based on their size.
Thrift [43] has used Zigzag encoding to get more leading
zero to enable efficient data serialization when communicat-
ing between processes. Compared with them, LogReducer
further uses elastic encoding to reduce the space overhead of
storing numerical variables.

General-purpose compression approaches. These meth-
ods can be categorized into three kinds: statistic-based,
predict-based, and dictionary-based. Statistic-based compres-
sion methods (e.g., Huffman coding [40], Arithmetic cod-
ing [47]) first collect statistic information about input logs
and then design variant length coding for each tokens. Predict-

258 19th USENIX Conference on File and Storage Technologies USENIX Association

 gzip LZMA LogArchive LogZip LogReducer

Log

(a) Compression ratio. Numbers above bars denote compression ratios exceeding 70.

Android
Apache Bgl Hadoop Hdfs

Healthapp Hpc Linux MacOpenstack
Proxifier Spark Ssh

Thunderbird
Windows

Zookeeper

0

2

4

6

8

10

Co
m

pr
es

sio
n

Sp
ee

d(
M

B/
s)

Log

(b) Compression speed

Figure 6: Performance on public dataset.

based compression methods (e.g., PPMd [4]) predict the
next token based on current context during reading the input
stream, and assigns a shorter encoding if prediction is suc-
cessful. Dictionary-based compression methods (e.g., LZMA,
gzip) search for similar tokens in a sliding window and store
them in a dictionary when processing the input stream.

Statistic-based methods need to read the input log file twice.
As a result, when the input log file is large, they are not effi-
cient. With prediction-based methods, the appearance of vari-
ables will decrease the prediction accuracy. Dictionary-based
methods may lose the chance to trim redundancy within a long
distance, and do not take the delta of timestamps and correla-
tion of variables into consideration, since they are not related
to redundancy literally. Our methods utilize general-purpose
compression approaches and improve their effectiveness on
log data.

Log-specific compression approaches. These methods
can be divided into two categories: parser-based and non
parser-based. CLC [22], LogArchive [3], Cowic [29] and
MLC [13] process variables and templates together. CLC tries
to find the frequent patterns shown in log files and processes
these patterns directly. LogArchive uses similarity function
and sliding windows to divide log entries into different buck-
ets and compresses buckets together to improve compression
ratio. Cowic does not focus on the compression ratio. Instead,
it tries to decrease the decompression latency by only decom-
pressing needed logs rather than the whole files. MLC uses
block-level duplication methods to find redundancy conceal-
ing between log entries and divide them into groups according
to their similarities and compress them using delta encoding.

Logzip [30] extracts templates and processes templates and
variables separately. It uses a parser to get several templates
on a small sample and extracts all templates in original log
files by iterative matching. Finally, it compresses template IDs
and variables using general-purpose compression methods
separately. However, Logzip does not perform well on our
logs due to sub-optimal implementation.

8 Conclusion

This work examines the latest parser-based log compression
approach on production logs. It observes that, first, an effi-
cient implementation is critical to realize the full potential
of this approach; and second, there are more opportunities to
further compress logs. Based on these ideas, we have built
LogReducer, which shows promising compression ratio and
compression speed.

Acknowledgment

We thank all reviewers for their insightful comments, and
especially our shepherd, Dalit Naor, for her guidance dur-
ing our camera-ready preparation. This work was supported
by the National key R&D Program of China under Grant
2018YFB0203902, and the National Natural Science Founda-
tion of China under Grants 61672315 and 62025203.

USENIX Association 19th USENIX Conference on File and Storage Technologies 259

References

[1] Boyuan Chen and Zhen Ming Jiang. Characterizing and
detecting anti-patterns in the logging code. In Proceed-
ings of the 39th International Conference on Software
Engineering, pages 71–81. IEEE, 2017.

[2] Michael Chow, David Meisner, Jason Flinn, Daniel Peek,
and Thomas F Wenisch. The mystery machine: End-to-
end performance analysis of large-scale Internet ser-
vices. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation,
pages 217–231. USENIX Association, 2014.

[3] Robert Christensen and Feifei Li. Adaptive log com-
pression for massive log data. In Proceedings of the
2013 ACM SIGMOD International Conference on Man-
agement of Data, pages 1283–1284. ACM, 2013.

[4] John Cleary and Ian Witten. Data compression using
adaptive coding and partial string matching. IEEE trans-
actions on Communications, 32(4):396–402, 1984.

[5] Python date engineer group. Python data analysis library
Pandas. https://pandas.pydata.org/, 2015.

[6] Peter Deutsch. DEFLATE compressed data format
specification version 1.3. https://tools.ietf.org/
html/rfc1951, 1996.

[7] GNU developer group. Homepage and documenta-
tion of Tar. https://www.gnu.org/software/tar/,
2019.

[8] Min Du and Feifei Li. Spell: Streaming parsing of
system event logs. In Proceedings of the 16th Inter-
national Conference on Data Mining, pages 859–864.
IEEE, 2016.

[9] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
DeepLog: Anomaly detection and diagnosis from sys-
tem logs through deep learning. In Proceedings of 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1285–1298. ACM, 2017.

[10] Susan Dumais, Robin Jeffries, Daniel M Russell, Diane
Tang, and Jaime Teevan. Understanding user behavior
through log data and analysis. In Ways of Knowing in
HCI, pages 349–372. Springer, 2014.

[11] Yaochung Fan, Yuchi Chen, Kuanchieh Tung, Kuochen
Wu, and Arbee L P Chen. A framework for enabling user
preference profiling through Wi-Fi logs. IEEE Transac-
tions on Knowledge and Data Engineering, 28(3):592–
603, 2016.

[12] Bettina Fazzinga, Sergio Flesca, Filippo Furfaro, and
Luigi Pontieri. Online and offline classification of traces

of event logs on the basis of security risks. Journal of
Intelligent Information Systems, 50(1):195–230, 2018.

[13] Bo Feng, Chentao Wu, and Jie Li. MLC: an effi-
cient multi-level log compression method for cloud
backup systems. In Proceedings of 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 1358–1365. IEEE, 2016.

[14] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Exe-
cution anomaly detection in distributed systems through
unstructured log analysis. In Proceedings of the 9th
IEEE international conference on data mining, pages
149–158. IEEE, 2009.

[15] Mona Ghassemian, Philipp Hofmann, Christian Pre-
hofer, Vasilis Friderikos, and Hamid Aghvami. Per-
formance analysis of Internet gateway discovery proto-
cols in ad hoc networks. In Proceedings of 2004 IEEE
Wireless Communications and Networking Conference,
volume 1, pages 120–125. IEEE, 2004.

[16] Sanjay Ghemawat and Jeff Dean. LevelDB. https:
//github.com/google/leveldb, 2011.

[17] LogArchive group. Open source code of LogA-
rchive. https://github.com/robertchristensen/
log_archive_v0, 2019.

[18] Loghub group. Download link of public log
dataset. https://zenodo.org/record/1596245#
.XMMZ1dv7S-Y, 2019.

[19] Logzip group. Open source code of Logzip. https:
//github.com/logpai/logzip, 2019.

[20] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui
Zhang, Guofei Jiang, and Abdullah Mueen. LogMine:
Fast pattern recognition for log analytics. In Proceed-
ings of the 25th ACM International on Conference on
Information and Knowledge Management, pages 1573–
1582. ACM, 2016.

[21] Mehran Hassani, Weiyi Shang, Emad Shihab, and Niko-
laos Tsantalis. Studying and detecting log-related is-
sues. Empirical Software Engineering, 23(6):3248–
3280, 2018.

[22] Kimmo Hätönen, Jean François Boulicaut, Mika Klemet-
tinen, Markus Miettinen, and Cyrille Masson. Com-
prehensive log compression with frequent patterns. In
Proceedings of 2003 International Conference on Data
Warehousing and Knowledge Discovery, pages 360–370.
Springer, 2003.

[23] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R
Lyu. Drain: An online log parsing approach with fixed
depth tree. In Proceedings of 2017 IEEE International
Conference on Web Services, pages 33–40. IEEE, 2017.

260 19th USENIX Conference on File and Storage Technologies USENIX Association

https://pandas.pydata.org/
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://www.gnu.org/software/tar/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/robertchristensen/log_archive_v0
https://github.com/robertchristensen/log_archive_v0
https://zenodo.org/record/1596245#.XMMZ1dv7S-Y
https://zenodo.org/record/1596245#.XMMZ1dv7S-Y
https://github.com/logpai/logzip
https://github.com/logpai/logzip

[24] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu.
Experience report: System log analysis for anomaly
detection. In Proceedings of the 27th International
Symposium on Software Reliability Engineering, pages
207–218. IEEE, 2016.

[25] Shilin He, Jieming Zhu, Pinjia He, and Michael R.
Lyu. Loghub: A large collection of system log
datasets towards automated log analytics. arXiv preprint
arXiv:2008.06448, 2020.

[26] Edwin T Jaynes. Probability theory: The logic of sci-
ence. Cambridge university press, 2003.

[27] Zhen Ming Jiang, Ahmed E Hassan, Parminder Flora,
and Gilbert Hamann. Abstracting execution logs to exe-
cution events for enterprise applications (short paper).
In Proceedings of the 8th International Conference on
Quality Software, pages 181–186. IEEE, 2008.

[28] George Lee, Jimmy Lin, Chuang Liu, Andrew Lorek,
and Dmitriy Ryaboy. The unified logging infrastructure
for data analytics at Twitter. Proceedings of the VLDB
Endowment, 5(12):1771–1780, 2012.

[29] Hao Lin, Jingyu Zhou, Bin Yao, Minyi Guo, and Jie Li.
Cowic: A column-wise independent compression for log
stream analysis. In Proceedings of the 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, pages 21–30. IEEE, 2015.

[30] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin
Zheng, and Michael R Lyu. Logzip: extracting hidden
structures via iterative clustering for log compression.
In Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering, pages
863–873. IEEE, 2019.

[31] Adetokunbo Makanju, A Nur Zincir-Heywood, and
Evangelos E Milios. A lightweight algorithm for mes-
sage type extraction in system application logs. IEEE
Transactions on Knowledge and Data Engineering,
24(11):1921–1936, 2011.

[32] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and
Evangelos E Milios. Clustering event logs using iterative
partitioning. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1255–1264, 2009.

[33] Salma Messaoudi, Annibale Panichella, Domenico Bian-
culli, Lionel Briand, and Raimondas Sasnauskas. A
search-based approach for accurate identification of log
message formats. In Proceedings of the 26th Conference
on Program Comprehension, pages 167–177. ACM,
2018.

[34] Masayoshi Mizutani. Incremental mining of system log
format. In Proceedings of 2013 IEEE International Con-
ference on Services Computing, pages 595–602. IEEE,
2013.

[35] Meiyappan Nagappan and Mladen A Vouk. Abstracting
log lines to log event types for mining software system
logs. In Proceedings of the 7th Working Conference on
Mining Software Repositories, pages 114–117. IEEE,
2010.

[36] Karthik Nagaraj, Charles Killian, and Jennifer Neville.
Structured comparative analysis of systems logs to diag-
nose performance problems. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pages 26–26. USENIX Association,
2012.

[37] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and
Sumayah Alrwais. Detection of early-stage enterprise
infection by mining large-scale log data. In Proceedings
of the 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 45–56.
IEEE, 2015.

[38] LogReducer research group. Open sample of large-scale
cloud logs. https://github.com/THUBear-wjy/
openSample, 2020.

[39] LogReducer research group. Open source code of
LogReducer. https://github.com/THUBear-wjy/
LogReducer, 2020.

[40] Khalid Sayood. Introduction to data compression. Mor-
gan Kaufmann, 2017.

[41] Julian Seward. The bzip2 home page. http://www.
bzip.org, 1997.

[42] Keiichi Shima. Length matters: Clustering system
log messages using length of words. arXiv preprint
arXiv:1611.03213, 2016.

[43] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski.
Thrift: Scalable cross-language services implementation.
Facebook White Paper, 5(8), 2007.

[44] Liang Tang, Tao Li, and Chang-Shing Perng. LogSig:
Generating system events from raw textual logs. In
Proceedings of the 20th ACM international conference
on Information and knowledge management, pages 785–
794. ACM, 2011.

[45] Sarah K Tyler and Jaime Teevan. Large scale query
log analysis of re-finding. In Proceedings of the 3rd
ACM international conference on Web search and data
mining, pages 191–200, 2010.

USENIX Association 19th USENIX Conference on File and Storage Technologies 261

https://github.com/THUBear-wjy/openSample
https://github.com/THUBear-wjy/openSample
https://github.com/THUBear-wjy/LogReducer
https://github.com/THUBear-wjy/LogReducer
http://www.bzip.org
http://www.bzip.org

[46] Risto Vaarandi. A data clustering algorithm for mining
patterns from event logs. In Proceedings of the 3rd IEEE
Workshop on IP Operations & Management, pages 119–
126. IEEE, 2003.

[47] Ian H Witten, Radford M Neal, and John G Cleary. Arith-
metic coding for data compression. Communications of
the ACM, 30(6):520–540, 1987.

[48] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan,
Yuanyuan Zhou, and Shankar Pasupathy. SherLog: error
diagnosis by connecting clues from run-time logs. In
Proceedings of the 15th International Conference on
Architectural support for programming languages and
operating systems, pages 143–154. ACM, 2010.

[49] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie,
Zibin Zheng, and Michael R Lyu. Tools and benchmarks
for automated log parsing. In Proceedings of the 41st
International Conference on Software Engineering: Soft-
ware Engineering in Practice, pages 121–130. IEEE,
2019.

[50] 7 zip developer group. 7-zip file achiever home page.
https://www.7-zip.org/, 2019.

262 19th USENIX Conference on File and Storage Technologies USENIX Association

https://www.7-zip.org/

CNSBench: A Cloud Native Storage Benchmark
Alex Merenstein1, Vasily Tarasov2, Ali Anwar2, Deepavali Bhagwat2, Julie Lee1,

Lukas Rupprecht2, Dimitris Skourtis2, Yang Yang1, and Erez Zadok1
1Stony Brook University and 2IBM Research–Almaden

Abstract

Modern hybrid cloud infrastructures require software to be easily
portable between heterogeneous clusters. Application container-
ization is a proven technology to provide this portability for the
functionalities of an application. However, to ensure performance
portability, dependable verification of a cluster’s performance
under realistic workloads is required. Such verification is usually
achieved through benchmarking the target environment and its
storage in particular, as I/O is often the slowest component in an
application. Alas, existing storage benchmarks are not suitable
to generate cloud native workloads as they do not generate any
storage control operations (e.g., volume or snapshot creation),
cannot easily orchestrate a high number of simultaneously
running distinct workloads, and are limited in their ability to
dynamically change workload characteristics during a run.

In this paper, we present the design and prototype for
the first-ever Cloud Native Storage Benchmark—CNSBench.
CNSBench treats control operations as first-class citizens and al-
lows to easily combine traditional storage benchmark workloads
with user-defined control operation workloads. As CNSBench is
a cloud native application itself, it natively supports orchestration
of different control and I/O workload combinations at scale. We
built a prototype of CNSBench for Kubernetes, leveraging sev-
eral existing containerized storage benchmarks for data and meta-
data I/O generation. We demonstrate CNSBench’s usefulness
with case studies of Ceph and OpenEBS, two popular storage
providers for Kubernetes, uncovering and analyzing previously
unknown performance characteristics.

1 Introduction
The past two decades have witnessed an unprecedented growth of
cloud computing [54]. By 2020, many businesses have opted to
run a significant portion of their workloads in public clouds [43]
while the number of cloud providers has multiplied, creating a
broad and diverse marketplace [1,17,18,25]. At the same time,
it became evident that, in the foreseeable future, large enterprises
will continue (i) running certain workloads on-premises (e.g.,
due to security concerns), and (ii) employing multiple cloud
vendors (e.g., to increase cost-effectiveness or to avoid vendor
lock-in). These hybrid multicloud deployments [41] offer the
much needed flexibility to large organizations.

One of the main challenges in operating in a hybrid multicloud
is workload portability—allowing applications to easily move
between public and private clouds, and on-premises data
centers [52]. Software containerization [10] and the larger
cloud native [7] ecosystem is considered to be the enabler for

providing seamless application portability [44]. For example,
a container image [40] includes all user-space dependencies
of an application, allowing it to be deployed on any container-
enabled host while container orchestration frameworks such as
Kubernetes [22] provide the necessary capabilities to manage
applications across different cloud environments. Kubernetes’s
declarative nature [23] lets users abstract application and service
requirements from the underlying site-specific resources. This
allows users to move applications across different Kubernetes
deployments—and therefore across clouds—without having to
consider the underlying infrastructure.

An essential step for reliably moving an application from one
location to another is validating its performance on the destination
infrastructure. One way to perform such validation is to replicate
the application on the target site and run an application-level
benchmark. Though reliable, such an approach requires a
custom benchmark for every application. To avoid this extra
effort, organizations typically resort to using component-specific
benchmarks. For instance, for storage, an administrator might run
a precursory I/O benchmark on the projected storage volumes.

A fundamental requirement for such a benchmark is the
ability to generate realistic workloads, so that the experimental
results reflect an application’s actual post-move performance.
However, existing storage benchmarks are inadequate to generate
workloads characteristic of modern cloud native environments
due to three main shortcomings.

First, cloud native storage workloads include a high number
of control operations, such as volume creation, snapshotting,
etc. These operations have become much more frequent in
cloud native environments as users, not admins [13,24], directly
control storage for their applications. As large clusters have
many users and frequent deployment cycles, the number of
control operations is high [4,51,55].

Second, a typical containerized cluster hosts a high number
of diverse, simultaneously running workloads. Although this
workload property, to some extent, was present before in
VM-based environments, containerization drives it to new
levels. This is partly due to higher container density per
node, fueled by the cost effectiveness of co-locating multiple
tenants in a shared infrastructure and the growing popularity of
microservice architectures [57,62]. To mimic such workloads,
one needs to concurrently run a large number of distinct storage
benchmarks across containers and coordinate their progress,
which currently involves a manual and laborious process that
becomes impractical in large-scale cloud native environments.

Third, applications in cloud native environments are highly

USENIX Association 19th USENIX Conference on File and Storage Technologies 263

dynamic. They frequently start, stop, scale, failover, update,
rollback, and more. This leads to various changes in workload
behavior over short time periods as the permutation of workloads
running on each host change. Although existing benchmarks
allow one to configure separate runs of a benchmark to generate
different phases of workloads [47,48], such benchmarks do not
provide a versatile way to express dynamicity within a single run.

In this paper we present CNSBench—the first open-source
Cloud Native Storage Benchmark capable of (i) generating
realistic control operations; (ii) orchestrating a large variety
of storage workloads; and (iii) dynamically morphing the
workloads as part of a benchmark run.

CNSBench incorporates a library of existing data and
metadata benchmarks (e.g., fio [15], Filebench [60], YCSB [46])
and allows users to extend the library with new containerized I/O
generators. To create realistic control operation patterns, a user
can configure CNSBench to generate different control operations
following variable (over time) operation rates. CNSBench can
therefore be seen as both (i) a framework used for coordinating
the execution of large number of containerized I/O benchmarks
and (ii) a benchmark that generates control operations. Crucially,
CNSBench bridges these two roles by generating the control
operations to act on the storage used by the applications, thereby
enabling the realistic benchmarking of cloud native storage.

As an example, consider an administrator evaluating storage
provider performance under a load that includes frequent snap-
shotting. Conducting an evaluation manually requires the ad-
ministrator to create multiple storage volumes, run a complex
workload that will use that volumes (e.g., a MongoDB database
with queries generated by YCSB), and then take snapshots of
the volumes while the workload runs. The same evaluation with
CNSBench requires just that the administrator specify which
workload to run, which storage provider to use, and the rate with
which snapshots should be taken. CNSBench handles instantiat-
ing each component of the workload (i.e., the storage volume, the
MongoDB database, and the YCSB client) and then executing the
control operations to snapshot the volume as the workload runs.

While developing CNSBench, we have also been building out
a library of pre-defined workloads. The previous example uses
one such workload, which consists of YCSB running against
a MongoDB instance. If the administrator instead wanted to
instantiate a workload not found in our library, it is easy to
package an existing application into a workload that can be
used by CNSBench. In that case, we would also encourage
the administrator to contribute their new workload back to our
library so that it could be used by a broader community.

To demonstrate CNSBench’s versatility, we conducted a
study comparing cloud native storage providers. We pose three
questions in our evaluation: (A) How fast are different cloud
storage solutions under common control operations? (B) How do
control operations impact the performance of user applications?
(C) How do different workloads perform when run alongside
other workloads? We use Ceph [5] and OpenEBS [28] in
our case study as sample storage providers. Our results show

that control operations can vary significantly between storage
providers (e.g., up to 8.5× higher Pod creation rates) and that
they can slow down I/O workloads by up to 38%.

In summary, this paper makes the following contributions:

1. We identify the need and unique requirements for cloud
native storage benchmarking.

2. We present the design and implementation of CNSBench,
a benchmark that fulfills the above requirements and allows
users to conveniently benchmark cloud native storage
solutions with realistic workloads at scale.

3. We use CNSBench to study the performance of two storage
solutions for Kubernetes (Ceph and OpenEBS) under
previously not studied workloads.

CNSBench is open-source and available for download from
https://github.com/CNSBench .

2 Kubernetes Background
We implemented our benchmark for Kubernetes and so in
the following sections we use many Kubernetes concepts to
contextualize CNSBench’s design and use cases. Therefore, we
begin with a brief background on how Kubernetes operates.
Overview. A basic Kubernetes cluster is shown in Figure 1.
It consists of control plane nodes, worker nodes, and a storage
provider (among other components). Worker and control plane
nodes run Pods, the smallest unit of workload in Kubernetes
that consist of one or more containers. User workloads run on
the worker nodes, whereas core Kubernetes components run
on the control plane nodes. Core components include (1) the
API server, which manages the state of the Kubernetes cluster
and exposes HTTP endpoints for accessing the state, and (2) the
scheduler, which assigns Pods to nodes. Typically, a Kubernetes
cluster has multiple worker nodes and may also have multiple
control plane nodes for high availability.

The storage provider is responsible for provisioning persistent
storage in the form of volumes as required by individual Pods.
There are many architectures, but the “hyperconverged” model
is common in cloud environments. In this model, the storage
provider aggregates the storage attached to each worker node
into a single storage pool.

The state of a Kubernetes cluster, such as what workloads
are running on what hosts, is tracked using different kinds of
resources. A resource consists of a desired state (also referred
to as its specification) and a current state. It is the job of that re-
source’s controllers to reconcile a resource’s current and desired
states, for example, starting a Pod on node X if its desired state is
“running on Node X”. Pods and Nodes are examples of resources.
Persistent Storage. Persistent storage in Kubernetes is
represented by resources called Persistent Volumes (PVs).
Access to a PV is requested by attaching the Pod to a resource
called a Persistent Volume Claim (PVC). Figure 1 depicts
this process: 1 A Pod that requires storage creates a PVC,
specifying how much storage space it requires and which storage

264 19th USENIX Conference on File and Storage Technologies USENIX Association

Pod
Pod

Local
Disk

Worker Node

Storage Provider

Local
Disk

...
Pod

Core
Kubernetes

Pods

Control Plane
Node

Pod
Pod

Worker Node

Pod

PV

PVC

4

1

3

5

2

Figure 1: Basic topology of a Kubernetes cluster, with a single
control plane node, multiple worker nodes, and a storage
provider which aggregates local storage attached to each worker
node. Also shows the operations and resources involved in
providing a Pod with storage.

provider the PV should be provisioned from. 2 If there is an
existing PV that will satisfy the storage request then it is used.
Otherwise, 3 a new PV is provisioned from the storage provider
specified in the PVC. A PVC specifies what storage provider
to use by referring to a particular Storage Class. This class is
a Kubernetes resource that combines a storage provider with a
set of configuration options. Examples of common configuration
options are what file system to format the PV with and whether
the PV should be replicated across different nodes.

Once the PV has been provisioned, 4 it is bound to the PVC,
and 5 the volume is mounted into the Pod’s file system.

Kubernetes typically communicates with the storage provider
using the Container Storage Interface (CSI) specification [9],
which defines a standard set of functions for actions such
as provisioning a volume and attaching a volume to a Pod.
Before CSI, Kubernetes had to be modified to add support for
individual storage providers. By standardizing this interface, a
new storage provider needs only to write a CSI driver according
to a well-defined API, to be used in any container orchetrator
supporting CSI (e.g., Kubernetes, Mesos, Cloud Foundry).

Although Kubernetes has good support for provisioning and
attaching file and block storage to pods via PVs and PVCs, no
such support exists for object storage. Therefore, CNSBench
currently supports benchmarking only file and block storage.

3 Need for Cloud Native Storage Benchmarking
In this section we begin with describing the properties of cloud
native workloads, which current storage benchmarks cannot
recreate. We then present the design requirements for a cloud
native storage benchmark.

3.1 New Workload Properties
The rise of containerized cloud native applications has created
a shift in workload patterns, which makes today’s environments
different from previous generations. This is particularly true for
storage workloads due to three main reasons: (i) the increased fre-
quency of control operations; (ii) the high diversity of individual
workloads; and (iii) the dynamicity of these workloads.
Control Operations. Previously infrequent, control operations
became significantly more common in self-service cloud native
environments. As an example, consider the frequent creations

and deletions of containers in a cloud native environment. In
many cases, these containers require persistent storage in the
form of a storage volume and hence, several control operations
need to be executed: the volume needs to be created, prepared
for use (e.g., formatted with a file system), attached to the
host where the container will run (e.g., via iSCSI), and finally
mounted in the container’s file system namespace. Even if a
container only needs to access a volume that already exists, there
are still at least two operations that must be executed to attach
the volume to the node where the container will run and mount
the volume into the container.

To get a better idea of how many control operations can be
executed in a cloud native environment, consider these statistics
from one container cluster vendor: in 2019 they observed that
over half of the containers running on their platform had a life-
time of no more than five minutes [37]. In addition, they found
that each of their hosts were running a median of 30 containers.
Given these numbers, a modestly sized cluster of 20 nodes would
have a new container being created every second on average.
We are not aware of any public datasets that provide insight into
what ratio of these containers require storage volumes. However,
anecdotal evidence and recent development efforts [14] indicate
that many containers do in fact attach to storage volumes.

In addition to being abundant, control operations, depending
on the underlying storage technology, can also be data intensive.
This makes them slow and increases their impact on the I/O path
of running applications. For example, volume creation often
requires (i) time-consuming file system formatting; (ii) snapshot
creation or deletion, which, depending on storage design, may
consume a significant amount of I/O traffic; (iii) volume resizing,
which may require data migration and updates to many metadata
structures; and (iv) volume reattachment, which causes cache
flushes and warmups.

Now that data-intensive control operations are more common,
there is a new importance to understanding their performance
characteristics. In particular, there are two categories of
performance characteristic that are important to understand:
(1) How long does it take a storage provider to execute a
particular control operation? This is important because in
many cases, control operations sit on the critical path of the
container startup. (2) What impact does the execution have on
I/O workloads? This impact can be significant either due to the
increased load on the storage provider or the particular design
of the storage provider. For example, some storage providers
freeze I/O operations during a volume snapshot, which can lead
to a spike in latency for I/O operations [33].

Existing storage benchmarks and traces focus solely on data
and metadata operations, turning a blind eye to control operations.
Diversity and Specialization. The lightweight nature of con-
tainers allows many different workloads to share a single server
or a cluster [37]. Workload diversity is fueled by a variety of
factors. First, projects such as Docker [11] and Kubernetes [22]
have made containerization and cloud native computing more
accessible to a wide range of users and organizations, which is

USENIX Association 19th USENIX Conference on File and Storage Technologies 265

apparent in the diversity of applications present in public reposito-
ries. For example, on Docker Hub [12] there are container images
for fields such as bioinformatics, data science, high-performance
computing, and machine learning—in addition to the more
traditional cloud applications such as web servers and databases.
Additionally, the popularity of microservice architectures has
caused traditionally monolithic applications to be split up into
many small, specialized components [62]. Finally, the increas-
ingly popular serverless architecture [3], where functions run
in dynamically created containers, takes workload specialization
even further through an even finer-grained split of application
components, each with their own workload characteristics.

The result of these factors is that the workloads running in a
typical shared cluster (and on each of its individual hosts) have a
highly diverse set of characteristics in terms of runtime, I/O pat-
terns, and resource usage. Understanding system performance in
such an environment requires benchmarks that recreate the prop-
erties of cloud native workloads. Currently, such benchmarks
do not exist. Hence, realistic workload generation is possible
only by manual selection, creation, and deployment of several
appropriate containers (e.g., running multiple individual storage
benchmarks that each mimic the characteristics of a single
workload). As more applications of all kinds adopt container-
ization and are broken into sets of specialized microservices, the
number of containers that must be selected to make up a realistic
workload continues to increase. Making this selection manually
has become infeasible in today’s cloud native environments.
Elasticity and Dynamicity. Cloud native applications are
usually designed to be elastic and agile. They automatically scale
to meet user demands, gracefully handle failed components, and
are frequently updated. Although some degree of elasticity and
dynamicity has always been a trait of cloud applications, the
cloud native approach takes it to another level.

In one example, when a company adopted cloud native
practices for building and operating their applications, their de-
ployment rate increased from rolling out a new version 2–3 times
per week to over 150 times in a single day [16]. Other examples
include companies utilizing cloud native architectures to achieve
rapid scalability in order to meet spikes in demand, for example
in response to breaking news [27] or the opening of markets [2].

Currently, benchmarks lack the capability to easily evaluate
application performance under these highly dynamic conditions.
In some cases, benchmark users resort to creating these condi-
tions manually to evaluate how applications will respond—for
example manually scaling the number of database instances [46].
However, the high degree of dynamicity and diversity found
in cloud native environments makes recreating these conditions
manually nearly impossible.

3.2 Design Requirements
The fundamental functionality gap in current storage benchmarks
is their inability to generate control-operation workloads
representative of cloud native environments. At the same time,
the I/O workload (data and metadata, not control operations)

remains an important component of cloud native workloads,
and is more diverse and dynamic than before. Therefore, the
primary goal for a cloud native storage benchmark is to enable
combining control-operation workloads and I/O workloads—to
better evaluate application and cluster performance. This goal
led us to define the following five core requirements:

1. I/O workloads should be specified and created indepen-
dently from control workloads, to allow benchmarking
(i) an I/O workload’s performance under different control
workloads and (ii) a control workload’s performance with
different I/O workloads.

2. It should be possible to orchestrate I/O and control work-
loads to emulate a dynamic environment that is representa-
tive of clouds today. In addition, it should be possible to gen-
erate control workloads that serve as microbenchmarks for
evaluating the performance of individual control operations.

3. I/O workloads should be generated by running existing
tools or applications, either synthetic workload generators
like Filebench or real applications such as a web server
with a traffic generator.

4. It should be possible for users to quickly configure and run
benchmarks, without sacrificing the customizability offered
to more advanced users.

5. The benchmark should be able to aggregate unstructured
output from diverse benchmarks in a single, convenient
location for further analyses.

A benchmark which meets these requirements will allow a user
to understand the performance characteristics of their application
and their cluster under realistic cloud native conditions.

4 CNSBench Design and Implementation
To address the current gap in benchmarking capabilities in cloud
native storage, we have implemented the Cloud Native Storage
Benchmark—CNSBench. Next, we describe CNSBench’s
design and implementation. We first overview its architecture
and then describe the new Kubernetes Benchmark custom
resource and its corresponding controller in more detail.
Overview. In Kubernetes, a user creates Pods (one of Kuber-
netes’ core resources) by specifying the Pod’s configuration in
a YAML file and passing that file to the kubectl command
line utility. Similarly, we want CNSBench users to launch
new instances by specifying CNSBench’s configuration in a
YAML file and passing that file to kubectl. To achieve that,
our CNSBench implementation follows the operator design
pattern, which is a standard mechanism for introducing new
functionality into a Kubernetes cluster [31]. In this pattern, a
developer defines an Operator that comprises a custom resource
and a controller for that resource. For our implementation of
CNSBench, we defined a custom Benchmark resource and
implemented a corresponding Benchmark Controller. Together,
these two components form the CNSBench Operator. The
Benchmark resource specifies the I/O and control workloads,
which the controller is then responsible for running.

266 19th USENIX Conference on File and Storage Technologies USENIX Association

Pod
Pod

Local
Disk

Worker Node

Storage Provider

Local
Disk

...
I/O Workload

Pod

Core
Kubernetes

Pods

Control Plane
Node

Pod
Pod

Worker Node

I/O Workload
Pod

PV

PVC

Benchmark Controller

Rate Generator Action ExecutorSnapshot

A

B

B

C

B

Worker Node

C

Figure 2: CNSBench overview with its components in blue

Figure 2 shows the Kubernetes cluster depicted in Figure 1
with added CNSBench components shown in blue. The overall
control flow is as follow: A The Benchmark controller watches
the API server for the creation of new Benchmark resources.
B When a new Benchmark resource is created, the controller
creates the resources described in the Benchmark’s I/O workload:
the I/O Workload Pods for running the workloads and the
Persistent Volume Claims (PVCs) for the Persistent Volumes
(PVs) against which the workloads are run. C For running
the control operation workload, the Benchmark includes a Rate
Generator, which triggers an Action Executor in user-specified
intervals to invoke the desired control operations (actions).

4.1 Benchmark Custom Resource
The Benchmark custom resource lets users specify three main
benchmark properties: (1) the control operation workload;
(2) the I/O workloads to run; and (3) where the output should
be sent for collection.
Control operation workload. One of CNSBench’s primary
requirements is the ability to create realistic control workloads.
However, microbenchmarks that purposefully stress only one
component or operation of a system are also valuable (e.g., for an
in-depth analysis and point optimization of system performance).
Useful insights can be derived, for instance, from a benchmark
that executes some control operation at a regular interval. Our
control workload specification satisfies both use cases, by
making it easy to create simple control workloads without
sacrificing the ability to define realistic ones.

In CNSBench, control workloads are specified using a
combination of actions and rates. Actions execute operations,
for instance create resource (e.g., create Pod or Volume), delete
resource (e.g., delete snapshot), snapshot volume, and scale
resource (e.g., scale database deployment). Rates trigger
associated actions at some interval. For our evaluations we used
a simple rate which runs actions every T seconds, but more
sophisticated rates could be implemented to enable the creation
of more realistic control workloads. For example, given a set
of cluster traces that logged when different operations were
executed, a rate could be implemented that reads those traces and
generates a control workload mimicking their specific operating
conditions. Actions and rates are deliberately decoupled, so that

these more sophisticated rates can be developed independently
from CNSBench and then plugged in later.
I/O workload. Often, a benchmark’s goal is to understand
how a particular workload or set of workloads will perform
under various conditions. The role of CNSBench’s I/O workload
component is to either instantiate those workloads or to
instantiate a synthetic workload with the same I/O characteristics
of a real workload. Specifying these I/O workloads requires
defining all of the different resources (e.g., Pods and PVCs) that
must be created in order to run the I/O workload. This can be
difficult and make benchmark specifications long and complex.

To ease the burden on users and to help them focus on the over-
all benchmark specification, rather than the specific details of the
I/O workload, CNSBench separates the I/O workload specifica-
tion from the rest of the benchmark specification. The I/O work-
load specification is defined using a ConfigMap—a core Kuber-
netes resource for storing configuration files and other free-form
text. These files contain the specifications for the Pods that will
run the I/O workloads, as well as specifications for supporting re-
sources such as PVCs. In addition, they use metadata annotations
to specify information such as what output files should be col-
lected and what parsers should be used to process them. Since the
specification uses a core Kubernetes resource, it can be accessed
using standard Kubernetes tools from anywhere in the cluster.

Users specify which I/O workloads to run in a Benchmark
custom resource using a create resource action that references
(by name) the I/O workload to create. To enable reuse across
various use cases and benchmarks, fields in an I/O workload
specification can be parameterized and given a value when the
workload is instantiated by a specific benchmark.

We are building out an open source Workload Library, avail-
able at https://github.com/CNSBench/workload-library, which offers
pre-packaged I/O workloads including fio [15], Filebench [60],
pgbench [32], YCSB [46], and RocksDB’s db bench [48].Ideally,
most users will be able to find a suitable I/O workload in the
library and hence, do not need to define their own. We hope that
community members will contribute the I/O workloads that they
develop to this library as well.
Control and data operations. In some cases control and I/O
operations can be intertwined. For example, an increase in I/O
operations can cause a workload to scale out, which in turn can
execute more control operations. Reproducing such events with
CNSBench would require a feedback mechanism that conveys
to CNSBench information about the I/O operations executed by
the I/O workloads. CNSBench’s design and implementation do
not preclude such mechanism but we leave its implementation
to future work.
Benchmark output. Many of the results of a CNSBench
benchmark will be generated by the I/O workload Pods. Col-
lecting this output presents three challenges. First, Kubernetes
currently lacks the ability to extract files from Pods in a clean and
generic manner [19]. Second, the output produced by some tools
can be large, especially for long-running processes that produce
output throughout the run. Third, in our experience, many I/O

USENIX Association 19th USENIX Conference on File and Storage Technologies 267

1 kind : Benchmark
2 metadata :
3 name : f i o−benchmark
4 spec :
5 ac t ions :
6 − name : f i o D
7 createObjSpec :
8 workload : f i o A
9 count : 3

10 vars :
11 storageClass : obs−r1 C
12 outputs :
13 outputName : es
14 − name : snapshots
15 rateName : minuteRate
16 snapshotSpec :
17 actionName : f i o D
18 snapshotClass : obs−cs i
19 ra tes :
20 − name : minuteRate
21 constantRateSpec :
22 i n t e r v a l : 60s
23 outputs :
24 − name : es
25 httpPostSpec :
26 u r l : h t t p : / / es :9200/ f i o / doc /

Listing 1: Sample Benchmark Custom Resource Specification

workloads produce output as unstructured text. This can make
it difficult to analyze the results using tools such as Kibana [20],
especially if the benchmark consists of multiple I/O workloads
that all report results in a different unstructured output formats.

To address these issues, we allow I/O workload authors to spec-
ify which files should be collected from the workload Pods and
to provide a parser script to process the output. Parsing the output
allows large files to be reduced to a more succinct size and to
output results in a standard fashion. The output files are collected
and parsed using a helper container, described in more detail in
Section 4.2. Parsers for common I/O benchmarking tools can be
included in the Workload Library, either packaged with the tool’s
workload specification or as a standalone entry. For instance, we
include parsers for fio and YCSB in the Workload Library.

The user specifies where the final, parsed results should be
sent to in the output section of the Benchmark custom resource.
Results do not all need to be sent to the same output. For
instance, a benchmark with both fio and YCSB I/O workloads
could send the fio results to one location and the YCSB results
to another. The benchmark metadata, including the Benchmark
resource specification and the start and end times, can be sent
to an output as well.Currently CNSBench supports sending the
results to a collection server via an HTTP POST request to a
user-specified URL. Support for additional kinds of output, such
as simply writing the output to a file, can be easily added.

In addition to workload output, it is also important to collect
metrics such as Pod or Node resource utilization during a
benchmark run. We defer the collection of these metrics to any
of the many tools that are commonly used to collect such metrics
in a Kubernetes cluster [38].

1 kind : ConfigMap
2 metadata :
3 name : f i o A
4 spec :
5 data :
6 pod . yaml : | B
7 . . .
8 pvc . yaml : | B
9 . . .

10 storageClass : {{ storageClass }} C
11 . . .

Listing 2: Sample I/O workload specification

Local
Disk

PV
fio

OpenEBS
Storage
Provider

Storage Class
Name: obs-r1
Storage Provider: OpenEBS
Volume Replicas: 1
Filesystem: ext4

Snapshot
Source: vol
Class: obs-csi
Label: action=snapshots

PVC
Name: vol
Storage Class: obs-r1
Size: 10 Gi
Label: action=fio

I/O Workload
Name: fio
Pod: ...
PVC: ...

Benchmark
Actions: …
Rates: …
Outputs: ... D

B

B

E

E

Worker Node

C

C

Figure 3: Subset of a Kubernetes cluster with a single worker
node and a PV. Shows the CNSBench resources that are
involved (the I/O Workload and Benchmark), as well as the
core Kubernetes resources created by the CNSBench controller
according to the Benchmark specification (the Snapshots, PVCs,
PV, and workload Pods).

Example. An example Benchmark custom resource is shown
in Listing 1 and an example of an I/O workload specification
is shown in Listing 2. Due to space constraints, many of the
details of the I/O workload specification are omitted. Figure 3
shows the Kubernetes resources that are created as a result of
this Benchmark specification.

Lines 6–13 of Listing 1 specify the benchmark’s I/O workload.
Line 8 references the name of the I/O workload that should be
run, labeled A in both listings. Lines 6–11 of Listing 2 specify
the resources that make up the I/O workload. These correspond
to the Pods and PVCs in Figure 3 labeled B .

I/O workload specifications can be parameterized to enable
their reuse across different use cases and benchmarks. An
example of this is on line 10 of Listing 2, where the PVC’s
Storage Class field is parameterized. Label C in the two
listings and in Figure 3 shows how this parameter is set in the
Benchmark custom resource specification (line 11 in Listing 1),
and then how that value is used in the workload’s PVCs.

Lines 14-18 of Listing 1 specify a snapshot volume action.
In Kubernetes, volume snapshots are created using a Snapshot

268 19th USENIX Conference on File and Storage Technologies USENIX Association

resource which references a PVC to use as the source of the
snapshot. The user indicates which action’s PVCs should be
snapshotted by referencing the target action by name (line 17
of Listing 1). Since all resources created by an action are labeled
with that action’s name, the controller can map an action name
to a set of PVCs (label D). These PVCs are then used as the
source in the Snapshot resource (label E). Additional examples
can be found at https://github.com/CNSBench/CNSBench .

4.2 Benchmark Controller
The Benchmark Controller watches for newly created Bench-
mark objects and runs their specified actions. The controller
has three main responsibilities: (1) triggering control operations;
(2) synchronizing the individual benchmark workloads; and
(3) collecting the output of the individual workloads.
Triggering control operations. When a new Benchmark
resource is created, the Controller starts two goroutines (Go’s
equivalent of a thread) for each of the specified rates: one is re-
sponsible for generating the rate, and the other is responsible for
running all of the actions using that rate. The rate goroutine uses a
shared channel to tell the executor goroutine when it is time to run
an action. As described in Section 4.1, decoupling the rates from
the actions simplifies adding new kinds of rates or actions later.

Actions not tied to any rate are run by the controller as soon
as the Benchmark resource is created. This is often how I/O
workloads are instantiated, since they often use a long running
process that generates I/O throughout the benchmark’s duration.
Synchronizing workloads. In many cases, I/O workloads
require an initialization step such as loading data into a database
or creating a working set of files. When there are multiple I/O
workloads being run, some workloads can finish their initializa-
tion step faster than others and begin running their main workload
earlier. This can cause misleading and inconsistent results. If
the purpose of the benchmark is to evaluate a storage provider’s
performance under the concurrent load of ten read-heavy I/O
workloads, then all ten should start at the same time.

To synchronize the I/O workloads, CNSBench leverages
Kubernetes’ initialization containers feature. Pods have a list
of initialization containers which are executed in order, each one
running to completion before the next one starts. The Pod’s main
containers do not run until all of the initialization containers have
completed. CNSBench assumes that a workload’s initialization
step has been put into an initialization container, which is
the responsibility of the I/O workload’s author. Although
this is usually a straightforward task, it is an example of why
separating the I/O workload specifications from the rest of the
Benchmark specifications is useful: it allows users to select
existing workloads from the Workload Library and not worry
about how their workload’s initialization is implemented.

When the Benchmark controller instantiates the I/O work-
loads, it adds an additional synchronization container at the end
of the list of initialization containers. This container runs a script
that queries the Kubernetes API server for the status of each
instance of the I/O workload and checks to see if all of their

initialization containers have completed (all except for the other
synchronization containers). Once all of the non-synchronization
initialization containers have completed, the script exits and the
synchronization containers stop successfully, allowing Kuber-
netes to run each Pods’ main container. Since all instances of
the I/O workload have this synchronization container added,
all instances begin running their main containers simultaneously.
Many workloads support running for a set amount of time, so syn-
chronizing the finish of each workload is generally not an issue.
Output and metrics collection. As described in Section 4.1,
I/O workload authors can specify which files to extract from
a workload’s Pods and provide a script to parse those files.
Extracting these files from the workload Pods is difficult since
there is no standard interface for doing so [19]. The approach
used by the official Kubernetes command-line client kubectl

involves running the tar utility inside the target container, and
does not work after the container has finished running [21].

To work around these difficulties, the controller modifies
the workload Pod to add both a helper container responsible
for running the parser script, and also a volume mounted by
both the helper and workload containers. The I/O workload
author must ensure that the workload’s output is written to this
volume, which will be mounted at /output. Similar to how the
synchronization container works, the helper container queries the
Kubernetes API server to find out when the workload container
has finished; thereafter, the output is ready to be parsed.

5 Evaluation
To demonstrate both the need for and the utility of CNSBench,
we ran several benchmarks to look at different aspects of cloud
native storage performance. We examine the performance
of individual control operations, the impact that control
operations have on I/O workloads, and the impact that different
combinations of I/O workloads can have on overall performance.

5.1 Methodology
To evaluate our benchmark, we instantiated an 11-node Kuber-
netes v1.18.6cluster in an on-premises OpenStack environment:
one control plane node and 10 workers. Each worker node is
a virtual machine with 4 vCPUs, 8GB of RAM, and 384GB of
locally attached storage. The control plane node is a VM with
4 vCPUs, 12GB of RAM, and 100GB of local storage. The VM
hosts were located in multiple racks, with racks connected via
a 10Gbps network and individual hosts connected to the top of
rack switch via 1Gbps links.

We used two storage providers: OpenEBS and Ceph. Our re-
quirements for the storage systems were that they be open-source,
free, and not based on cloud-as-a-service model—so we could
install and test them locally, and to enable more repeatable results.
Additionally, they had to have a CSI driver. These requirements
eliminated many existing storage systems. Out of the remaining
options, we selected Ceph and OpenEBS due to their popularity.

OpenEBS [28] is a new storage provider built specifically to
be cloud native. OpenEBS uses the Container Attached Storage

USENIX Association 19th USENIX Conference on File and Storage Technologies 269

paradigm [8], where controllers that provision volumes and man-
age features such as data replication, themselves run in containers.
This provides storage with all of the advantages of the cloud na-
tive methodology, such as agility and flexibility. It also enables
the storage to be managed like any other resource in a cloud native
cluster. We used OpenEBS’s cStor storage engine version 2.0.0.

Ceph [64] is a widely used file storage system that is built on
top of the RADOS object store [65]. We used the Rook operator
for Ceph [35], which handles the deployment and management
of a Ceph cluster. The Rook management layer allows Ceph to
be managed in a cloud native fashion, using Kubernetes objects
and standard Kubernetes management tools. We used Rook
version 1.4.1 and Ceph version 15.2.4, with Ceph’s BlueStore
storage backend.

Both Ceph and OpenEBS provide storage by aggregating
the local storage attached to each cluster node. Volumes are
provisioned from this combined storage pool and are formatted
with Ext4 prior to being attached to a Pod. Ceph and OpenEBS
both come with CSI drivers that interface with Kubernetes.

Both OpenEBS and Ceph also offer volume replication
for high availability use cases. With volume replication, data
written to a volume by a Pod is transparently copied across
several volume replicas, which are ideally situated in different
availability zones. This enables the cluster to tolerate the loss of
one or more hosts—depending on the replication factor—without
suffering any data loss. The trade-off is that volume replication
often comes at a cost of increased I/O latencies and an increase
in network and disk utilization.

Ceph has an additional high availability mechanism using
erasure coding, which encodes data into chunks using a forward
error-correction code and then replicates those chunks. The use
of a forward error-correction code means that fewer replicas are
needed to provide the same availability guarantees, and hence
less disk space is needed overall. However, erasure coding uses
more CPU and RAM than basic data replication.

In our experiments, we use Ceph and OpenEBS in three
ways: without replication, in triple-replication mode, and Ceph
(only) in erasure-coded mode (ec). In addition to Ceph and
OpenEBS, in some evaluations we used a null storage provider
that implements the CSI functions involved in provisioning and
attaching volumes. The null driver simply returns success to
most CSI functions without performing actual work. The null
driver does, however, maintain a list of provisioned volumes
so the ListVolumes CSI function returns an accurate result. We
use the null driver as a baseline to show the maximum possible
performance of the underlying Kubernetes cluster.

Each evaluation was conducted five times and unless
otherwise noted has a standard deviation of less than 20%.

5.2 Performance of Control Operations
In Section 3.1 we described the importance of control operations
in cloud native workflows. In this section, we demonstrate how
the performance of these operations can vary across different
storage providers and configurations. We looked at two common

storage control operations: volume provisioning and attaching.
Our goal was to time how long it took each storage provider

configuration to provision a volume and attach that volume to
a Pod. To do so, we timed how long it took to create and run
new Pods that were attached to volumes. The time to create and
run a Pod with an attached volume includes the time taken by
the storage provider to provision and then attach that volume.
Any additional overhead related to running the Pod is constant
across storage configurations.

We ran this test with 1, 10, 20, 30, 40, 50, 60, and 70 parallel
Pod creations. Each test ran for five minutes, where we main-
tained a fixed parallelism levelN by starting a new Pod whenever
one Pod was created; there were always N Pods in the process
of being created. The workload run by each Pod simply exited
immediately, so Pods finished running as soon as they started.

We repeated each run five times. Figure 4 shows CDFs for
Pod start time across all of the Pods created during each of the
five runs, for six storage provider configurations. We show CDFs
only for three degrees of parallelism (1, 30, and 70) because the
CDFs for the intermediate parallelism values follow the trends
that are visible from these three. Figure 5 shows the overall
volume creation and attachment rate per minute for different
parallelism levels. These rates are averaged across each of the
five runs and had a standard deviation under 11% of the mean,
except for OpenEBS which had standard deviations of up to 30%
of the mean. This higher standard deviation can be attributed to
the polling architecture which is used throughout Kubernetes and
OpenEBS [29], which causes some actions to take sometimes
significantly different amounts of time depending on which side
of the poll the resource becomes available.

As expected, Pod creation is fastest with the null storage
provider. The storage provider configurations with no replication
are slightly faster than their replicated counterparts. This is
also expected, since volumes with replication require additional
resources to be allocated during provisioning.

As the number of simultaneous Pod creations increases, we no-
ticed that subsets of Pods took an increasingly long time to start
(see Figure 5). Eventually, each of the six storage configurations
reached a point where its Pod creation rate plateaus. Note that
Pod creation goes through three states: initially it is in a “Pending”
state before it can be assigned to a Node. Once the Kubernetes
scheduler has assigned the Pod a Node to run on, it moves it to
a “Creating” state where container images are downloaded and
volumes are mounted. Then, the Pod enters the “Running” state.

As an initial investigation, we counted how many Pods were
in each state to identify the bottleneck. We observed that for
the null storage provider and the three Ceph configurations, the
rate that Pods moved from “Pending” to “Creating” and then
from “Creating” to “Running” equalizes when the number of
simultaneous Pod creations reaches around 50. At this point,
increasing the number of simultaneous Pod creations only
increased the number of Pods in the “Pending” state, and did
not increase the overall Pod creation rate.

The situation is different for the two OpenEBS configurations.

270 19th USENIX Conference on File and Storage Technologies USENIX Association

0

1

0

1

C
D

F

0 50 100 150 200 250 300 350

time (s)

0

1

n
=

1
n

=
30

n
=

70

OpenEBS no replication

OpenEBS three replicas

Null driver

Ceph three replicas

Ceph no replication

Ceph erasure coding

Figure 4: CDFs of time required to create and attach volumes for different storage provider configurations. n is the number of
simultaneous volume creations. For all storage configurations, increasing the number of simultaneous volume operations increased
the average time to create and attach an individual volume.

0 10 20 30 40 50 60 70

Simultaneous Pod Creations

0

100

200

300

400

P
o

ds
/m

in
ut

e

OpenEBS no replication

OpenEBS three replicas

Null driver

Ceph three replicas

Ceph no replication

Ceph erasure coding

Figure 5: Volume creations and attachments per minute, for
different numbers of simultaneous operations. The vertical lines
at each point shows the standard deviation for volume creation
and attachment rate at that point.

As shown in Figure 5, these configurations plateau at a lower
rate of around 30 simultaneous Pod creations. When observing
the Pod transitions for these configurations, we saw that the
rate at which Pods moved from “Creating” to “Running” was
low compared to the rate that Pods moved from “Pending” to
“Creating” resulting in all Pods being in either “Creating” or
“Running” states throughout the test. The Pods in the “Creating”
state were all waiting for OpenEBS to finish provisioning and
attaching a volume for the Pod. So, increasing the number of
simultaneous Pod creations did not increase the overall Pod
creation rate, since that rate was limited by how fast OpenEBS
was able to provision and attach volumes.

From these experiments we see that although all three storage
providers have scalability limits in terms of how many simultane-

ous Pod creations they support, the source of their limits appear
to be different. Whereas the null storage provider and Ceph are
limited by the scheduling stage of Pod creation, OpenEBS is
limited by its own volume creation and attachment rate.

Overall, the experiment shows that there can be significant
differences in the performance of control operations across
different storage providers and configurations. This highlights
the need to systematically benchmark these kinds of operations
to understand their bottlenecks and improve upon them.
Conducting this experiment without CNSBench would require
starting different numbers of Pods using a tool such as kubectl.
Whenever a Pod finishes being created, a new one needs to be
started, which would be cumbersome to coordinate manually.

5.3 Impacts on I/O Workloads
In this section, we demonstrate the impact that control operations,
in particular snapshotting a volume, can have on the I/O
workload that uses the volume. As described in Section 3.1,
control operations are executed far more often in cloud native
environments than they are elsewhere. Snapshotting is especially
common and users take frequent snapshots of their volumes for
a number of reasons: periodically, during a long running task
to checkpoint progress, prior to making some significant change
so rollback to a known good point is possible, or to protect
themselves against attacks such as ransomware.

Although previously these operations were executed too
infrequently to have a noticeable effect on an I/O workload,
this is no longer guaranteed to be the case in cloud native
environments. Due to differences in the design and architecture
of different storage providers, the degree to which these control
operations impact an I/O workload can vary significantly.

USENIX Association 19th USENIX Conference on File and Storage Technologies 271

Ceph
r=0

Ceph
r=3

Ceph
r=ec

OBS
r=0

OBS
r=3

0

200

400

T
h

ro
u

gh
p

u
t

(o
p

s/
se

c)

No snapshots Snapshots

Figure 6: Effect of snapshotting on I/O workload. r=0 indicates
zero volume replicas, r=3 indicates three volume replicas, and
r=ec indicates erasure coding.

To evaluate the impact of snapshotting operations, we used
CNSBench to run three instances of MongoDB [26] with ten
clients each. The clients ran YCSB Workload A [46] (consisting
of a mix of reads and updates) for twenty minutes to reach
steady state; the volumes holding the MongoDB databases were
snapshotted every thirty seconds.

Figure 6 shows the per-client throughput in terms of operations
per second for five storage provider configurations, with and
without snapshotting. The throughput values are averaged across
all thirty YCSB clients.

Overall the results show that snapshotting reduces the
throughput across all configurations. The decrease in throughput
is more noticeable for OpenEBS (27% and 38% for zero and
three volume replica configurations, respectively) than for Ceph
(up to 22% for three volume replicas but as low as 5% and 6% for
erasure coding and zero replication configurations, respectively).
We found that although the average throughput decreased with
snapshotting across all OpenEBS YCSB clients, the decrease
was more pronounced for some clients than others. For those
clients, we observed that the maximum latency reported by
YCSB was much higher than the average maximum latency. In
addition, these clients reported extended periods (30+ seconds)
when zero operations were executed. During these periods with
zero operations, the Mongo database reported that some queries
were taking a long time to be processed.

One possible explanation is the fact that OpenEBS quiesces
and suspends I/O while a snapshot operation is in progress [30].
During that time, any writes issued by Mongo cannot complete.
Some of these periods of suspended I/O lasted several seconds,
which could explain the periods when no operations could be
executed by the clients and the reduction in overall throughput.
We analyzed the distribution of throughputs for all clients and
found a long tail with many clients timing out after several
quiescing periods, then retrying.

Ceph does not quiesce [6] I/O during a snapshot and we
did not observe the same spikes in maximum latency that we
observed with OpenEBS. We did observe some of the same
periods with zero completed operations that we saw with
OpenEBS, and also observed the same complaints of slow
queries from the Mongo logs. One possible explanation is that

0 200 400 600 800 1000

Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F

OpenEBS no replication

OpenEBS three replicas

Ceph three replicas

Ceph no replication

Ceph erasure coding

Figure 7: CDF of snapshot creation times for different storage
provider configurations.

there was an increased load on Ceph: with snapshots, around
four times as many objects were created in the underlying
RADOS object pools compared to no snapshotting.

To create a new snapshot in Kubernetes, users create a
Snapshot resource. This resource is created immediately.
However, the underlying snapshot is not necessarily ready right
away. Figure 7 shows a CDF of how long it took after creating
a new Snapshot resource until the storage provider reported that
the snapshot was actually ready to be used.

Both Ceph and OpenEBS implement copy-on-write snapshots,
so it is expected that for most storage configurations, snapshots
became available nearly as fast as the Snapshot resources
were created. However, some configurations exhibited a long
tail where snapshots took several minutes to become ready.
For example, although the median time to become ready for
snapshots on OpenEBS with three volume replicas was 12
seconds, 10% took longer than 310 seconds and 5% took
longer than 702 seconds. The interface between Kubernetes
and the storage provider’s CSI driver is the Kubernetes Snapshot
Controller [39]. When we analyzed the logs for this container,
we found that the CreateSnapshot CSI calls for some snapshots
were timing out due to slow I/O on the underlying disks used
by the storage provider. For some unlucky snapshot instances
the CreateSnapshot call would repeatedly timeout, resulting
in snapshot creation times of several minutes. One interesting
observation was that even when the Snapshot Controller aborted
its CreateSnapshot call (due to the timeout), the storage provider
would still finish creating a snapshot. However, the Kubernetes
Snapshot Controller had already timed out, thus missing the
successful response from the storage provider.

Running this experiment without CNSBench would require
specifying and creating each of the resources required to run
MongoDB and YCSB (Pods, PVCs, Services, etc.). Then, while
YCSB ran, the user would need to create snapshots of each of
the volumes being used by specifying the snapshot resources
in YAML and instantiating the resources with a tool such as
kubectl.

5.4 Orchestration
One of the core CNSBench capabilities is to make it easy to
run various mixes of I/O workloads. This is needed since the
alternative, to manually choose and assemble workloads together

272 19th USENIX Conference on File and Storage Technologies USENIX Association

Ceph
r=0

Ceph
r=3

Ceph
r=ec

OBS
r=0

OBS
r=3

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

P
er

fo
rm

an
ce

ch
an

ge
fr

om
b

as
el

in
e

5 pgbench, 10 MEGAHIT, 10 fio

Ceph
r=0

Ceph
r=3

Ceph
r=ec

OBS
r=0

OBS
r=3

−0.2

0.0

0.2

0.4

0.6

0.8

10 pgbench, 5 MEGAHIT, 10 fio

Ceph
r=0

Ceph
r=3

Ceph
r=ec

OBS
r=0

OBS
r=3

0

2

4

6

8

10

12

10 pgbench, 10 MEGAHIT, 5 fio

pgbench

MEGAHIT

fio

Figure 8: Change in performance compared to baseline, for three different ratios of I/O workload on five different storage configurations.

to form a representative combined workload, is infeasible due
to the diversity of workloads in cloud native environments.

One potential use case for this task is to determine which
storage configuration is best suited for a particular set of
workloads. Another might be to help influence scheduling
decisions, such as which workloads to run simultaneously.

To demonstrate CNSBench’s orchestration capabilities,
we ran multiple instances of three different workloads:
(1) MEGAHIT [53], a bioinformatics tool that processes genetic
data; (2) fio [15] for generating an intense I/O workload of
mixed random reads and writes; and (3) the PostgreSQL [34]
database with a workload generated using its benchmark tool
pgbench [32]. Each instance of the PostgreSQL workload ran a
distinct pair of database and client. Out of each of the workloads,
fio was the most I/O intensive, followed by pgbench. Both fio
and pgbench spent most of their time waiting for I/O, whereas
MEGAHIT was mostly CPU bound.

We tested four different workload mixes: a baseline with
ten independent instances of each workload, and then three
additional mixes with ten instances of two of the workloads and
five of the third. For MEGAHIT and fio we measured the total
time to run a fixed load; for pgbench we measured the average
throughput after running for ten minutes. This was necessary
since the different storage provider configurations performed
significantly different, so it would be impractical to evaluate
using a fixed amount of work.

Figure 8 shows the changes in runtime and throughput,
normalized to the baseline values, for different workload mixes
and storage providers. The baseline throughputs for pgbench are
5.2, 0.37, 0.38, 85, and 16 operations per second for Ceph (no
volume replication), Ceph (three volume replicas), Ceph (erasure
coding), OpenEBS (no volume replication), and OpenEBS (three
volume replicas), respectively. MEGAHIT had baseline runtimes
of 309, 910, 609, 185, and 324 seconds, and fio had baseline
runtimes of 427, 816, 699, 923, and 2478 seconds, respectively.

The largest increase in performance of 3.2× is for pgbench
when the number of fio instances is reduced. This makes sense:
the Ceph storage configurations shows the largest increase in
pgbench performance, since pgbench’s baseline performance
on Ceph is much worse than on OpenEBS so there is a larger
potential for improvement. Also, pgbench and fio are both

Benchmark Lines
Volume creation and attachment § 5.2 19
YCSB and MongoDB, no snapshots § 5.3 35
YCSB and MongoDB, with snapshots § 5.3 54
Multiple workloads § 5.4 72–117

Table 1: Number of lines needed to specify CNSBench
benchmarks used during evaluation.

I/O-intense workloads, i.e., reducing the number of fio instances
would help pgbench, but not MEGAHIT.

The workload that had the overall smallest impact on
performance is MEGAHIT. This is also expected as fio and
pgbench are mainly I/O bound while MEGAHIT is mainly CPU
bound and hence reducing the number of MEGAHIT instances
does not free up significant I/O resources.

These results demonstrate the variability in storage provider
performance, and the utility of being able to easily compose and
run diverse sets of workloads at various mixes. Conducting this
experiment on Kubernetes without CNSBench would require
creating all of the resources required for a workload (PVCs,
Pods, Services, etc.) manually, for example by specifying them
in YAML and passing the YAML to a tool such as kubectl.
To run multiple instances of a workload, the user would need
to specify multiple copies of each resource, making sure to give
each copy a unique name and updating references to resources
accordingly. This would need to be repeated for each workloads
mix being evaluated. Synchronizing the start of each workload
would need to be done manually. For example, to synchronize
the start of multiple MongoDB+YCSB workloads the user
would need to first start each MongoDB database pod, then wait
for the databases to be initialized, and then run each instance
of their YCSB benchmark.

5.5 Benchmark Usability
Requirement 4 in Section 3.2 states that CNSBench should
be easy for users to configure and run. Although usability is
often subjective, one metric that can be used to estimate ease of
use is the number of lines necessary for specifying a workload.
Table 1 shows the number of lines needed to specify each of the
benchmarks used in this evaluation section.

Overall a user can specify the complex, distributed, and diverse
workloads in just 19–117 lines of configuration. The workloads

USENIX Association 19th USENIX Conference on File and Storage Technologies 273

used in Section 5.4 require slightly longer specifications as they
contain multiple instances of the same sub-workload, which
currently results in duplication in the CNSBench’s benchmark
specification. We plan to eliminate such repetitions in the future
to make using CNSBench even simpler.

6 Related Work
Classic storage benchmarks. Storage benchmarking is an old
and complex topic with many applicable techniques and intricate
nuances [59]. Therefore, it is not surprising that the array of
tools for benchmarking and corresponding studies is extensive.
Filebench [60], fio [15], SPEC SFS [36], and IOZone [45] are
just a few examples of popular file system benchmarks. For a
comprehensive survey of file system and storage benchmarks
we refer the reader to a study by Traeger et al. [63].

The majority of such benchmarks generate a single, stationary
workload per run, which is not representative of cloud native
environments. Few benchmarks have built-in mechanisms to dy-
namically increase the load, in order to discover the peak through-
put where diminishing returns (e.g., due to thrashing) begin to
take over. For example, measuring NFS throughput via SPEC
SFS [58] and process scheduling throughput using AIM7 [61].

Filebench [42, 60] comes with several canned configura-
tions [56] and even has its own Workload Modeling Language
(WML) [66]. It, however, is not distributed (cannot run in a
coordinated manner across multiple containers) and, though
WML is flexible for encoding stationary workloads, is still
limited in creating dynamically changing workloads. In our
experience, adding support for distributed and temporally varying
workloads to Filebench’s WML is a difficult task. Therefore,
in CNSBench, we exploited the orchestration capabilities
of cloud native environments and delegated these tasks to a
higher level (i.e., the CNSBench controller and the Kubernetes
orchestrator itself). This further allowed us to support any
existing benchmarks as canned I/O generators.

RocksDB [48] is a popular key-value store with canned,
preconfigured workloads using a db bench driver to create
random/sequential reads/writes and mixes thereof. One can run
these workloads in any order and configure their working-set
size. However, that is still a manual process with little flexibility,
and no support for control operations (which is true for the
previously mentioned benchmarks as well).
Object storage benchmarks. In recent years the need to
test the performance of cloud storage has motivated academia
and industry to develop several micro-benchmarks for that
task such as YCSB [46] and COSBench [67]. YCSB is an
extensible workload generator that evaluates the performance of
different cloud-serving key-value stores. COSBench measures
the performance of cloud object storage services and comes with
plugins for different cloud providers. Unlike these benchmarks,
CNSBench focuses on workloads that run in containers and
require a file system interface.
Cloud native benchmarks. TailBench [50] provides a set of
interactive macro-benchmarks: web servers, databases for speech

recognition, and machine translation systems to be executed in the
cloud. Similarly, DeathStarBench [49] is a benchmark suite for
microservices and their hardware-software implications for cloud
and edge systems. Both TailBench and DeathStarBench target
cloud applications and are not explicitly storage benchmarks.

7 Conclusion
Although measuring storage performance was always an
important topic, its relevance has escalated in recent years due to
the increased demand to reliably move containerized applications
across clouds. Furthermore, I/O patterns of applications have
evolved, exhibiting higher density, diversity, dynamicity, and
specialization than before. Perhaps most importantly, storage
services now experience a high rate of control operations (e.g.,
volume creation, formatting, snapshotting), which directly impact
the performance of applications that call them and indirectly
influence the I/O of other applications in a cluster. Existing
storage benchmarks, however, are not able to model these new
cloud native scenarios and workloads holistically and faithfully.

In this paper we presented the design of CNSBench—a
storage benchmarking framework that containerizes legacy I/O
benchmarks, orchestrates their concurrent runs, and concurrently
generates a stream of control operations. CNSBench is easy
to configure and run, while still being versatile enough to
express a high variety of real-world cloud native workloads.
We used CNSBench to evaluate two cloud native storage
backends—OpenEBS and Ceph—and found several differences.
For example, our evaluation shows that the maximum rate of
control operations varies significantly across storage technologies
and configurations by a factor of up to 8.5×.
Future work. We plan to work on extending the library of I/O
workloads with I/O “kernels” that represent microservices, and
also improve the benchmark specification language to make the
syntax more concise and avoid having to duplicate sub-workloads.
Further, we will work on collecting I/O and control operation
traces from production environments, analyze them, and create
corresponding profiles for CNSBench. Our longer term plans
including finding and fixing performance bugs using CNSBench,
and even developing our own efficient storage solution.

We hope our benchmark will be adopted by storage and cloud
native communities, and look forward to contributions.

8 Acknowledgments
We thank the USENIX FAST anonymous reviewers and our
shepherd Xiaosong Ma for their helpful feedback. We also thank
Mike Ferdman for the use of his OpenStack cluster. This work
was made possible in part thanks to Dell-EMC, NetApp, and
IBM support; and NSF awards CCF-1918225, CNS-1900706,
CNS-1729939, and CNS-1730726.

References
[1] Amazon Web Services (AWS). https://aws.amazon.com/ .

[2] Bloomberg: An early adopter’s success with Kubernetes at
scale. https://www.cncf.io/case-studies/bloomberg/ .

274 19th USENIX Conference on File and Storage Technologies USENIX Association

[3] Building Applications with Serverless Architectures. https://
aws.amazon.com/lambda/serverless-architectures-learn-more/ .

[4] Building large clusters. https://kubernetes.io/docs/setup/
best-practices/cluster-large/ .

[5] Ceph. https://ceph.io/ .

[6] Ceph Snapshots. https://docs.ceph.com/en/latest/rbd/
rbd-snapshot/ .

[7] Cloud Native Computing Foundation. https://www.cncf.io/ .

[8] Container Attached Storage is Cloud Native Stor-
age (CAS). https://www.cncf.io/blog/2020/09/22/
container-attached-storage-is-cloud-native-storage-cas/ .

[9] Container Storage Interface (CSI) Specification.
https://bit.ly/3bqQX4b .

[10] Containerization. https://www.ibm.com/cloud/learn/
containerization.

[11] Docker. https://docker.com/ .

[12] Docker Hub. https://hub.docker.com/ .

[13] Dynamic Provisioning and Storage Classes in Kubernetes.
https://bit.ly/2Uh3Qbw.

[14] Ephemeral volumes. https://kubernetes.io/docs/concepts/
storage/ephemeral-volumes/ .

[15] fio. https://github.com/axboe/fio.

[16] Going Cloud Native: 6 essential things you need
to know. https://www.weave.works/technologies/
going-cloud-native-6-essential-things-you-need-to-know/ .

[17] Google Cloud. https://cloud.google.com/ .

[18] IBM Cloud. https://www.ibm.com/cloud .

[19] Improve kubectl cp, so it doesn’t require the
tar binary in the container #58512. https:
//github.com/kubernetes/kubernetes/issues/58512 .

[20] Kibana. https://www.elastic.co/kibana.

[21] kubectl cp to work on stopped/completed pods #454.
https://github.com/kubernetes/kubectl/ issues/454 .

[22] Kubernetes. https://kubernetes.io/ .

[23] Kubernetes Object Management. https://kubernetes.io/docs/
concepts/overview/working-with-objects/object-management/ .

[24] Kubernetes Storage. https://kubernetes.io/docs/concepts/
storage/ .

[25] Microsoft Azure. https://azure.microsoft.com/ .

[26] MongoDB. https://www.mongodb.com/ .

[27] News UK Keeps New Content and Capabili-
ties Coming Fast with Amazon EKS and New
Relic. https://blog.newrelic.com/product-news/
news-uk-content-capabilities-amazon-eks-new-relic/ .

[28] OpenEBS. https://openebs.io/ .

[29] OpenEBS cStor CSI driver. https://github.com/openebs/
cstor-csi/blob/master/pkg/driver/controller utils.go#L243 .

[30] OpenEBS replication.c. https://github.com/openebs/istgt/
blob/replication/src/replication.c\#L1958 .

[31] Operator pattern. https://kubernetes.io/docs/concepts/
extend-kubernetes/operator/ .

[32] pgbench. https://www.postgresql.org/docs/10/pgbench.html .

[33] Portworx Kubernetes Snapshots and Backups.
https://docs.portworx.com/portworx-install-with-kubernetes/
storage-operations/kubernetes-storage-101/snapshots/ .

[34] PostgreSQL. https://www.postgresql.org/ .

[35] Rook. https://rook.io/ .

[36] SPEC SFS 2014.
https://www.spec.org/sfs2014/ .

[37] Sysdig 2019 Container Usage Report. https:
//sysdig.com/blog/sysdig-2019-container-usage-report/ .

[38] Tools for monitoring resources. https://kubernetes.io/docs/
tasks/debug-application-cluster/resource-usage-monitoring/ .

[39] Volume Snapshot & Restore - Kubernetes CSI Developer
Documentation. https://kubernetes-csi.github.io/docs/
snapshot-restore-feature.html .

[40] What is a Container? https://www.docker.com/resources/
what-container.

[41] A hybrid and multicloud strategy for system administrator.
Technical Report #F21608 0220, Red Hat, 2020.

[42] George Amvrosiadis and Vasily Tarasov. Filebench github
repository, 2016. https://github.com/filebench/filebench/wiki .

[43] Andrew Bartels, Dave Bartolett, John Rymer, Matthew
Guarini, Charlie Dai, and Alyssa Danilow. The public
cloud market outlook, 2019 to 2022: Public cloud growth
continues to power tech spending. Technical report,
Forrester, July 2019.

[44] David Bernstein. Containers and cloud: From lxc to docker
to kubernetes. IEEE Cloud Computing, 1(3):81–84, 2014.

[45] Don Capps and Tom McNeal. Analyzing NSF client
performance with IOzone. NFS Industry Conference, 2002.

[46] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC), 2010.

[47] Paul Dix. Benchmarking LevelDB vs. RocksDB vs.
HyperLevelDB vs. LMDB Performance for InfluxDB.
https://bit.ly/365KSL2 , 2014.

[48] Facebook. RocksDB. https://rocksdb.org/ , September 2019.

[49] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An Open-source

USENIX Association 19th USENIX Conference on File and Storage Technologies 275

Benchmark Suite for Microservices and their Hardware-
software Implications for Cloud & Edge Systems. In
Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019.

[50] Harshad Kasture and Daniel Sanchez. TailBench: A
Benchmark Suite and Evaluation Methodology for Latency-
critical Applications. In Proceedings of the 2016 IEEE
International Symposium on Workload Characterization
(IISWC), 2016.

[51] Sachin Katti, John Ousterhout, Guru Parulkar, Marcos
Aguilera, and Curt Kolovson. Scalable control plane
substrate.

[52] Stefan Kolb. On the Portability of Applications in Platform
as a Service, volume 34. University of Bamberg Press,
2019.

[53] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko
Sadakane, and Tak-Wah Lam. MEGAHIT: an ultra-fast
single-node solution for large and complex metagenomics
assembly via succinct de Bruijn graph. In Bioinformatics,
2015.

[54] Jack McElwee and Allan Krans. Public cloud benchmark:
First calendar quarter 2020. Technical report, Technology
Business Research, July 2020.

[55] Alex Merenstein, Vasily Tarasov, Ali Anwar, Deepavali
Bhagwat, Lukas Rupprecht, Dimitris Skourtis, and Erez
Zadok. The case for benchmarking control operations in
cloud native storage. In 12th {USENIX}Workshop on Hot
Topics in Storage and File Systems (HotStorage 20), 2020.

[56] Filebench pre-defined personalities, 2016. http://filebench.
sourceforge.net/wiki/index.php/Pre-defined personalities.

[57] Frank Della Rosa. Implementation of microservices
architecture hastens across industries. Technical Report
#US46108319, IDC, 2020.

[58] SPEC SFS R©2014. https://www.spec.org/sfs2014/ .

[59] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and Margo
Seltzer. Benchmarking File System Benchmarking: It *IS*
Rocket Science. In Proceedings of the 13th USENIX Con-
ference on Hot Topics in Operating Systems (HotOS), 2011.

[60] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A Flexible Framework for File System
Benchmarking. USENIX ;login:, 41(1), 2016.

[61] AIM Technology. AIM multiuser benchmark - suite VII
version 1.1. http://sourceforge.net/projects/aimbench , 2001.

[62] Johannes Thönes. Microservices. IEEE Software, 32(1),
2015.

[63] Avishay Traeger, Erez Zadok, Nikolai Joukov, and
Charles P Wright. A Nine Year Study of File System and
Storage Benchmarking. ACM Transactions on Storage
(TOS), 4(2), 2008.

[64] Sage Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A scalable,
high-performance distributed file system. In Proceedings
of the 7th Symposium on Operating Systems Design and
Implementation (OSDI 2006), pages 307–320, Seattle, WA,
November 2006. ACM SIGOPS.

[65] Sage Weil, Andrew Leung, Scott Brandt, and Carlos
Maltzahn. RADOS: A Scalable, Reliable Storage Service
for Petabyte-scale Storage Clusters. In Proceedings of the
2nd International Workshop on Petascale Data Storage
(PDSW), 2007.

[66] Filebench workload model language (WML),
2016. https://github.com/filebench/filebench/wiki/
Workload-Model-Language.

[67] Qing Zheng, Haopeng Chen, Yaguang Wang, Jian Zhang,
and Jiangang Duan. COSBench: Cloud Object Storage
Benchmark. In Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering
(ICPE), 2013.

276 19th USENIX Conference on File and Storage Technologies USENIX Association

Concordia: Distributed Shared Memory with In-Network Cache Coherence

Qing Wang, Youyou Lu∗, Erci Xu, Junru Li, Youmin Chen, and Jiwu Shu∗

Tsinghua University

Abstract
Distributed shared memory (DSM) is experiencing a resur-

gence with emerging fast network stacks. Caching, which is
still needed for reducing frequent remote access and balanc-
ing load, can incur high coherence overhead. In this paper,
we propose CONCORDIA, a DSM with fast in-network cache
coherence backed by programmable switches. At the core of
CONCORDIA is FLOWCC, a hybrid cache coherence protocol,
enabled by a collaborative effort from switches and servers.
Moreover, to overcome limitations of programmable switches,
we also introduce two techniques: (i) an ownership migra-
tion mechanism to address the problem of limited memory
capacity on switches and (ii) idempotent operations to handle
packet loss in the case that switches are stateful. To demon-
strate CONCORDIA’s practical benefits, we build a distributed
key-value store and a distributed graph engine on it, and port
a distributed transaction processing system to it. Evaluation
shows that CONCORDIA obtains up to 4.2×, 2.3× and 2×
speedup over state-of-the-art DSMs on key-value store, graph
engine and transaction processing workloads, respectively.

1 Introduction
Distributed Shared Memory (DSM) enjoyed a short heyday
(circa early 1990s) by offering a unified global memory ab-
straction. Yet, it later failed to entertain a greater audience
due to the unsatisfying performance atop the low-speed net-
work [28]. Recent advancement in high-performance network
technologies prompts a new look into DSM. With optimiza-
tions across the network stack (e.g., RDMA), the bandwidth
can now surge to 100Gbps or even 200Gbps [1], and the
latency drops to less than 2µs [14]. Researchers take this
opportunity to systematically rethink the DSM design and
have achieved a string of successes in both academia and
industry [4, 20, 47, 51, 61]. For example, Microsoft has devel-
oped FaRM [4], a fast RDMA-based DSM; on top of FaRM,
engineers have built key-value stores [25], distributed trans-
action engines [26, 59], and a graph database called A1 [19]
(A1 is used by Microsoft’s Bing search engine).

But there is still at least one more hurdle to cross: cache
coherence. Caching is still important to DSM for obtaining
competitive performance (e.g., local memory has 2-4× higher
throughput and 12× lower latency against RDMA [60])
and balancing load (e.g., caching the hot data to multiple

∗Jiwu Shu and Youyou Lu are the corresponding authors.
{shujw, luyouyou}@tsinghua.edu.cn

servers [27]). Yet, distributed caching always comes with co-
herence, which is notorious for its complexity and overhead1.
Specifically, coherence incurs excessive communication for
coordination, such as tracking cache copies’ distribution, in-
validation and serializing conflicting requests (i.e., requests
targeting the same cache block), thereby severely impacting
the overall throughput. For example, even in the RDMA-
based ccNUMA [27], introducing a slight dose of cache co-
herence by increasing the write ratio from 0 to 5% can reduce
the performance by 50%.

The advent of programmable switches has changed the
landscape of various classic system architectures [23, 33, 34,
38, 41, 42, 56, 57, 65, 67, 68]. Here, we argue that leverag-
ing a customizable switch to reduce the overhead of cache
coherence in DSM is promising. First, since a switch is the
centralized hub of inter-server communication, reconfiguring
it to handle cache coherence can significantly reduce coordina-
tion between servers. Second, the latest switches can usually
process several billion packets per second, enabling them to
quickly handle coherence requests. Third, the switch owns an
on-chip memory, which allows storing cache block metadata
in the switch. Moreover, the on-chip memory can support
atomic read-modify-write operations [33], thereby easing the
effort to synchronize conflicting coherence requests.

However, simply shoehorning all cache coherence logic
into switches can be impractical. First, cache coherence proto-
cols are too complicated for programmable switches [13, 35]
which only have limited expressive powers due to their re-
stricted programming model and demanding timing require-
ments [49]. Second, the on-chip memory is usually small
(e.g., 10-20 MB), making it unlikely to accommodate the
metadata of the entire cache set. Third, failure handling can
be tricky. Cache coherence protocol generally uses a state
machine to perform the state transitions. Hence, if deployed
on switches, a common fault, such as a packet loss, could lead
a switch into an erroneous state (e.g., deadlock by repeated
locking due to retransmission).

In this paper, we present the CONCORDIA, a high-
performance rack-scale DSM with in-network cache coher-
ence. The core of CONCORDIA is FLOWCC (in-Flow Cache
Coherence), a cache coherence protocol that is jointly sup-
ported by switches and servers. In FLOWCC, switches, as
the data plane, serialize conflicting coherence requests and

1“There are only two hard things in Computer Science: cache invalida-
tion and naming things.”—Phil Karlton

USENIX Association 19th USENIX Conference on File and Storage Technologies 277

multicast them to the destinations, reducing coordination be-
tween servers. Servers, on the other hand, act as the control
plane that performs state transitions and sends correspond-
ing updates to switches. Specifically, we utilize the on-chip
memory to store metadata of cache blocks and implement
reader-writer locks for concurrency control.

CONCORDIA also designs an ownership migration mech-
anism to manage the metadata of cache blocks. The mecha-
nism moves the ownership of cache blocks between switches
and servers dynamically according to the coherence traffic,
namely only keeping the hot ones in the switches. To han-
dle packet loss, we make all operations both in servers and
switches idempotent, guaranteeing exactly-once semantics.

We implement CONCORDIA with Barefoot Tofino switches
and commodity servers and evaluate it with three real data-
center applications: distributed key-value storage, distributed
graph computation and distributed transaction processing. Ex-
perimental results show that CONCORDIA obtains up to 4.2×,
2.3× and 2× speedup on key-value store, graph engine and
transaction processing, respectively, over two state-of-the-art
RDMA-based DSMs, Grappa [51] and GAM [20].

To sum up, we make the following contributions:
• We propose CONCORDIA, a high-performance rack-

scale DSM that incorporates an in-network cache co-
herence protocol, namely FLOWCC.
• We design an ownership migration mechanism and idem-

potent operations to overcome the restriction of current
programmable switches.
• Evaluation shows that CONCORDIA gains significant

performance improvement against two state-of-the-art
DSMs in various applications.

2 Background
In this section, we provide background on cache coherence
protocols and programmable switches.

2.1 Cache Coherence Protocols
Cache coherence protocols are studied extensively in both the
systems and architecture communities [50, 53]. We briefly
describe the two main protocol types used in DSMs below.
Directory-based protocols keep track of servers that hold
cache copies. Each data block has a home node2 that keeps
the states and locations of cache copies. The home node
updates and notifies the state of the data block to all cache
copies, and serializes conflicting cache coherence requests.
The limitation is that the home nodes induce extra round trips,
and the home nodes for hot data are under heavy load.
Snooping protocols do not keep track of cache copies. In-
stead, they broadcast cache coherence requests to all the
servers. The limitation is that the broadcast can easily over-
whelm the network, and wastes the CPU cycles of servers
that do not contain the requested cache block. In addition,

2In this paper, we use “server” and “node” interchangeably.

Match pkt.type == 0x11

Action pkt.ttl = pkt.ttl-1

Parser
Tables
Arrays
Stage 1 Stage 2 Stage n

… Deparser

Ingress Pipeline Egress Pipeline

Match pkt.type == 0x11

Action ttl_arr[pkt.ttl]++
type : 0x11
ttl : 0x24

pkt

ttl_arr
97
5

27
…

Match-Action TablePHV
Register Array 0

1
2

Tables
Arrays

Tables
Arrays …

Figure 1: Pipelines in Programmable Switches. In this figure, for
a packet whose type field is 0x11, the switch reduces its ttl (i.e.,
time to live) field via the first match-action table, and then updates
the register array ttl arr via the second table. The kth item in
ttl arr records the number of packets whose ttl field is k.

since ordered and reliable broadcast systems are equivalent
to consensus [24], it is intractable to coordinate conflicting
cache coherence requests in snooping protocols.

2.2 Programmable Switch

Emerging programmable switches like Barefoot Tofino [2]
provide programmable capacity. Such a switch follows recon-
figurable match table (RMT) architecture [18] and usually has
multiple ingress and egress pipelines. Each pipeline contains
multiple stages, and packets are processed by these stages in
sequential order, as shown in Figure 1.

Developers can program three components for switches:
the parser, register arrays and match-action tables. The parser
defines packet formats. A register array is a collection of
memory items (e.g., tll arr in the Figure 1); we can read,
write, and conditionally update these items via index numbers
(i.e., positions). A match-action table specifies (i) a match
key from a set of packet fields (e.g., in the Figure 1, the type
field is the match key of both tables), and (ii) a set of actions,
each of which consists of instructions about modifying packet
fields and register arrays. A register array or match-action
table belongs to only one stage of a certain pipeline, which
can be specified by developers.

When a packet arrives at an ingress port, the parser analyzes
it and generates a packet header vector (PHV), which is a set
of header fields (e.g., UDP port). The PHV is then passed to
match-action tables in the ingress pipeline in a stage-by-stage
manner. If the specific fields of the PHV match an entry in
a match-action table, the corresponding action is executed.
Before leaving the ingress pipeline, the packet is reassem-
bled by the deparser. Then there are two cases (realized by
setting a metadata field): ¶ the packet is resubmitted, i.e., it
re-enters the ingress pipeline. · the packet is switched to the
egress pipeline, experiencing processing similar to the ingress
pipeline, and it finally is emitted via an egress port.

We summarize two properties of an RMT pipeline, which
can simplify the design of stateful protocols in switches:

P1. Atomicity Property. Due to the pipelined architecture,
only one packet is processed in a stage at any time. In other
words, operations for multiple register arrays in the same
stage are atomic.

278 19th USENIX Conference on File and Storage Technologies USENIX Association

0

20

40

60

(a) Cluster Throughput

No Sharing 10% Sharing 20% Sharing
Th

ou
gh

pu
t (

M
op

/s
)

(b) Cluster Network Traffic

of
 P

ac
ke

t (
m

illi
on

)

18X

7X

13X

9X50%

25%

0

5

10

15

Recv Send

Figure 2: Impact of Cache Coherence.

P2. Ordering Property. Suppose there are two packets A,B,
and they are being processed in stage SA and SB, respectively.
If SA < SB in time t (e.g., A in stage 1 and B in stage 2),
SA < SB holds at any time after t within this pipeline.

3 Motivation
This section revisits cache coherence under fast network en-
vironments via an experiment and discusses challenges in
designing an in-network cache coherence protocol.

3.1 Revisit Cache Coherence with Fast Network
To understand the performance impact of cache coherence,
we use a micro benchmark to evaluate GAM [20], a state-
of-the-art RDMA-based DSM backed by a directory-based
protocol. In this benchmark, each node in the 8-node cluster
launches four threads to issue 8-byte write/read operations to
global memory with a write ratio of 50%. Here, we define
the sharing ratio as the percentage of operations that access
shared data. By varying the ratio from 0 (i.e., no sharing) to
20%, we can see, in Figure 2(a), that the throughput degrades
by 75%. Further, we collect the packets received and sent by
all nodes (Figure 2(b)). The number of packets across network
increases dramatically (up to 18×) when more data is shared
because of expensive distributed communication in cache
coherence protocols. From the benchmark, we conclude that
even with fast networks, existing cache coherence protocols
dramatically limit system performance.

3.2 Challenges
There are three challenges to design a fast cache coherence
protocol using programmable switches:
• The mismatch between the complexity of cache coher-
ence protocols and the restricted expressive power of pro-
grammable switches. Existing cache coherence protocols are
intricate, because of complex state transitions in the face of
concurrent and asynchronous requests. However, the expres-
sive power of programmable switches is limited: all proce-
dures must be represented as match-action tables. Moreover,
the processing pipeline must meet the hardware resource and
timing requirements of switch ASICs [34]. For example, ta-
bles with dependencies must be placed in different stages.
• Limited switch memory capacity. Current pro-
grammable switches have limited on-chip memory capacity
(10-20MB) [37]. Furthermore, we need to reserve some mem-
ory to serve normal network protocols. Thus, switches are
unable to manage the coherence of all cache blocks.
• Packet loss. Switch buffer overflow can cause packet

ToR Switch Data Plane

L2/L3
Routing

Lock-check-
forward Pipeline

ToR Switch Data Plane

Shadow
Node

Global Memory

Cache

App Threads
read/write

Memory Node 0

Home Agent Cache Agent

Global Memory

Cache

App Threads
read/write

Memory Node n

Home Agent Cache Agent

Figure 3: CONCORDIA Overview. Global memory from all memory
nodes constitutes a logically unified address space (the dashed box).

loss. Existing in-network systems such as NetCache [34] and
NetChain [33] rely on client-side retries to address this prob-
lem. However, it is hard to guarantee exactly-once semantics
by simply retransmitting lost packets in DSMs, considering
that a cache coherence request always involves multiple round
trips and packets.

4 CONCORDIA Overview
CONCORDIA is a rack-scale DSM that leverages pro-
grammable switches to accelerate cache coherence. Figure 3
shows its overview, which consists of a set of memory nodes,
a top-of-rack (ToR) switch, and a shadow node.
Memory nodes. Memory nodes run distributed applications
and provide memory for them. Each memory node divides
its DRAM into two parts: a global memory and a private
local write-back cache. The global memory from all mem-
ory nodes constitutes a logically unified 64-bit address space:
node id: 16-bit | offset: 48-bit ; each data block has a con-

stant home node, which is specified by the node id field. The
local cache is organized in cache blocks, which are the unit
of data transfer between the local cache and global memory.
A cache block is uniquely identified by its tag (e.g., the tag
of a 4KB cache block is the highest 52 bits of its address).
There are three components in a memory node: (i) application
threads execute application logic and access global memory
via linearizable write/read interfaces, which interact with the
local cache; (ii) the home agent manages part of the global
memory space within its node; (iii) the cache agent performs
invalidation and data transfers for data that is cached on its
memory node.
Switch. In addition to routing normal packets using standard
L2/L3 protocols, the switch is responsible for executing part
of the cache coherence protocol (e.g., serializing and multi-
casting requests) via the lock-check-forward (LCF) pipeline.
Shadow node. The shadow node helps migrate the owner-
ship of cache blocks between the switch and home agents by
recording coherence traffic of cache blocks.

As in other coherence protocols, each cache block may
be in one of three states, depending on how it is cached and
whether it is shared: Unshared (no node has it in the local
cache), Shared (some nodes share it with read permission),
and Modified (one node caches an exclusive copy with write
permission). This state is reflected in the cache block’s global
status. The copyset is the set of nodes that hold the corre-

USENIX Association 19th USENIX Conference on File and Storage Technologies 279

Node 1
C: <D1, dirty=0>

Time

write(C, D2)

C: <Shared, {1,2,3}>

C: <Modified, {1}>

Switch Node 2 Node 3

C: <invalid=1>
C: <invalid=1>

multicast

WRITE-SHARED(C)

WRITE-SHARED(C, Shared, {1,2,3})

ACK(WRITE-SHARED, C, Shared, {1,2,3})

WRITE-UNLOCK(C, Modified, {1})

ACK

Next write/read

C: <Shared, {1,2,3}>

C: <D2, dirty=1>

C: <D1, dirty=0> C: <D1, dirty=0>

Figure 4: An Example of FLOWCC. An application thread (i.e.,
requester) in node 1 writes cache block C with data D2.

sponding cache block. We denote the global status and copy-
set of a cache block as its global metadata. Owners manage
the coherence for a cache block, and store its global metadata.
Ownership (and global metadata) can be migrated between
the home node’s home agent and the switch, depending on
how actively the cache block is shared.

4.1 Key Ideas
1) Separating data and control planes. In CONCORDIA, the
switch only does what it is proficient at, i.e., routing packets
as the data plane; it multicasts cache coherence requests and
serializes conflicting ones via in-network locks (locking can
be regarded as controlling route paths of conflicting requests).
In contrast, servers, as control planes, perform state transi-
tions and send corresponding updates to the switch. Such a
separation simplifies the data plane design of the switch to
overcome its restricted expressive power (§5.1).
2) Unifying switch- and server-based coherence process-
ing. Due to the limited on-chip memory capacity of the
switch, CONCORDIA lets the switch only manage the coher-
ence of hot data, and resorts to servers for processing the cold
data. According to the coherence traffic that a cache block
induces, CONCORDIA dynamically migrates its ownership
between servers and the switch (§5.2).
3) Minimizing the number of modifications to switch
state. For every operation that modifies switch state, i.e.,
the values stored in the switch’s register arrays, we must deal
with the corresponding case of packet loss, at the cost of
consuming precious hardware resources of the switch and
complicating the system design. Thus, we strive to minimize
the number of switch state modifications. Specifically, in each
coherence event, i.e., the process of executing a cache coher-
ence request, the switch only modifies its state twice: À ac-
quiring locks; Á releasing locks and installing new metadata
of the targeted cache block. We make the two modifications
idempotent, to handle packet loss (§5.3).

4.2 Example
We illustrate the overall operation of FLOWCC protocol with
an example, as shown in Figure 4.

An application thread (i.e., requester) in node 1 issues a
write to cache block C, whose ownership is in the switch.
Since C is already cached by node 1 and is not dirty, the
requester generates a cache coherence request (i.e., WRITE-
SHARED) with the tag of C, and sends it to the switch (¶).

After receiving the request, the switch acquires the write
lock for cache block C, to prevent conflicting cache coherence
events (·). Then, it multicasts the request to cache agents in
node 2 and 3, according to the value of the copyset (¸). Of
note, the multicast requests contain the global metadata of C
(i.e., global status Shared and the copyset).

Upon receiving multicast requests, the cache agents in node
2 and 3 invalidate their local cache block copies by marking
them as invalid (¹). Then they send ACKs, which contain
the global metadata of cache block C, to the requester (º).

The requester waits for ACKs from the other cache agents
that are indicated in the copyset of ACKs (i.e., {2, 3}). Once
all ACKs are received, the requester installs new data into its
local cache and marks it as dirty (»). At this time, the cache
block C is in a coherent state in CONCORDIA. Finally, the
requester sends an asynchronous unlock request to the switch
(¼), to allow concurrent or subsequent coherence requests
targeting the same cache block to make progress. This unlock
request contains new global metadata of the cache block. The
switch releases the corresponding lock, and uses information
in the unlock request to install new global metadata (½).

Overall, this cache coherence request is processed in only
a single round-trip (compared with directory-based protocols,
note that unlock is asynchronous) with much less network
traffic (compared with snoop protocols, note that requests are
only multicast to memory nodes that hold data copies).

The example above can experience a host of undesirable
situations, for which we elaborate our solutions in §5. These
situations include: (i) the lock is occupied; (ii) the request is
invalid when entering the switch’s pipeline; (iii) the ownership
is not in the switch; (iv) a network packet is dropped.

5 CONCORDIA Design In Depth
In this section, we first describe FLOWCC protocol (§5.1).
Next, we detail how CONCORDIA migrates ownership (§5.2)
and handles packet loss (§5.3). Finally, we discuss practical
issues of CONCORDIA (§5.4).

5.1 FLOWCC Protocol
At the core of CONCORDIA is FLOWCC, a write-invalidate
protocol, which divides coherence responsibility between the
switch and servers. The switch serializes conflicting requests
and multicasts them to correct home/cache agents via the
lock-check-forward (LCF) pipeline. Servers perform state
transitions and update the switch data plane.

5.1.1 Protocol Details

In FLOWCC, a cache coherence event is handled collabora-
tively by switches and servers in the following four phases:

280 19th USENIX Conference on File and Storage Technologies USENIX Association

Field Meaning
type type of the cache coherence request
tag tag of the requested cache block
node id node id of the requester
global status global status of the requested cache block
copyset the set of nodes that hold the cache block
is data provider whether the receiver is the data provider
is in switch whether the switch manages the coherence

Table 1: Packet Format.

TAG
0x1b
0x23
0x67

…

LOCK

…

G_STATUS
Unshared
Modified
Shared

…

COPYSET
{}

{1}
{0, 1, 4}

…

packet in hit Check
Table

Forward
Table

get lock pass packets out

Figure 5: Lock-check-forward Pipeline. The three arrays in the
dashed box belong to the same stage; the orange lock is a read lock,
and the red one is a write lock. The switch just finished the lock
phase of two READ-MISS requests to the cache block with 0x1b tag.

ä Request Generation
Application threads (i.e., requesters) access global memory
by issuing write/read operations to the local cache, and gener-
ate cache coherence requests in case of cache miss and cache
eviction. Table 1 shows the packet format of requests. There
are five types of cache coherence requests (i.e., type field):
ÀÁ WRITE-MISS/READ-MISS for cache miss, ÂWRITE-
SHARED when issuing a write operation to a clean cache
block, ÃÄEVICT-MODIFIED/EVICT-SHARED when evicting
a dirty/clean cache block. The tag and node id fields iden-
tify the requested cache block and the node of the requester,
respectively. The last four fields are filled by the switch.
ä Lock-check-forward Pipeline
In the LCF pipeline, we store a reader-writer lock and global
metadata for each cache block. By leveraging this state, the
LCF pipeline serializes conflicting requests and multicasts
them to destinations.
On-chip state storage. Figure 5 shows the LCF pipeline,
which consists of four register arrays and two match-action
tables. The TAG array is a hash table that stores the tag of
cache blocks by using 64-bit slots. The LOCK array contains
16-bit reader-writer locks; for each lock, the most significant
bit indicates a writer, and the other 15 bits count the number
of readers (i.e., 215 concurrent readers at most). Lock and
unlock operations are supported by conditional update of
the register array. The G-STATUS array records the global
status of cache blocks with 8-bit slots. The COPYSET array
maintains cache block copysets by using a bitmap structure.
The last three register arrays are placed in the same stage, so
they can be manipulated together in an atomic manner (P1 in
§2.2). The check table verifies the validity of cache coherence
requests. The forward table routes requests to the correct
cache/home agents.
Request processing. The LCF pipeline processes a request in
three steps: (i) lock the requested cache block for concurrency
control. (ii) check the request’s validity. (iii) forward the
request to its final destinations.

When a request enters the LCF pipeline, the switch first

Match Key
pkt.type Action

READ-MISS check succ← pkt.node id < pkt.copyset
WRITE-MISS

WRITE-SHARED check succ← pkt.node id ∈ pkt.copyset
∧ pkt.global status == SharedEVICT-SHARED

EVICT-MODIFIED
check succ← pkt.node id ∈ pkt.copyset

∧ pkt.global status == Modified

Table 2: Check Table. If the check succ is true (i.e., the request is
valid), the switch passes the request to the forward table; otherwise,
the switch releases the lock and sends a failed ACK to the requester.

Match Key
(pkt.type, pkt.global status) Action

(READ-MISS, Unshared) forward to the request’s home
agent(WRITE-MISS, Unshared)

(READ-MISS, Modified) forward to the cache agent
in pkt.copyset(WRITE-MISS, Modified)

(READ-MISS, Shared)
select a cache agent in
pkt.copyset as the data
provider, and forward to it

(WRITE-MISS, Shared)
multicast to cache agents in
pkt.copyset, select a cache
agent as the data provider

(WRITE-SHARED, Shared)
multicast to cache agents in
pkt.copyset except pkt.node id 4

(EVICT-SHARED, Shared) return to the requester
(EVICT-MODIFIED, Modified)

Table 3: Forward Table. Requests multicast/forwarded to cache
agents (except for READ-MISS requests) indicate invalidation.

hashes the tag field of the request into an index number, and
then uses the index number to search the TAG array for the
tag (i.e., check if TAG [hash(tag)] equals tag). On failure, the
switch forwards the request to its home agent 3 and sets the
is in switch field to false. After finding the tag, the switch
tries to acquire the read lock if the request is READ-MISS;
otherwise, acquires the write lock. Note that we protect
EVICT-SHARED with write locks, since two concurrent EVICT-
SHARED requests to the same cache block may cause different
state transitions (detailed later, see Figure 6). In parallel, the
corresponding global metadata (i.e., values in G-STATUS and
COPYSET array) is filled into the request. The switch returns a
failed ACK to the requester when failing to acquire the lock.

Once the switch acquires the lock successfully, it passes
the request to the check table (shown in Table 2), to filter out
invalid requests caused by concurrent events. Let us consider
an example of invalid requests: immediately after a requester
issues a WRITE-SHARED request W for cache block A, the
cache agent in the same node invalidates A; it is possible
that, due to W being delayed by OS scheduler or network,
the global status of A is no longer Shared or the requester
no longer holds A when W enters the LCF pipeline. Thus, to
ensure that only valid requests are forwarded to destination
nodes, the switch checks the global status and copyset in the
request. If the check fails, the switch resubmits the request
to release the acquired lock, and then sends a failed ACK to
the requester. Compared with server-based mechanisms, such

3For simplicity, we denote the home agent of a request or a cache block
as the home agent that resides in the requested cache block’s home node.

4If copyset only contains the requester, the switch returns an ACK.

USENIX Association 19th USENIX Conference on File and Storage Technologies 281

Unshared Shared

ModifiedWRITE_MISS

READ_MISS
WRITE_MISS/
WRITE_SHARED

READ_MISS/EVICT_SHARED

WRITE_MISS

READ_MISSEVICT_MODIFIED

EVICT_SHARED

Figure 6: State Transitions of Global Status. Requesters generate
global status according to this diagram, and piggyback it on unlock
requests. When evicting a clean cache block (i.e., EVICT-SHARED),
the global status changes from Shared to Unshared if the copyset is
empty; otherwise, the global status remains unchanged.

an in-network check reduces the load of servers (checking
validity of requests and sending failed ACKs).

If the request passes the check table successfully, the for-
ward table (see Table 3) sends it to its final destinations ac-
cording to the (type, global status) pair. Specifically, there are
three cases: (i) If no copy of the requested cache block exists,
i.e., global status is Unshared, the switch routes the request
to its home agent for fetching data in global memory. (ii) If
cache block copies need to be invalidated, the switch multi-
casts the request to the cache agents in the copyset. (iii) For an
eviction request, the switch returns it to the requester directly,
since the corresponding lock has been acquired.

To support efficient cache-to-cache data transfer, we adopt
an in-network selection mechanism. For READ-MISS/WRITE-
MISS requests, if shared nodes exist (i.e., copyset is not
empty), the switch selects a cache block data provider among
them using a load balancing strategy and sets is data provider
field in the corresponding request. The current load balancing
strategy is to randomly choose a data provider from shared
nodes; compared with other complex strategies, the random
selection does not consume any precious on-chip memory.

ä Invalidation and Data Transfer

Cache agent. Upon receiving the request, the cache agent in-
validates corresponding cache block for WRITE-MISS/WRITE-
SHARED. Then, the cache agent sends an ACK to the re-
quester. If the cache agent is a data provider, it also transfers
cache block data.
Home agent. Upon receiving a request, if is in switch field
is true, the home agent replies to the requester with an ACK,
which contains the corresponding cache block data from
global memory. The remaining cases, i.e., the switch does not
own the ownership of the requested cache block, are discussed
in §5.2.

Note that all ACKs from cache/home agents carry the
global metadata of the requested cache block, so as to help
requesters reach coherence.

ä Requester-driven Coherence Control

The requester waits for ACKs from home/cache agents, and
then performs state transitions and updates the switch data
plane. Specifically, upon receiving a failed ACK, the requester
retries the read/write operation. Otherwise, the requester

waits for all ACKs needed for reaching coherence. Then, for
READ-MISS/WRITE-MISS, the requester installs cache block
data; for EVICT-MODIFIED, it writes back the cache block
data to the home node. After that, the requester generates
new global metadata (i.e., copyset and global status): the
new copyset is (i) {id} for WRITE-MISS/WRITE-SHARED
or (ii) csold + {id} for READ-MISS or (iii) csold −{id} for
eviction requests, where csold is the copyset in the ACKs
and id is the node id of the requester. The new global status
is generated according to the state transitions diagram in
Figure 6. Finally, the requester sends an unlock request to the
switch, with the new global metadata. The unlock request is
asynchronous, enabling the requester to execute subsequent
read/write operations immediately.

On receiving an unlock request, the switch releases the
lock (i.e., modifies the LOCK array), and updates the global
metadata (i.e., values in G-STATUS and COPYSET arrays). For
read lock release, the new value in the COPYSET array is the
union of the old one and the copyset field in the unlock request,
considering maybe there are concurrent READ-MISS requests.
Atomicity property (P1 in §2.2) guarantees the atomicity of
update to these three arrays, since they are in the same stage.

5.1.2 Correctness

FLOWCC is based on the state transitions of classic MSI
protocols. Compared with directory-based MSI protocols,
it has two main changes: À leveraging in-switch locks to
serialize conflicting requests; Á leveraging the switch to
multicast invalidation messages. Here, we prove FLOWCC is
correct by proving the following two invariants are correct [27,
50]. We assume all messages are reliable (§5.3 describes how
CONCORDIA handles packet loss).
INVARIANT 1. Exactly one writer can update a memory
location at a time (Single-Writer-Multiple-Readers Invariant).
PROOF. Before getting the write permission of a cache block,
a thread must acquire the in-switch write lock and revoke the
write/read permission of other servers via invalidation; thus,
only one thread can write a cache block at any time.
INVARIANT 2. If a cache block is valid, it must hold the
most recent value updated by writers (Data-Value Invariant).
PROOF. On write requests, the switch invalidates all the
copies by multicasting messages and only the requester owns
the most recent data at the end; on read requests, the most
recent data is populated into the requester’s local cache. Thus,
any operations manipulate the latest data.

5.2 Ownership Migration
To overcome limited on-chip memory capacity in the switch,
CONCORDIA explicitly limits the number of cache blocks
that the switch manages coherence for, using an ownership
migration mechanism. Specifically, CONCORDIA migrates
ownership between home agents and the switch dynamically:
if a cache block has heavy coherence traffic, its home agent
migrates its ownership to the switch. Similarly, if a cache

282 19th USENIX Conference on File and Storage Technologies USENIX Association

block only induces light coherence traffic, its ownership is
migrated in the opposite direction.

Home agents handle cache coherence requests for cache
blocks they manage (the is in switch field in these requests
is false). Specifically, home agents process cache coherence
requests in the same way as the LCF pipeline of the switch:
they store global metadata for multicast and use reader-writer
locks to serialize conflicting requests.

5.2.1 Migration Requests

We design two type of requests for ownership migration.
• ADD-TO-SWITCH. When a home agent needs to migrate

the ownership of a cache block to the switch, it acquires
the write lock for the cache block (to prevent conflicting re-
quests), and then sends an ADD-TO-SWITCH request to the
switch. The request consists of the cache block’s tag, global
status and copyset. The switch inserts these three values into
TAG , G-STATUS , and COPYSET array, respectively. Ordering
property P2 (in §2.2) ensures other requests will see all the
updates or none. The home agent releases the lock after re-
ceiving an ACK from the switch.
• REMOVE-FROM-SWITCH. When a home agent is in-

formed by the shadow node to migrate the ownership of a
cache block from the switch to itself (see §5.2.2), it sends a
REMOVE-FROM-SWITCH request to the switch with the tag
of the cache block. Upon receiving the request, the switch
acquires the cache block’s write lock in the LOCK array. On
success, the switch resubmits the request. When receiving the
resubmitted request, the switch clears the tag in the TAG array;
then, it releases the lock and sends an ACK with up-to-date
global status and copyset (i.e., global metadata) to the home
agent. The home agent stores these two values locally.

5.2.2 Migration Workflow

Figure 7 shows the ownership migration of a cache block.
Home agents ß Switch. Home agents identify hot cache
blocks managed by themselves and migrate their ownership
to the switch. We divide time into continuous epochs (e.g.,
10ms), and each home agent records the hotness of cache
blocks in the current epoch. If a cache coherence request
needs to be multicast to n cache agents, the hotness of corre-
sponding cache block is incremented by n. At the end of an
epoch, the home agent migrates the top-k (e.g., 1000) hottest
cache blocks to the switch by issuing ADD-TO-SWITCH.
Switch ß Home agents. We introduce a shadow node to col-
lect hotness statistics for cache blocks managed by the switch.
The shadow node duplicates the switch’s TAG array into its
in-memory array called SHADOW-TAG . Cache agents record
the number of invalidations for cache blocks managed by the
switch, and report their statistics to the shadow node at the
end of each epoch. The shadow node applies these statistics
to SHADOW-TAG . The shadow node scans the SHADOW-TAG
array periodically to remove the coldest cache blocks by in-
forming home agents to issue REMOVE-FROM-SWITCH for

In Home AgentIn Switch
ADD-TO-SWITCH

REMOVE-FROM-SWITCH

Home agenthotness += n

Cache agent

Cache agent

INV 1

hotness += m

Shadow node
report statisticsINV m

INV 1

INV n

Figure 7: Ownership Migration of a Cache Block. INV means
invalidation messages; the migration is performed by home agents.

these cache blocks.
Handling collisions. Since the switch manages the TAG ar-
ray as a hash table (recall §5.1.1), the candidate locations
of an ADD-TO-SWITCH operation may be occupied by other
cache blocks (i.e., hash collisions). In such a case, the switch
returns a failed ACK to the home agent that issues the ADD-
TO-SWITCH; the home agent will retry the ADD-TO-SWITCH
at the next epoch (if the corresponding cache block is still hot).
The switch copies the ACK of every ADD-TO-SWITCH to the
shadow node: if the ACK indicates success, the shadow node
adds the corresponding tag into the SHADOW-TAG ; otherwise,
it removes the coldest cache block in the conflicting locations.
By leveraging the centralized shadow node to handle colli-
sions, CONCORDIA can ensure that though each home agent
independently chooses its hottest cache blocks, the switch
can manage the globally hottest cache blocks.

5.3 Packet Loss Handling
In the FLOWCC protocol, the switch is stateful due to storing
locks and global metadata; thus, traditional end-to-end mech-
anisms, e.g., TCP retransmission, can not handle packet loss
correctly. We make operations both in servers and the switch
idempotent, to address this problem5.

5.3.1 Server Idempotence
We use sequence numbers to guarantee idempotence of server
operations [40]. Each requester assigns a unique requester-
local sequence number for a cache coherence event; all re-
quests (i.e., cache coherence requests and unlock requests)
in the cache coherence event contain the sequence number.
Sequence numbers are allocated in increasing integer order.
On suspecting a lost request via timeout, the requester retrans-
mits it. We set the timeout value of cache coherence requests
to 6 RTTs (round-trip times) and unlock requests to 3 RTTs.

Each home/cache agent maintains a LAST-EXECUTED table,
which records the largest sequence number ever received from
each requester. When a home/cache agent receives a cache
coherence request, it compares the request’s sequence number
with the corresponding value in the LAST-EXECUTED table. If
the request’s sequence number is larger, the home/cache agent
executes the request, updates the LAST-EXECUTED table, and
responds. If the request’s sequence number is lower, the
request is ignored. If the two are the same, the home/cache
agent sends an ACK without modifying any state.

5For space reasons, in this subsection (§5.3), we only present how to
handle packet loss in the FLOWCC protocol. We use the same mechanism
for the ownership migration.

USENIX Association 19th USENIX Conference on File and Storage Technologies 283

LK
0:1

…

SB

0
…

LK
0:2

…

SB

1
…

<READ-MISS, seq: 9>

packet loss

LK
0:3

…

SB

2
…forward

(a) (b) (c)

<READ-MISS, seq: 9>

LU

8

LK
0:3

…

SB

2

<READ-UNLOCK, seq: 9>

lock score: 2

0:1
0

(d)
9

Figure 8: Idempotent Lock/Unlock Operations. The boxes on the
top show packets with only the relevant details (seq: sequence num-
ber). LK is the LOCK array, and SB is the SCOREBOARD array, and
LU is the LAST-UNLOCK array. Each 16-bit reader-writer lock in
LOCK has the form x:y, where x is most significant bit marking the
writer and y is the other 15 bits counting the number of readers. (a)
Initialization state. (b) A requester issues a READ-MISS. The switch
acquires the read lock by increasing the reader counter, and then
increases the requester’s lock score. Unfortunately, the READ-MISS

is dropped after leaving the switch pipeline. (c) Upon timeout, the
requester re-sends the READ-MISS with the same sequence num-
ber. After updating the LOCK and SCOREBOARD arrays, since the
lock score is more than 0, the switch thinks the lock is acquired
successfully. (d) The switch handles an unlock request.

5.3.2 Switch Idempotence

Since modifications to the TAG , G-STATUS , and COPYSET ar-
rays in the switch are already idempotent, we only need to
make lock and unlock operations idempotent. We introduce
a SCOREBOARD array and a LAST-UNLOCK array to solve this
problem, at the cost of slight on-chip memory usage.

The SCOREBOARD array is in the LCF pipeline and is placed
before the check table to make lock operations idempotent.
For each requester, it records a lock score, which refers to
the number of successful lock acquisitions. When the switch
processes a cache coherence request and manages to acquire
the lock, the requester’s lock score is incremented. The switch
passes the request to the subsequent check table only if the
lock score is greater than 0. For read lock operations, the lock
score may be greater than 1 due to retransmitted requests;
Figures 8(a)-(c) show an example of such a case.

The LAST-UNLOCK array is placed before the LCF pipeline
to make unlock operations idempotent. For each requester,
it records the largest sequence number of executed unlock
requests, to avoid repeated execution of the same unlock re-
quest. When receiving an unlock request, the switch reads
the requester’s lock score (¶ in Figure 8(d)), and then re-
submits the request with the lock score (·). If the sequence
number in the resubmitted request is larger than the value
in the LAST-UNLOCK , the switch updates the LAST-UNLOCK
array (¸) and executes the unlock operation (¹). For a read
unlock operation, the switch subtracts lock score from the
reader counter field of the reader-writer lock. Finally, the
requester’s value in the SCOREBOARD is reset (º).

Using only one lock score for a requester disables asyn-
chronous unlock requests, since we cannot allow requests
in two cache coherence events to manipulate the same lock
score concurrently. Thus, to enable asynchronous unlock
requests, each requester is associated with two lock scores
in SCOREBOARD array: one for requests with odd sequence

numbers, the other for even ones. Before issuing an unlock
request, a requester must ensure that it has received the ACK
of the unlock request in the last cache coherence event.

5.4 Practical Issues
Scalability. We focus on rack-scale DSMs in this paper,
following the growing tread towards rack-scale computers,
which have the potential as building blocks for datacenters
(e.g., Microsoft Rack-scale computers [9], Facebook Open-
Rack [3], Intel RSD [7]). By packing many servers into
the same rack, a rack-scale computer can provide extremely
high network bandwidth and low communication latency, to
efficiently support various data-intensive applications (e.g.,
parameter servers [48]). CONCORDIA abstracts a rack into
one giant machine with massive cache-coherent shared mem-
ory, easing the programming on rack-scale computers.

Within a rack, CONCORDIA is capable of scaling well. In
our FLOWCC protocol, the most difficult tasks to scale (i.e.,
concurrency control and multicast) are offloaded to the switch;
during a cache coherence event, involved home/cache agents
only process constant-time tasks (independent of cluster size).
The switch can process several billion packets per second,
which is enough to handle coherence traffic within a rack.

If CONCORDIA spans multiple racks, each ToR switch will
execute the LCF pipeline for home nodes that reside in its
rack. Yet, there are several challenges that we must address.
À It is impractical to use a bitmap to encode the copyset
as we do now, considering the number of servers in large-
scale clusters; we need to design a more compact copyset
format like coarse vectors [31]. Á To avoid cache invalidation
storms in a large scale, a weaker memory consistency level
(e.g., acquire-release consistency [61]) may be needed. A full
exploration is our future work.
Crash safety. We handle failures of different components.
• Switch. If a switch fails, operators can replace it with a
backup switch [34], but lost global metadata needs to be re-
stored. Here, we mark the set of cache blocks managed by
the crashed switch as S. After all application threads abort
their ongoing write/read operations, the system enters into
a recovery process: À Every cache agent gathers the local
states (i.e., dirty bit) of cache blocks that are in both S and
its cache, and then sends them to corresponding home agents.
Á By analyzing replies, home agents reconstruct the global
metadata of S; now, the ownership of S is transferred to home
agents safely. Â Finally, the shadow node clears its SHADOW–
TAG . Leveraging the information stored in the shadow node
may accelerate recovery, and we leave it for future work.
• Memory nodes. We rely on applications atop CONCORDIA
to mask failures of memory nodes, instead of implementing
an internal fault-tolerance mechanism. Take the three applica-
tions in our evaluation (§7) as examples: (i) In-memory key–
value stores are typically used to cache frequently accessed
data of back-end databases [52]. Hence, we recover lost data
from back-end databases. (ii) Transaction processing systems

284 19th USENIX Conference on File and Storage Technologies USENIX Association

can record transaction logs to remote servers [36, 63], to tol-
erate failures of memory nodes. (iii) For a graph computation
engine, the most common way to achieve fault-tolerance is
checkpointing [29, 51].

When a memory node fails but does not release locks, con-
flicting requests from other nodes cannot proceed. We adopt
a conservative “stop-the-world” mechanism to address this
problem: once notified that there is a failed memory node,
all application threads in CONCORDIA drain their ongoing
write/read operations, then halt. Next, all the locks in CON-
CORDIA are released safely. After that, the system continues
to run. Using more flexible mechanisms, e.g., leasing [30],
will consume extra on-chip memory and complicate the de-
sign of the switch data plane; we leave it as our future work.
• Shadow node. When the serving shadow node crashes, we
designate a new shadow node among backups with the help
of ZooKeeper [32]. The new shadow node reconstructs the
SHADOW-TAG by reading the TAG array of the switch.

6 Implementation
We implement a prototype of CONCORDIA in approximately
7600 lines of C++ and 1500 lines of P4 [17]. Like Tread-
Marks [15] and GAM [20], CONCORDIA is a user-space DSM
system. Applications are linked to the CONCORDIA library
and call the read/write interface. In each memory node, the
cache agent and home agent run on two different background
threads by default, but it is easy to scale up them.
Network. We use RoCE (RDMA over Converged Ether-
net) to enable high-performance network communication.
All the cache block data is sent via RDMA WRITE verbs
over Reliable Connected (RC) mode to avoid data copying.
Other packets (e.g., cache coherence requests) use RDMA
Raw Packets [10]; we fill a UDP header and use a reserved
source port for these packets. The switch executes FLOWCC
for these packets, and sets the UDP destination port to the
queue pair number (qpn) of the targeted queue pair. Each
Raw Packet queue pair registers a steering rule to intercept
the packets received by the NIC whose source port equals
reserved port and destination port equals its qpn.
Cache. The cache in each memory node is organized into a
bucket-based hash table. When looking up a cache block, we
hash its tag into a bucket, which contains a certain number
of entries (e.g., 8). Each entry records a cache block’s local
metadata, including dirty bit, tag, timestamp and a pointer
to the cache block data. We record the current time into the
timestamp field when accessing a cache block, and employ an
LRU policy for cache eviction. By default, the cache block
size is 4KB, which achieves a good balance between network
bandwidth and latency in the high-speed RDMA environment.
Switch data plane. The switch data plane is written in P4
and is compiled to Barefoot Tofino ASIC [2]. The COPYSET
array is comprised of 32-bit slots, since our ToR switch owns
32 ports. We use one ingress pipeline to process the cache
coherence traffic by realizing our LCF pipeline. Since the

memory resources in a single stage of the ingress pipeline
are limited, we scatter the values of TAG , LOCK , G-STATUS ,
and COPYSET arrays across 10 stages, forming set-associative
structures. Thus, a cache block has multiple candidate loca-
tions in different stages: if the hash value of its tag is k, its tag
and global metadata can be stored in the kth items of arrays
in any stage. Our current implementation can manage 375K
cache blocks (i.e., about 1.5GB cache data) in the switch,
consuming about 6MB on-chip memory.
Synchronization primitive. We expose per-cache-block
reader-writer locks in the FLOWCC protocol as a synchro-
nization primitive (i.e., rwlock) to applications.
Global memory allocation. We use a two-level approach to
allocate global memory for applications [60]. Application
threads select a memory node and send allocation requests
to its home agent. The home agent returns a huge free chunk
(i.e., 32MB). Then application threads perform allocation
locally in a fine-grained way, to reduce remote access.

7 Evaluation
This section presents the performance evaluation of CONCOR-
DIA with a set of micro benchmarks and three applications.
All experiments are conducted on a cluster of 8 machines,
each with two 12-core Intel Xeon E5-2650 v4 2.20GHz CPUs,
128GB DRAM, and one 100Gbps Mellanox ConnectX-5 net-
work adapter. A 3.3Tbps Barefoot Tofino switch (32 ports)
connects all of the machines. All machines run the CentOS
7.4.1708 distribution and the 3.10.0 Linux kernel.

7.1 Systems in Comparison
We compare CONCORDIA with two state-of-the-art DSMs:
Grappa. Grappa [6, 51] is a DSM without a cache for data-
intensive applications. Instead of fetching data to computa-
tion, Grappa ships computation to data via delegate operations.
Message transmission in Grappa is done purely in user-mode
using MPI, which in turn uses RDMA verbs.
GAM. GAM [5, 20] is a recent DSM that implements a
directory-based cache coherence protocol over RDMA. In
addition to application threads, GAM uses two background
threads to handle cache coherence events by default. We
disable GAM’s logging scheme for a fair comparison.

7.2 Micro Benchmarks
In micro benchmarks, we launch a four-thread process in each
memory node to generate mixed read-write workloads. Each
operation in workloads accesses an 8-byte object in the global
memory, which is the same as in GAM [20]. The working
set of these micro benchmarks is 8GB, and the cache size
is 1GB. The access pattern of the workloads is controlled
via three parameters: read ratio, data locality, and sharing
ratio. The read ratio is the percentage of read operations. The
data locality is the probability of an operation accessing the
same cache block as the previous one. The sharing ratio is
the percentage of operations that access data shared across
all nodes, and the shared data is about 250MB. We run all

USENIX Association 19th USENIX Conference on File and Storage Technologies 285

Grappa
GAM

Concordia-base
Concordia

Th
ro

ug
hp

ut
 [M

op
/s

]
0

4

8

12

Sharing Ratio (%)
0 20 40 60 80 100

Figure 9: Performance Impact of Sharing Ratio.
Concordia-base Concordia

0

50

100

150

of

 P
ac

ke
ts

 (m
illi

on
)

Sharing Ratio (%)

(a) Receive (b) Send

Sharing Ratio (%)
0

50

100

150

0 50 100 0 50 100

Figure 10: Communication Reduction from LCF Pipeline. The
figure shows the number of packets received/sent by home agents.

the micro benchmarks on 8 nodes. By default, the read ratio
is 50% and the data locality is 0%. The baseline version
of CONCORDIA (i.e., CONCORDIA-base), in which servers
manage ownership of all cache blocks, is also evaluated.

7.2.1 Sharing Ratio

Figure 9 presents the results with various sharing ratio. Be-
cause the operations are very small (i.e., 8 bytes read/write),
which induces too many remote delegation operations and
worker scheduling events in Grappa, Grappa’s throughput is
far lower than other systems.

When the sharing ratio is 0%, i.e., no cache coherence
traffic, GAM has higher throughput than CONCORDIA and
CONCORDIA-base. This is because the cache in GAM is a
fully associative mapping structure, which causes fewer cache
block evictions than the set-associative cache of CONCORDIA.

As the sharing ratio becomes higher, the introduced cache
coherence traffic becomes severe, which causes performance
degradation of all the DSMs. The throughput of GAM is
reduced by 17× when the sharing ratio increases from 0%
to 100%. However, CONCORDIA-base’s throughput is only
reduced by 3.8× even with considerable coherence traffic
(i.e., 100% sharing ratio), and it outperforms GAM by 1.25×
to 3.5× when shared data access exists. The reason is that
CONCORDIA-base offloads home node tasks such as invalida-
tion aggregation to the requesters, thus reducing the load on
home nodes. CONCORDIA outperforms CONCORDIA-base
by 1.3× to 1.48× when sharing ratio is larger than 20%. This
is mainly because our in-network protocol takes home nodes
off the critical path of cache coherence as well as reduces
network hops and coordination, leveraging the extremely high
processing power of the switch.

To quantitatively understand the effect of the LCF pipeline,
we collect the number of packets sent and received by all
home agents in CONCORDIA and CONCORDIA-base, as
shown in Figure 10. When the sharing ratio grows, the num-
ber of packets sent and received by CONCORDIA-base’s home
agents increases dramatically due to increased coherence traf-
fic. However, owing to the help of the LCF pipeline, home

Grappa
GAM

Concordia-base
Concordia

Th
ro

ug
hp

ut
 [M

op
/s

]

 Read Ratio (%) Read Ratio (%)

(a) 20% Sharing Ratio (b) 60% Sharing Ratio

0
4
8

12
16

0 50 100 0 50 100

Figure 11: Performance Impact of Read Ratio.

agents in CONCORDIA send and receive a steady number
of packets, regardless of the sharing ratio. Such a result in-
dicates that the LCF pipeline effectively mitigates load for
home agents and reduces coordination between servers, which
ensures CONCORDIA’s performance gain over CONCORDIA-
base. Of note, though CONCORDIA reduces transferred pack-
ets significantly (up to 4.8×), it improves throughput by up
to 1.48× (Figure 9). This is because part of the accesses are
served by the local cache (39% in case of 100% sharing ratio)
and do not incur coherence traffic; these local accesses cannot
benefit from the LCF pipeline.

7.2.2 Read Ratio

This experiment studies how the read ratio affects the perfor-
mance. Figure 11 shows the results. When the read ratio is
lower than 50%, the throughput of these four DSMs is stable
regardless of read ratio, since the performance of systems
except Grappa is bottlenecked by coherence traffic. CONCOR-
DIA outperforms CONCORDIA-base by 1.22× and GAM by
3.5× to 3.9× in case of light data sharing (i.e., 20% sharing
ratio) and outperforms CONCORDIA-base by 1.48× to 1.5×
and GAM by 4.5× to 5.1× in case of heavy data sharing (i.e.,
60% sharing ratio). CONCORDIA performs better because the
FLOWCC protocol accelerates coherence processing.

The throughput of GAM, CONCORDIA-base, and CON-
CORDIA grows as the read ratio increases from 50% to 100%,
since the coherence traffic becomes light. More specifically,
À GAM outperforms CONCORDIA in case of 100% read ratio
and 20% sharing ratio. This is because no coherence traffic ex-
ists and GAM triggers fewer cache eviction events than CON-
CORDIA. Á With 100% read ratio and 60% sharing ratio, the
throughputs of GAM and CONCORDIA/CONCORDIA-base
are 16Mops and 60Mops, respectively, which we do not plot
in the figure to avoid obscuring other results. This is because
(i) there is almost no cache eviction, and (ii) CONCORDIA’s
cache structure is optimized for fast access, but GAM needs
to acquire/release four locks and maintain LRU lists when
accessing a cache block, which severely stalls CPU pipeline
even without data race.

7.2.3 Data Locality

Figure 12 investigates how data locality affects the throughput
of these systems. With higher data locality, the performance
of CONCORDIA and GAM improves substantially as a result
of the cache. On the contrary, since Grappa does not use a
cache, it can not benefit from the locality. We do not plot
results when the locality is 100% because the corresponding

286 19th USENIX Conference on File and Storage Technologies USENIX Association

0

20

40

Th
ro

ug
hp

ut
 [M

op
/s

]

 Locality (%) Locality (%)

Grappa
GAM

Concordia-base
Concordia

(a) 20% Sharing Ratio (b) 60% Sharing Ratio

0
20
40
60

0 50 100 0 50 100

Figure 12: Performance Impact of Data Locality.

Th
ro

ug
hp

ut
[M

op
/s

] stop &
reactivate switch switch is up

0
2
4
6

Time (s)
0 10 20 30 40 50 60

Figure 13: Switch Failure Handling.

values are too high: 23Mops for GAM and 133Mops for
CONCORDIA and CONCORDIA-base, which would obscure
other results. This is because CONCORDIA’s cache structure
is much faster, as stated in §7.2.2.

7.2.4 Switch Failure Handling

Here, we evaluate how CONCORDIA handles a switch fail-
ure. We set the sharing ratio to 60%. Figure 13 shows the
total throughput over time. At time 20 s, we stop the switch
by killing its daemon process, and then reactivate it; since
the switch cannot route packets, the throughput immediately
drops to 0. After initialization of the switch ASIC and drivers
(about 16 seconds), the switch is up and can route packets.
Then, CONCORDIA recovers the global metadata of cache
blocks managed by the previous switch instance, consuming
about 1.9 seconds; after this step, CONCORDIA can continue
to run its workloads. Finally, CONCORDIA migrates the own-
ership of shared cache blocks to the switch (1.5 seconds), and
the throughput reaches a stable peak.

7.3 Distributed Key-Value Store
We build a distributed key-value store atop CONCORDIA,
which is implemented by a distributed array of buckets across
nodes. A key is hashed to a bucket, and then PUT/GET opera-
tions are translated into a series of DSM calls (i.e., write, read,
lock and unlock). GAM has a similar version of key-value
store implementation. For Grappa, each thread maintains part
of the key-value store and handles delegation requests.

We run skewed workloads using a non-uniform key popu-
larity that follows a Zipf distribution of skewness 0.99, which
is the same as YCSB’s [22]. The keyspace size is 64 million,
and we use fixed 8-byte keys and 128-byte values. 95% GET

workloads are read-intensive, and 50% GET workloads are
write-intensive. Each node launches a four-thread process to
generate workloads. The cache size is 2GB. Figure 14 shows
the results with varied node counts.

For read-intensive workloads, when there are more than 2
nodes, CONCORDIA outperforms Grappa by 3.9× to 5× and
GAM by 1.2× to 2.5×. Grappa has the lowest performance
among the three systems, because each PUT/GET operation
needs remote delegation and the nodes serving the most popu-

Th
ro

ug
hp

ut
 [M

op
/s

]

0

0.5

1.0

1.5

 # of Node # of Node

Grappa GAM Concordia
(a) 95% GET (b) 50% GET

0

1

2

3

2 4 6 8 2 4 6 8

Figure 14: Throughput of Key-Value Store.

Th
ro

ug
hp

ut
 [K

 tp
s]

0

0.2

0.4

 Distribution Ratio (%) Distribution Ratio (%)

GAM Concordia

Ab
or

t R
at

e(a) Throughout (b) Abort Rate

0

100

200

0 50 100 0 50 100

Figure 15: Performance of TPC-C Benchmark.

lar objects suffer from hot spots in the presence of skew. The
cache absorbs many GET operations, and thus the throughputs
of GAM and CONCORDIA are higher than that of Grappa. The
workload with 5% PUT operations causes a small amount of
cache coherence traffic in CONCORDIA and GAM. However,
GAM is more vulnerable to coherence traffic than CONCOR-
DIA, due to its traditional directory-based protocol design,
and its throughput plateaus or even decreases somewhat when
the node count becomes larger. In contrast, CONCORDIA can
benefit from the cache, while minimizing coherence overhead
with the help of FLOWCC protocol.

For write-intensive workloads, CONCORDIA outperforms
GAM by 1.2× to 4.2× and Grappa by 2.3× to 2.6×. GAM’s
total throughput drops and is lower than Grappa’s when
adding more nodes because of heavy coherence overhead.
The ownership migration in CONCORDIA lets the switch man-
age coherence traffic of the hottest cache blocks in skewed
workloads, which guarantees CONCORDIA’s scalability.

7.4 Transaction Processing
We port the transaction engine of GAM into CONCORDIA;
this engine implements two-phase locking for concurrency
control and non-waiting scheme for deadlock prevention. In
this experiment, we use TPC-C [11] to compare the perfor-
mance of CONCORDIA against GAM. All tables and indices
are uniformly distributed in the global memory, following
the growing trend towards shared-everything architectures
[64, 66]. We launch 4 threads in each node, and each thread
holds a TPC-C warehouse (i.e., 32 warehouses in total). Each
thread accesses other warehouses with a probability called
the distribution ratio. The cache size is 2GB.

Figure 15(a) shows the throughput of the TPC-C bench-
mark. Both systems have almost the same throughput when
there is no data sharing. However, CONCORDIA outperforms
GAM by 1.55× to 2× when different threads access the same
warehouses. This is because CONCORDIA’s FLOWCC proto-
col is faster than GAM’s, causing lower transaction execution
time and further reducing transaction aborts due to contention.
Figure 15(b) plots the transaction abort ratio. The abort ratio
of the two systems increases when the distribution ratio gets

USENIX Association 19th USENIX Conference on File and Storage Technologies 287

0

200

400(a) LiveJournal

PowerGraph Grappa Concordia
R

un
 T

im
e

(s
ec

on
ds

)

(b) Twitter

0

20

40

4 Nodes 8 Nodes 4 Nodes 8 Nodes
Figure 16: PageRank Total Run Time.

higher, but CONCORDIA has a much lower abort ratio.

7.5 Distributed Graph Computing
We build a distributed graph processing engine on CONCOR-
DIA. Similar to PowerGraph [29], we store graphs using a
vertex-centric representation with random graph partitioning.
For a graph algorithm, each thread executes the gather, apply
and scatter phases on a set of vertices.

We compare CONCORDIA’s graph engine with Grappa
and PowerGraph using two real datasets: LiveJournal (4M
vertices, 34.7M directed edges) [8] and the latest Twitter
graph (61M vertices, 14B directed edges) [12, 39] . We run
PageRank [54] with CONCORDIA, PowerGraph, and Grappa
under 4 and 8 node settings, and each node launches 4 threads.
We use PowerGraph’s default threshold criteria, which results
in the same number of iterations for all systems.

Figure 16 shows the total PageRank run time. CONCORDIA
outperforms Grappa by 1.3× to 2.3× and PowerGraph by
1.8× to 4.4×. This is because, CONCORDIA’s network stack
takes full advantage of RDMA performance, using WRITE
verbs without any data copying. In addition, CONCORDIA’s
cache mechanism minimizes the amount of data transferred
across the network.

8 Related Work
Distributed Shared Memory. In the past few decades,
many DSMs and cache coherence approaches have been pro-
posed [15, 16, 21, 44, 58, 62]. IVY [44] provides sequential
consistency at the cost of frequent cache invalidations. Other
systems [15,21,58] relax the consistency model or avoid false
sharing to reduce communication overheads. CONCORDIA
provides strong consistency to ease the programming, while
minimizing coherence overheads.

As recent RDMA technology makes the latency and
throughput of the network approach that of memory, new
DSMs have emerged [20, 25, 47, 51, 61]. FaRM [25, 26, 59]
offers general distributed transactions to global shared mem-
ory. Octopus [47] redesigns a distributed file system over a
shared persistent memory pool. Hotpot [61] leverages non-
volatile memory to incorporate both distributed memory and
distributed storage. Different from the above systems, CON-
CORDIA focuses on cache coherence and accelerates it by
exploiting new programmable network hardware.
In-Network Computation. Emerging network hardware
like programmable switches poses new opportunities for
in-network computation [49, 55]. NetCache [34] and Dist-
Cache [46] propose in-switch caches for load balancing.
NetChain [33] designs a replicated, in-switch key-value store

for distributed coordination. IncBricks [45] supports caching
in the network using a programmable network middlebox.
These in-network caching or key-value store systems need to
keep data in the network hardware and servers coherent. They
adopt similar server-based mechanisms to solve this prob-
lem. For example, in IncBricks, servers record the sharers
list and issue invalidation commands to network accelerators
when clients send SET or DELETE requests. In contrast, CON-
CORDIA exploits the programmable network to coordinate
coherence among the cache of servers and only stores the
cache’s metadata in the switch.

The most similar work to ours is Pegasus [43]. Pegasus
replicates the most popular objects to distribute load and lever-
ages switches to track servers that store replicated objects.
When a client issues a read request, the switch routes the
request to a replica by a load-aware scheduling policy. When
a client issues a write request, the switch resets the replica set
to include only one server by a version-based mechanism. Pe-
gasus’s protocol is specialized and simplified for client-server
model systems. In contrast, our FLOWCC protocol is de-
signed for the general cache coherence problem in symmetric
model systems (i.e., DSMs), with complex state transitions
and concurrency control. In addition, CONCORDIA is a DSM
but Pegasus is an object store.

9 Conclusion
We present CONCORDIA, a rack-scale DSM with in-network
cache coherence; it divides coherence responsibility between
switches and servers to reduce coherence overhead within
the functionality and resource limit of switches. Specifi-
cally, CONCORDIA incorporates (i) a protocol that leverages
switches to serialize and multicast requests, (ii) a mechanism
that moves the ownership of cache blocks between switches
and servers dynamically, and (iii) a method that makes opera-
tions in both servers and switches idempotent. CONCORDIA
significantly outperforms existing solutions.

We believe that our in-network coherence protocol can also
benefit other systems such as distributed file systems and hard-
ware memory disaggregation. As storage hardware becomes
extremely fast (e.g., non-volatile memory), new distributed
file systems need microsecond-scale coherence for metadata
caching, which can be provided by our in-network coherence
protocol. Our in-network coherence protocol can also enable
compute node caching for shared data in hardware disaggre-
gated memory architectures; such caching is indispensable
for reducing network accesses.

10 Acknowledgements
We sincerely thank our shepherd Kimberly Keeton for helping
us improve the paper. We also thank the anonymous review-
ers for their feedback. This work is supported by the National
Key Research & Development Program of China (Grant No.
2018YFB1003301), the National Natural Science Founda-
tion of China (Grant No. 62022051, 61832011, 61772300,
61877035), and Huawei (Grant No. YBN2019125112).

288 19th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Introducing Amazon EC2 C5n Instances Fea-

turing 100 Gbps of Network Bandwidth.
"https://aws.amazon.com/about-aws/whats-

new/2018/11/introducing-amazon-ec2-c5n-

instances/", 2018.

[2] Barefoot Tofino. "https://barefootnetworks.

com/products/brief-tofino/", 2020.

[3] Facebook OpenRack. "https://engineering.fb.

com/data-center-engineering/open-rack/",
2020.

[4] FaRM Project. "https://www.microsoft.com/en-
us/research/project/farm/", 2020.

[5] GAM Repository. "https://github.com/ooibc88/
gam", 2020.

[6] Grappa Repository. "https://github.com/

uwsampa/grappa", 2020.

[7] Intel RSD. "https://www.intel.com/content/

www/us/en/architecture-and-technology/

rack-scale-design-overview.html/", 2020.

[8] LiveJournal Dataset. "http://snap.stanford.edu/
data/soc-LiveJournal1.html", 2020.

[9] Microsoft Rack-Scale Computers. "https://www.

microsoft.com/en-us/research/project/rack-

scale-computing/", 2020.

[10] RDMA Raw Packet. "https://community.

mellanox.com/s/article/raw-ethernet-

programming--basic-introduction---code-

example", 2020.

[11] TPC-C. "http://www.tpc.org/tpcc/", 2020.

[12] Twitter Dataset. "http://an.kaist.ac.kr/

traces/WWW2010.html", 2020.

[13] Dennis Abts, Steve Scott, and David J. Lilja. So Many
States, So Little Time: Verifying Memory Coherence
in the Cray X1. In Proceedings of the 17th Interna-
tional Symposium on Parallel and Distributed Process-
ing, IPDPS ’03, page 11.2, USA, 2003. IEEE Computer
Society.

[14] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Pratap Subrahmanyam,
Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
and Michael Wei. Remote Memory in the Age of Fast
Networks. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, pages 121–127, New
York, NY, USA, 2017. ACM.

[15] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas,
Pete Keleher, Honghui Lu, Ramakrishnan Rajamony,
Weimin Yu, and Willy Zwaenepoel. TreadMarks:
Shared Memory Computing on Networks of Worksta-
tions. Computer, 29(2):18–28, February 1996.

[16] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A.
Sawdon. The Midway Distributed Shared Memory Sys-
tem. Technical report, Pittsburgh, PA, USA, 1993.

[17] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming Protocol-independent
Packet Processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014.

[18] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hardware
for SDN. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 99–
110, New York, NY, USA, 2013. ACM.

[19] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett,
Miguel Castro, Wonhee Cho, Joshua Cowhig, Nikolas
Gloy, Karthik Kalyanaraman, Richendra Khanna, John
Pao, Matthew Renzelmann, Alex Shamis, Timothy Tan,
and Shuheng Zheng. A1: A Distributed In-Memory
Graph Database. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data,
SIGMOD ’20, page 329–344, New York, NY, USA,
2020. Association for Computing Machinery.

[20] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient Distributed
Memory Management with RDMA and Caching. Proc.
VLDB Endow., 11(11):1604–1617, July 2018.

[21] John B. Carter, John K. Bennett, and Willy Zwaenepoel.
Implementation and Performance of Munin. In Proceed-
ings of the Thirteenth ACM Symposium on Operating
Systems Principles, SOSP ’91, pages 152–164, New
York, NY, USA, 1991. ACM.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[23] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. NetPaxos: Consensus
at Network Speed. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking
Research, SOSR ’15, pages 5:1–5:7, New York, NY,
USA, 2015. ACM.

[24] Xavier Défago, André Schiper, and Péter Urbán. Total
Order Broadcast and Multicast Algorithms: Taxonomy
and Survey. ACM Comput. Surv., 36(4):372–421, De-
cember 2004.

USENIX Association 19th USENIX Conference on File and Storage Technologies 289

"https: //aws.amazon.com/about-aws/whats-new/2018/11/ introducing-amazon-ec2-c5n-instances/"
"https: //aws.amazon.com/about-aws/whats-new/2018/11/ introducing-amazon-ec2-c5n-instances/"
"https: //aws.amazon.com/about-aws/whats-new/2018/11/ introducing-amazon-ec2-c5n-instances/"
"https://barefootnetworks.com/products/brief-tofino/"
"https://barefootnetworks.com/products/brief-tofino/"
"https://engineering.fb.com/data-center-engineering/open-rack/"
"https://engineering.fb.com/data-center-engineering/open-rack/"
"https://www.microsoft.com/en-us/research/project/farm/"
"https://www.microsoft.com/en-us/research/project/farm/"
"https://github.com/ooibc88/gam"
"https://github.com/ooibc88/gam"
"https://github.com/uwsampa/grappa"
"https://github.com/uwsampa/grappa"
"https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html/"
"https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html/"
"https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html/"
"http://snap.stanford.edu/data/soc-LiveJournal1.html"
"http://snap.stanford.edu/data/soc-LiveJournal1.html"
"https://www.microsoft.com/en-us/research/project/rack-scale-computing/"
"https://www.microsoft.com/en-us/research/project/rack-scale-computing/"
"https://www.microsoft.com/en-us/research/project/rack-scale-computing/"
"https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example"
"https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example"
"https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example"
"https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example"
"http://www.tpc.org/tpcc/"
"http://an.kaist.ac.kr/traces/WWW2010.html"
"http://an.kaist.ac.kr/traces/WWW2010.html"

[25] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast Remote Mem-
ory. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’14, pages 401–414, Berkeley, CA, USA, 2014.
USENIX Association.

[26] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP ’15, pages 54–70, New York, NY, USA, 2015.
ACM.

[27] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi,
Nicolai Oswald, Boris Grot, and Vijay Nagarajan. Scale-
out ccNUMA: Exploiting Skew with Strongly Consis-
tent Caching. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, pages 21:1–21:15, New York,
NY, USA, 2018. ACM.

[28] Kourosh Gharachorloo. The Plight of Software Dis-
tributed Shared Memory. In Invited talk at 1st Workshop
on Software Distributed Shared Memory (WSDSM’99).
Citeseer, 1999.

[29] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. PowerGraph: Distributed
Graph-parallel Computation on Natural Graphs. In Pro-
ceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages
17–30, Berkeley, CA, USA, 2012. USENIX Associa-
tion.

[30] C. Gray and D. Cheriton. Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consis-
tency. In Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, SOSP ’89, page 202–210,
New York, NY, USA, 1989. Association for Computing
Machinery.

[31] Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry.
Reducing Memory and Traffic Requirements for Scal-
able Directory-based Cache Coherence Schemes. In
Scalable shared memory multiprocessors, pages 167–
192. Springer, 1992.

[32] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. ZooKeeper: Wait-free Coordination
for Internet-scale Systems. In Proceedings of the 2010
USENIX Conference on USENIX Annual Technical Con-
ference, USENIXATC’10, pages 11–11, Berkeley, CA,
USA, 2010. USENIX Association.

[33] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and
Ion Stoica. Netchain: Scale-free sub-RTT Coordination.

In Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’18,
pages 35–49, Berkeley, CA, USA, 2018. USENIX As-
sociation.

[34] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 121–136, New York, NY, USA, 2017. ACM.

[35] Rajeev Joshi, Leslie Lamport, John Matthews, Serdar
Tasiran, Mark Tuttle, and Yuan Yu. Checking Cache-
Coherence Protocols with TLA+. Form. Methods Syst.
Des., 22(2):125–131, March 2003.

[36] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 185–201, Savannah,
GA, November 2016. USENIX Association.

[37] Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun
Lee, and Srinivasan Seshan. Generic External Memory
for Switch Data Planes. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, pages 1–7. ACM,
2018.

[38] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs First-
class Datacenter Citizens. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’19, pages 863–879, Berkeley,
CA, USA, 2019. USENIX Association.

[39] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. What is Twitter, a Social Network or a
News Media? In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, pages 591–
600, New York, NY, USA, 2010. ACM.

[40] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Mat-
sushita, and John Ousterhout. Implementing Lineariz-
ability at Large Scale and Low Latency. In Proceedings
of the 25th Symposium on Operating Systems Principles,
SOSP ’15, pages 71–86, New York, NY, USA, 2015.
ACM.

[41] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 104–120, New York, NY, USA, 2017.
ACM.

[42] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adri-
ana Szekeres, and Dan R. K. Ports. Just Say No to
Paxos Overhead: Replacing Consensus with Network

290 19th USENIX Conference on File and Storage Technologies USENIX Association

Ordering. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI’16, pages 467–483, Berkeley, CA, USA, 2016.
USENIX Association.

[43] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan
R. K. Ports. Pegasus: Tolerating Skewed Workloads
in Distributed Storage with In-Network Coherence Di-
rectories. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
387–406. USENIX Association, November 2020.

[44] Kai Li and Paul Hudak. Memory Coherence in Shared
Virtual Memory Systems. In Proceedings of the Fifth
Annual ACM Symposium on Principles of Distributed
Computing, PODC ’86, pages 229–239, New York, NY,
USA, 1986. ACM.

[45] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind
Krishnamurthy, and Kishore Atreya. IncBricks: Toward
In-Network Computation with an In-Network Cache. In
Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’17, pages
795–809, New York, NY, USA, 2017. ACM.

[46] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and
Ion Stoica. DistCache: Provable Load Balancing for
Large-scale Storage Systems with Distributed Caching.
In Proceedings of the 17th USENIX Conference on File
and Storage Technologies, FAST’19, pages 143–157,
Berkeley, CA, USA, 2019. USENIX Association.

[47] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Oc-
topus: An RDMA-enabled Distributed Persistent Mem-
ory File System. In Proceedings of the 2017 USENIX
Conference on Usenix Annual Technical Conference,
USENIX ATC ’17, pages 773–785, Berkeley, CA, USA,
2017. USENIX Association.

[48] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee,
and Arvind Krishnamurthy. Parameter Hub: A Rack-
Scale Parameter Server for Distributed Deep Neural
Network Training. In Proceedings of the ACM Sym-
posium on Cloud Computing, SoCC ’18, page 41–54,
New York, NY, USA, 2018. Association for Computing
Machinery.

[49] James McCauley, Aurojit Panda, Arvind Krishnamurthy,
and Scott Shenker. Thoughts on Load Distribution and
the Role of Programmable Switches. SIGCOMM Com-
put. Commun. Rev., 49(1):18–23, February 2019.

[50] Vijay Nagarajan, Daniel Sorin, Mark Hill, and David
Wood. A Primer on Memory Consistency and Cache
Coherence, Second Edition. Synthesis Lectures on Com-
puter Architecture, 15:1–294, 02 2020.

[51] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.

Latency-tolerant Software Distributed Shared Mem-
ory. In Proceedings of the 2015 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’15, pages 291–305, Berkeley, CA, USA, 2015.
USENIX Association.

[52] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’13, page 385–398, USA, 2013.
USENIX Association.

[53] Bill Nitzberg and Virginia Lo. Distributed Shared Mem-
ory: A Survey of Issues and Algorithms. Computer,
24(8):52–60, August 1991.

[54] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The PageRank citation ranking: Bring-
ing order to the web. Technical report, Stanford InfoLab,
1999.

[55] Dan R. K. Ports and Jacob Nelson. When Should The
Network Be The Computer? In Proceedings of the
Workshop on Hot Topics in Operating Systems, HotOS
’19, pages 209–215, New York, NY, USA, 2019. ACM.

[56] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-Network Com-
putation is a Dumb Idea Whose Time Has Come. In
Proceedings of the 16th ACM Workshop on Hot Topics
in Networks, HotNets-XVI, pages 150–156, New York,
NY, USA, 2017. ACM.

[57] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nel-
son, Panos Kalnis, Changhoon Kim, Arvind Krishna-
murthy, Masoud Moshref, Dan R. K. Ports, and Pe-
ter Richtárik. Scaling Distributed Machine Learning
with In-Network Aggregation. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, April 2021.

[58] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck,
Steven K. Reinhardt, James R. Larus, and David A.
Wood. Fine-grain Access Control for Distributed Shared
Memory. In Proceedings of the Sixth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS VI, pages
297–306, New York, NY, USA, 1994. ACM.

[59] Alex Shamis, Matthew Renzelmann, Stanko No-
vakovic, Georgios Chatzopoulos, Aleksandar Drago-
jević, Dushyanth Narayanan, and Miguel Castro. Fast
General Distributed Transactions with Opacity. In Pro-
ceedings of the 2019 International Conference on Man-
agement of Data, SIGMOD ’19, pages 433–448, New
York, NY, USA, 2019. ACM.

USENIX Association 19th USENIX Conference on File and Storage Technologies 291

[60] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A Disseminated, Distributed OS for
Hardware Resource Disaggregation. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’18, pages 69–87,
Berkeley, CA, USA, 2018. USENIX Association.

[61] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed Shared Persistent Memory. In Proceedings of
the 2017 Symposium on Cloud Computing, SoCC ’17,
pages 323–337, New York, NY, USA, 2017. ACM.

[62] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop
Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. SIGARCH Comput. Archit. News,
20(1):5–44, March 1992.

[63] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’12, page 1–12, New York, NY, USA,
2012. Association for Computing Machinery.

[64] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan
Truong, Ashish Motivala, and Thierry Cruanes. Build-
ing An Elastic Query Engine on Disaggregated Storage
. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 449–462,
Santa Clara, CA, February 2020. USENIX Association.

[65] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast,
Centralized Lock Management Using Programmable
Switches. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Commu-
nication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIG-
COMM ’20, page 126–138, New York, NY, USA, 2020.
Association for Computing Machinery.

[66] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The End of a Myth: Distributed Transactions
Can Scale. Proc. VLDB Endow., 10(6):685–696, Febru-
ary 2017.

[67] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan
R. K. Ports, Ion Stoica, and Xin Jin. Harmonia:
Near-Linear Scalability for Replicated Storage with
in-Network Conflict Detection. Proc. VLDB Endow.,
13(3):376–389, November 2019.

[68] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. RackSched:
A Microsecond-Scale Scheduler for Rack-Scale Com-
puters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
1225–1240. USENIX Association, November 2020.

292 19th USENIX Conference on File and Storage Technologies USENIX Association

eMRC: Efficient Miss Ratio Approximation for Multi-Tier Caching

Zhang Liu
University of Colorado Boulder

Hee Won Lee∗

Samsung Electronics
Yu Xiang

AT&T Labs Research

Dirk Grunwald
University of Colorado Boulder

Sangtae Ha
University of Colorado Boulder

Abstract

Many storage cache allocation methods use the miss ratio

curve (MRC) to improve cache efficiency. However, they have
focused only on single-tier cache architectures and require
the whole MRC as input for cache management, while mod-
ern datacenters embrace hierarchical caching architectures to
maximize resource utilization. Generating the MRC for multi-
tier caches – we call it the miss ratio function – is far more
challenging due to different eviction policies and capacities
in each cache tier. We introduce eMRC, a multi-dimensional
miss ratio approximation technique, to enable efficient MRC
generation for multi-tier caching. Our approach uses a novel
multi-dimensional performance cliff removal method and con-
vex hull approximation technique to efficiently generate a
multi-dimensional MRC without cliffs using a small number
of sampling points. To demonstrate the benefits of eMRC,
we designed ORCA, a multi-tier cache management frame-
work that orchestrates caches residing in different hierarchies
through eMRC and provides efficient multi-tier cache config-
urations to cloud tenants with diverse service level objectives.
We evaluate the performance of our eMRC approximation
technique and ORCA with real-world datacenter traces.

1 Introduction

Caching is often provisioned on multiple tiers in cloud storage
systems. When client applications running in virtual machines
(VMs) generate block IOs to remote storage media, the re-
quests pass through a series of intermediate layers, such as
user-space libraries, hypervisors, and actual storage nodes.
Each layer presents a caching opportunity, and thus most
cloud providers adopt multi-tier caching architectures to max-
imize the utilization of scattered resources in the system [11].

Multi-tier caching necessitates an effective, low overhead
cache management scheme as arbitrary cache configurations

∗Hee Won Lee conducted this project when he was at AT&T Labs Re-
search.

for multiple tiers may not benefit tenants due to their side ef-
fects such as double caching effects [27]. Configuring caches
for tenants with diverse service level objectives (SLOs) re-
quires efficient and accurate cache performance analysis for
each tier of the cache.

It is well known that effective cache management requires
a good understanding of IO workload characteristics. Without
understanding the workload, systems usually rely on trial-
and-error tuning methods that can be very inefficient. The
miss ratio curve (MRC) is a useful tool to capture workload
characteristics and tune system behavior. The MRC represents
the relationship between cache size and the corresponding
cache miss ratio. Assuming workloads are relatively stable
over time, the MRC derived from observed IO traces is known
to work effectively for single-tier caches [13].

The general workflow of utilizing miss ratio information
for cache management is as follows: 1) the IO streams of
tenants are analyzed, and a miss ratio function is generated to
represent the miss ratio for any given cache configurations for
each tenant; 2) based on tenants’ SLOs, a cache management
framework allocates the optimal cache size for each tenant. In
this workflow, the performance primarily depends upon how
quickly it estimates the miss ratio of a particular sized cache
for each tenant, given that the cache management framework
needs to handle multiple tenants, each with a different IO
pattern in a datacenter.

Evaluating the miss ratios for all possible cache sizes is
a very time-consuming task. SHARDS [25] and Miniature
Simulation [24] allow rapid MRC construction with reduced
overhead, and other efficient techniques have also been pro-
posed [7, 10, 26].

These previous techniques are either specific to single-tier
caches or are inefficient for multi-tier caches. As shown in
Figure 1, there are performance cliffs on the miss ratio surface
where miss ratios change dramatically with small changes in
cache size. The miss ratio surface is a multi-dimensional func-
tion representing the relationship between cache size in each
tier of the cache hierarchy and the corresponding cache miss
ratios. While evaluating cache configurations using multi-tier

USENIX Association 19th USENIX Conference on File and Storage Technologies 293

Figure 1: Miss ratio surface of MSR web_2 trace.

cache simulators such as PyMimircache [8, 30] is possible,
and MRC cliff removal techniques [4, 6] are available for
single-tier caching, to the best of our knowledge, there are
no known algorithms that can remove performance cliffs in
miss ratio functions for multi-tier caches, or that can generate
continuous miss ratio functions efficiently.

In this paper, we present our eMRC approach to achiev-
ing the efficient, rapid generation of multi-dimensional miss
ratio functions for multi-tier caching. eMRC is enabled by
our convex hull algorithm and cache partitioning algorithm.
The convex hull algorithm efficiently divides the whole multi-
dimensional space into multiple regions without full knowl-
edge of the multi-dimensional MRC. This convex hull al-
gorithm only requires a small number of sampling points
that significantly reduces the computation time. The cache
partitioning algorithm then removes performance cliffs for
multi-tier caching within any region bounded by data points
with known miss ratio values; the resulting miss ratio func-
tion is always equal to or better than the original miss ratio
function without eMRC’s cache partitioning.

We also developed the ORCA cache orchestration frame-
work for multi-tenant, multi-tier caching that leverages eMRC.
We evaluate both eMRC and ORCA using real-world IO
traces released by Microsoft [1].

Our key contributions can be summarized as follows:

• We are the first to provide an algorithm, eMRC, that
removes performance cliffs in multi-dimensional miss
ratio functions for multi-tier caching.

• For eMRC, we develop a technique called Convex Hull

Approximation. In terms of the number of sampling
points required, it speeds up MRC generation by 14
times for two-tier caching and 4,527 times for four-tier
caching.

• ORCA uses eMRC to efficiently provide effective cache
configurations for tenants with diverse SLOs by selecting
optimal cache sizes and replacement policies.

• We evaluate our eMRC approximation method with real
datacenter traces and validate that ORCA provides ef-
fective multi-tier cache configurations and boosts the
performance for various types of mixed workloads.

2 Background

In this section, we will review three concepts upon which our
eMRC approximation is built.

2.1 Sampling and Statistical Similarity

Statistical similarity means a smaller sampled IO trace can be
used to estimate the miss ratio of the original IO trace. Kessler
et al. [12] defined the “10% sampling goal” for statistical

similarity: “A method meets the 10% sampling goal if, at
least 90% of the time, it estimates the trace’s true misses per
instruction with ≤ 10% relative error using ≤ 10% of the
trace”, and showed that constant-bits sampling satisfies such
a goal. Constant-bits sampling means selecting the IO entries
that have the same value in some address bits.

Spatial sampling is a recently proposed technique to sample
IO traces with statistical similarity. It means taking the hash
values of IO addresses A and then using modulus P and a
threshold T on the hash value to determine what fraction of
IO operations to sample, hash(A)mod P < T . The resulting
sampling rate is R = T/P.

Statistical similarity has been used in various MRC based
studies, e.g., accelerating trace-driven simulations [24, 25]
and altering cache behaviors by using shadow partitions [4].

2.2 Talus Cache Partitioning

Talus [4] is a recently proposed cache partitioning algo-
rithm that can remove MRC performance cliffs for single-tier
caching. Talus utilizes statistical similarity of spatial sam-
pled IO streams. Assuming the original miss ratio is m(x) for
cache size x, passing a fraction1 ρ of an original IO stream
into a proportionally smaller cache partition of size x′ = ρx

will result in a statistically similar miss ratio:

m′(x′) = m(
x′

ρ
), where 0 ≤ ρ ≤ 1 (1)

The Talus algorithm divides a single cache into two par-
titions so that the cache has a miss ratio that interpolates
between two points on the MRC of an original unpartitioned
cache. To demonstrate the Talus algorithm, we use an MRC
example shown in Figure 2. A performance cliff exists be-
tween cache sizes α and β, which are two convex hull points.
If their cache miss ratios are m(α) and m(β), respectively,
Talus partitioning technique can provide cache miss ratio m(x)
whose value is between m(α) and m(β). The small-dotted
MRC is the miss ratio after applying the Talus algorithm. The
Talus MRC curve is convex and lower than the MRC of the
unpartitioned cache.

Now let us assume we want to configure cache partitions so
that the overall miss ratio is lowered from 66% to 53% with a
cache size of x= 0.99 GB that falls between α= 0.23 GB and

1The fraction means the sampling rate of spatial sampling.

294 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 2: Talus miss ratio cliff removal.

β = 1.60 GB. We can determine the miss ratio using the Talus

equation: mtalus(x) =
β−x
β−α m(α)+ x−α

β−α m(β). Hence, for the

example of Figure 2, we can obtain:

mtalus(0.99) =
1.60−0.99

1.60−0.23
m(0.23)+

0.99−0.23

1.60−0.23
m(1.60)

= 0.45×0.76+0.55×0.35

= 0.53.

To achieve this miss ratio, Talus method allocates two cache
partitions of size x1 and x2 such that x = x1 +x2. A fraction ρ
of the IOs will pass through the first cache partition of size

x1 = ρα where ρ = β−x
β−α , and the remaining fraction (1−ρ)

of the IOs will pass through the second cache partition of size
x2 = x− x1.

The resulting miss ratio for the first partition is m1(x1),
which equals m(x1/ρ) by Equation 1. And the miss ratio for
the second partition, m2(x2), equals m(x−x1

1−ρ).
The resulting Talus miss ratio is:

mtalus(x) = ρm1(x1)+(1−ρ)m2(x2)

= ρm(
x1

ρ
)+(1−ρ)m(

x− x1

1−ρ
)

=
β− x

β−α
m(α)+

x−α

β−α
m(β)

In sum, we want to have the Talus cache behave like a mix
of cache sizes α and β. The sample point x = 0.99 GB results

in ρ= β−x
β−α = (1.60−0.99)/(1.60−0.23) = 0.45. Thus, 45%

of the IOs will use a cache partition of x1 = ρα = 0.45×
0.23 = 0.10 GB and they will have a miss ratio of m(x1/ρ) =
m(α) = 0.76. The remaining 55% of the references will use
a cache size of x− x1 = 0.99−0.10 = 0.89 GB with a miss
ratio of m(x−x1

1−ρ) = m(β) = 0.35. Across all the IOs, the miss
ratio will be 0.45×0.76+0.55×0.35 = 0.53.

As this process is repeated for different points x between α
and β, the resulting miss ratio curve will be a linear interpola-
tion between the miss ratios at α and β.

2.3 Rapid MRC Generation

Existing research has mainly focused on using a subset of the
original trace to accelerate MRC generation. Some of them

focused on stack-based eviction policies, while others can
apply to all eviction policies.

Stack-based cache eviction policies have the inclusion prop-

erty, meaning that for the same input IO, the cache of a larger
size always contains all cached items in the cache of a smaller
size. Simple cache eviction policies such as LRU and LFU are
stack-based policies, but more complex eviction policies such
as ARC [17] or MQ [32] are not stack-based. SHARDS [25]
is based on the stack distance algorithm of Mattson et al. [16],
which generates the MRC with a single pass of the work-
load trace. With the help of spatial downsampling, SHARDS
can significantly reduce the computation time and memory
footprint for long traces while generating relatively accurate
MRCs.

Miniature-Simulation [24] is another recent advance in
MRC generation for both stack and non-stack based eviction
policies. It shows that heavy spatial downsampling can be
used to generate a relatively accurate MRC by running a
separate scaled-down simulation for each cache size.

3 eMRC: Miss Ratio Approximation for
Multi-Tier Caching

We will begin with an illustrative example to intuitively show
how eMRC works. After that, we will demonstrate that spa-
tial sampling also works for more than one cache tier in
Section 3.2. We will show how eMRC can remove multi-
dimensional performance cliffs in a cliff region bounded by
data points with known miss ratios in Section 3.3. We explain
how to partition the whole multi-dimensional MRC into mul-
tiple regions efficiently to apply eMRC for the entire space in
Section 3.4. To simplify explanation, we first address two-tier
caching and then generalize our algorithm for three or more
tier caching in Section 3.5.

3.1 Illustrative Example for eMRC

In single-tier caching, Talus achieves a convex MRC by par-
titioning the cache into two partitions and letting the miss
ratio of each partition be related to one of the boundary point
miss ratios. In two-tier caching, as the example in Figure 3
illustrates, there are four boundary points. eMRC partitioned
the last tier cache (2nd tier) into four partitions, with each
partition related to one of the boundary point miss ratios.

In the particular example in Figure 3, there is a cliff region
in the MRC of a workload using two-tier caching. The four
boundary point miss ratios are: M(2,2) = 0.9, M(2,6) = 0.5,
M(6,2) = 0.5 and M(6,6) = 0.5. If we use the two tiers of
caches without partitioning, the miss ratio for 3GB of tier-1
cache and 3GB of tier-2 cache is M(3,3) = 0.9.

eMRC ensures that if we partition the tier-1 cache into
two partitions of [1.5GB, 1.5GB] and the tier-2 cache into
four partitions of [1.125GB, 1.125GB, 0.375GB, 0.375GB],
and then divide the IOs into the different partitions using

USENIX Association 19th USENIX Conference on File and Storage Technologies 295

1.5 GB

0.375 GB1.5 GB

1.125 GB
1.125 GB

0.375 GB

0.75

0.25

Tier-1 cache
partitions

Tier-2 cache
partitions

Miss ratio !! = 0.75×0.75×!(2,2)
Miss ratio !" = 0.75×0.25×!(2,6)
Miss ratio !# = 0.25×0.75×!(6,2)

Miss ratio !$ = 0.25×0.25×!(6,6)

0.75

0.25
0.75

0.25

IOs

eMRC Config

!!"#$ 3,3 = !1+!2+!3+!4 = 0.725

Original surface eMRC surface IO fractioning based on spatial sampling

M(2,2)=0.9

M(6,2)=0.5
M(6,6)=0.5

M(2,6)=0.5

M(3,3) = 0.9 MeMRC(2,2)=0.9

MeMRC(6,2)=0.5 MeMRC (6,6)=0.5

MeMRC (2,6)=0.5

MeMRC (3,3) = 0.725

Figure 3: Example of how eMRC removes performance cliffs.

Figure 4: Relative errors in approximating cache miss ratios
by sampling at rate ρ across all workloads. The error bars
represent the 10th & 90th percentile values.

spatial sampling based hash functions, we have the following
relation:

[

M1
M2
M3
M4

]

=

[

0.75×0.75 0 0 0
0 0.75×0.25 0 0
0 0 0.25×0.75 0
0 0 0 0.25×0.25

][

M(2,2)
M(2,6)
M(6,2)
M(6,6)

]

This means each of the miss ratios after the four tier-2 cache
partitions is only related to one of the boundary point miss
ratios. For example, M1 = 0.75×0.75×M(2,2), meaning no
matter how the miss ratios change at the boundary points,
M1 is only related to the miss ratio at M(2,2) on the original
surface.

The resulting miss ratio using eMRC for 3GB tier-1 cache
and 3GB tier-2 cache is now MeMRC(3,3) = 0.725 compared
to the original miss ratio at M(3,3) = 0.9. If we apply eMRC
to all the cache configurations in the bounded region, we can
obtain a convex eMRC surface as shown in Figure 3.

In Section 3.3, we show how eMRC determines the parti-
tion parameters for cliff removals in detail.

3.2 Spatial Sampling and Statistical Similar-
ity for Multi-tier Caching

To construct the eMRC miss ratio function, we need to parti-
tion caches in each tier repeatedly; this requires spatial sam-
pling to work in multiple cache tiers. Here we are empirically
validating that a spatially sampled IO stream can also be
used to estimate the miss ratio at the tier-2 cache, extending
Kessler’s assumption concerning calculating the tier-1 cache
miss ratio accurately.

We validated this using the MSR IO traces [1]. Figure 4
shows the approximation error in miss ratio at the tier-2 cache
when sampling at different sampling rates ρ before the tier-1

Y1

m(X1, Y1)

Tier-1 Cache
Size

Tier-
2 Cach

e S
ize

X1

m(X2, Y1)

Y2

M
iss

 R
at

io

m(X1, 0)

m(X2, 0)

m(X1, Y2)

m(X2, Y2)

X2

Figure 5: Illustration of a performance cliff region.

cache, with no sampling before the tier-2 cache. We generated
the result shown in Figure 4 as follows. For each trace, we
evaluated the first 10M entries with 2,601 different tier-1
and tier-2 cache configurations. The tier-1 and tier-2 caches
can take 51 different cache sizes incrementing from 0 to
max_cache_size, based on the unique item count in the first
10M entries of each trace. We calculate the relative difference
on the tier-2 cache miss ratio using sampled vs. unsampled
traces. We show a bar plot in Figure 4 with more than 70K
data points for each spatial sampling rate (i.e., ρ = 0.1, 0.01,
and 0.001). The result shows sampling at a 10% rate causes at
most 0.62% relative difference across 90% of the data points.
Kessler’s sampling goal is met even when approximating the
miss ratio using only 0.1% of the original trace.

This demonstrates that spatial sampling can be used to
estimate the tier-2 cache miss ratio. This property supports
the construction of the eMRC convex miss ratio function
and enables rapid cache simulation to explore key miss ratio
points in the multi-dimensional miss ratio function.

3.3 Partitioning Scheme for Cliff Removal

This section demonstrates how eMRC removes performance
cliffs for two-tier caching systems, which can be easily ex-
tended to work with multi-tier caches.

Figure 5 illustrates a miss ratio surface in a two-tier caching
system. We assume that the discrete miss ratio surface m(x,y)
is generated from a single IO stream and there are four
miss ratio data points, i.e., m(X1,Y1), m(X1,Y2), m(X2,Y1) and
m(X2,Y2), which surround a performance cliff region. How
can we remove the performance cliff using only the four given

296 19th USENIX Conference on File and Storage Technologies USENIX Association

Size x
Miss ratio m1(x)

Size y
Miss ratio m2(y)

Scenario 1
No sampling

Scenario 2
Sampling only before

Tier-1 cache

Scenario 3
Sampling before both
Tier-1 & Tier-2 caches

Size x’
Miss ratio m1’(x’)

Size y’
Miss ratio m2’(y’)

Size x’
Miss ratio m1’(x’)

Size y’’
Miss ratio m2’’ (y’’)

fraction
ρ1

fraction
ρ1

fraction
ρ2

Miss Ratio
m(x,y) = m1(x) m2(y)

Fractional Miss Ratio
m’(x’,y’) = ρ1m1

’(x’) m2’(y’)
Fractional Miss Ratio

m’’(x’,y’’) = ρ1m1
’(x’) ρ2m2’’(y’’)

Missed IOs
OUT(x,0)

Missed IOs
OUT(x, y)

Missed IOs
OUT ’(x’, 0)

Missed IOs
OUT ’(x’, y’)

Missed IOs
OUT ’(x’, 0)

Missed IOs
OUT ’’ (x’, y’’)

Tier-1
cache

Tier-2
cache

Input IOs
IN

Input IOs
IN

Input IOs
IN

Figure 6: IO sampling scenarios in two-tier cache system.

data points? The Talus algorithm only works for a single-tier
cache because it needs two data points using the same input
IO stream. For example, in Figure 5, Talus cannot apply be-
tween m(X1,Y1) and m(X2,Y1) because these two data points
use different input IO streams; one is the missed IOs when
the tier-1 cache size is X1, and the other is when the tier-1
cache size is X2.

The eMRC algorithm removes performance cliffs for two
(or more) tier cache systems using the partitioning scheme
outlined in Figure 8.

We present our assumption and theorems that lead to the
construction of a miss ratio surface meMRC(x,y) without per-
formance cliffs. Figure 6 shows three scenarios that cover all
possible IO sampling cases in two-tier cache systems. Sce-
narios 1 and 2 are used in the proof of Theorem 1. All three
scenarios are used in the proof of Theorem 2.

• Scenario 1: No sampling. Let m1(x) and m2(y) denote
the cache miss ratios observed at the tier-1 and tier-2
caches, respectively. OUT (x,0) is the missed IO stream
after the tier-1 cache, and OUT (x,y) is the one after the
tier-2 cache. Then the miss ratio after the tier-1 cache
m(x,0) equals m1(x), and the miss ratio after the tier-2
cache m(x,y) equals m1(x)m2(y).

• Scenario 2: Sampling only before the tier-1 cache.
When a fraction ρ1 of an IO stream is processed by two
cache tiers, m′

1(x
′) and m′

2(y
′) denote the cache miss ra-

tios observed at the tier-1 and tier-2 caches, respectively.
The miss ratio after the tier-1 cache m′(x′,0) will become
ρ1m′

1(x
′) due to a fraction ρ1 of an input IO stream. Then

the fractional miss ratio is m′(x′,y′) = ρ1m′
1(x

′)m′
2(y

′).
The fractional miss ratio is the miss ratio when a fraction
of an IO stream is used.

• Scenario 3: Sampling before both tier-1 & tier-2
caches. We sample the missed IO stream after the tier-1
cache of size x′ (which is denoted by OUT ′(x′,0)) again
with fraction ρ2, and feed that into another tier-2 cache of
size y′′. Then the fractional miss ratio m′′(x′,y′′) equals
ρ1m′

1(x
′)ρ2m′′

2(y
′′).

With these three scenarios described, we introduce our
assumptions and theorems.

Assumption 1 If x′ = ρ1x and y′ = ρ1y, then the miss ratio

at the tier-2 cache m′
2(y

′) and m2(y) are statistically similar.

This was shown empirically in §3.2. With this assumption
we can now find the relationship between the fractional miss
ratios m′(x′,y′), m′′(x′,y′′) in Scenarios 2 & 3 and the miss
ratio m(x,y) in Scenario 1 for a two-tier cache system.

Theorem 1 For an input IO stream that is processed by two

tiers of caches with the resulting miss ratio surface m(x,y), a

fraction ρ1 of spatial sampled IO stream will have a fractional

miss ratio surface:

m′(x′,y′) = ρ1m(
x′

ρ1
,

y′

ρ1
)

Proof: In a two-tier caching setup, when a fraction ρ1 of
an input IO stream passes through the tier-1 cache of size
x′ and then the tier-2 cache of size y′, the fractional miss
ratio is m′(x′,y′) = ρ1m′

1(x
′)m′

2(y
′). From the Talus theorem,

we find m′
1(x

′) = m1(x′/ρ1). Under Assumption 1, m′
2(y

′) =
m2(y′/ρ1). Putting them all together, we obtain:

m′(x′,y′) = ρ1m1(
x′

ρ1
)m2(

y′

ρ1
) = ρ1m(

x′

ρ1
,

y′

ρ1
).

Theorem 2 For a given IO stream that is processed by two

tiers of the caches with resulting miss ratio surface m(x,y),
downsampling with fraction ρ1 before the tier-1 cache of size

x′ and again downsampling with fraction ρ2 before the tier-2

cache of size y′′ results in new fractional miss ratio surface:

m′′(x′,y′′) = ρ1ρ2m(
x′

ρ1
,

y′′

ρ1ρ2
)

Proof: From the Talus theorem, we find m′′
2(y

′′) = m′
2(y

′′/ρ2).

Hence, m′′(x′,y′′) = ρ1m′
1(x

′)ρ2m′
2(

y′′

ρ2
). As m′(x′,y′) =

ρ1m′
1(x

′)m′
2(y

′), m′′(x′,y′′) = m′(x′, y′′

ρ2
)ρ2. Applying Theo-

rem 1, we obtain:

m′′(x′,y′′) = ρ1ρ2m(
x′

ρ1
,

y′′

ρ1ρ2
).

We now use Theorem 2 to remove cliffs in the miss ratio
surface. Let m(x,y) denote a region of the miss ratio sur-
face of a two-tier caching system without any partitioning, for
x ∈ [X1,X2],y ∈ [Y1,Y2], where m(X1,Y1),m(X1,Y2),m(X2,Y1)
and m(X2,Y2) are known values. The meMRC(x,y) can be im-
plemented by partitioning both cache tiers.

Figure 8 illustrates the partitioning scheme. The final miss
ratio consists of four different fractional miss ratios after the
tier-2 cache. Hence, meMRC(x,y) is the summation of all the
four miss ratios:

meMRC(x,y) = m1(σ1x,ρ1σ2y)

+m2(σ1x,ρ1(1−σ2)y)

+m3((1−σ1)x,(1−ρ1)σ2y)

+m4((1−σ1)x,(1−ρ1)(1−σ2)y).

(2)

where

ρ1 =
X2−x

X2−X1
,σ1 = ρ1

X1
x ,ρ2 =

Y2−y
Y2−Y1

,σ2 = ρ2
Y1
y . (3)

USENIX Association 19th USENIX Conference on File and Storage Technologies 297

(a) Original MRC, constructed by evaluat-

ing 2,601 cache configurations.

(b) Ideal convex MRC, constructed from

original MRC.

(c) eMRC, constructed using 2 MRCs on

the edge and 30 additional data points se-

lected by convex hull approximation.

Figure 7: Convex hull approximation applied to MSR trace web_2.

Tenant i
workload

σ1xIOs

Tier-1 Cache
Size x ρ1σ2y

Tier-2 Cache
Size y

ρ1

1-ρ1
(1-σ1)x

ρ2

1-ρ2

ρ2

1-ρ2

ρ1(1-σ2)y

(1-ρ1)σ2y

(1-ρ1)(1-σ2)y

. . .

. . .

. . .

. . .

. . .

eMRC
Cache Parameter Service

x, ρ1, σ1
y, ρ1, ρ2, σ2

m1

m2

m3

m4
Figure 8: eMRC partitioning scheme for two-tier caching.

Since σ1 and σ2 are dependent upon ρ1 and ρ2, the values
of ρ1 and ρ2 dictate the convex shape of the meMRC(x,y) in
the region of x ∈ [X1,X2] and y ∈ [Y1,Y2].

Equations 2 and 3 can be combined into:

meMRC(x,y) = m1(ρ1X1,ρ1ρ2Y1)

+m2(ρ1X1,ρ1(1−ρ2)Y2)

+m3((1−ρ1)X2,(1−ρ1)ρ2Y1)

+m4((1−ρ1)X2,(1−ρ1)(1−ρ2)Y2).

(4)

By applying Theorem 2 into m1,m2,m3,m4 in Equation 4,
we finally obtain:

meMRC(x,y) = ρ1ρ2m(X1,Y1)

+ρ1(1−ρ2)m(X1,Y2)

+(1−ρ1)ρ2m(X2,Y1)

+(1−ρ1)(1−ρ2)m(X2,Y2).

(5)

In summary, given a cliff region in m(x,y) with four known
boundary values, we can remove the cliffs with our eMRC
partitioning scheme and parameter set {ρ1,ρ2}.

3.4 Convex Hull Approximation

Figure 7b is an ideal convex MRC of the known miss ratio
surface, shown in Figure 7a. It is generated using the convex

hull algorithm from quickhull [3]. The ideal convex MRC
represents the best case in multi-tier cache management. But
it requires an algorithm to remove miss ratio cliffs in regions
bounded by three arbitrary points in space, which does not
exist.

Our partitioning scheme can achieve cliff removals in a
"grid" region (x,y),x ∈ [X1,X2],y ∈ [Y1,Y2]. To apply it for
the whole miss ratio surface, we partitioned the surface using
the ideal convex MRC.

In particular, this is a four-step process: (1) Obtain the
original MRC; (2) Generate the ideal convex MRC using the
convex hull algorithm; (3) Construct eMRC grid regions; (4)
Perform cliff removal in each region.

The process is very time-consuming because of step (1).
In our case, for an MRC surface with cache size resolution
res = 51, a total of 2,601 miss ratio data points have to be
evaluated.

But we found that the vertices of the ideal convex MRC

almost entirely reside on the edge of the surface, where the

tier-1 or tier-2 cache size is 0. And we can find those vertices
by constructing 2D convex hulls of the two MRCs, where
the tier-1 or tier-2 cache is 0, respectively (black curves in
Figure 7b).

Based on our evaluation with all traces, we observed that:
at least 81% of the vertices in the Ideal Convex MRC are
associated with the convex hull points of 2D MRCs along the
two edges plus one additional cache configuration when both
the tier-1 and tier-2 caches take the maximum values.

We now can greatly simplify the process of applying eMRC
to the whole surface with new steps (1) and (2): (1) Obtain the
two MRCs along the edges where the tier-1 or tier-2 cache is
0, respectively. (2a) Obtain the vertices along the two edges
using convex hull algorithm. (2b) Obtain the additional miss
ratio values on eMRC grid points (highlighted in Figure 7c).

In the particular case outlined in Figure 7, our new ap-
proach only needs to evaluate two MRCs along the edges plus
30 additional data points, while the conventional approach
requires knowledge of all 2,601 data points.

298 19th USENIX Conference on File and Storage Technologies USENIX Association

3.5 Extension to Multi-Tier Caching (3+)

To generalize eMRC for N-tier caching, we first extend our
notations used in Figures 5, 6 and 8 to vectors:

• B = {b | bi ∈ {Xi
1,X

i
2},∀i ∈ {1,2, ...,N}} for the set of

boundary coordinates that defines a multi-dimensional
hypercube cliff region.

• x = [x1,x2, ...xN] for the cache size on each tier within
the cliff region, Xi

1 ≤ xi ≤ Xi
2,∀i ∈ {1,2, ...,N}.

• ρρρ = [ρ1,ρ2, ...ρN] for the fraction of an IO stream before
each tier.

• σσσ = [σ1,σ2, ...σN] for the cache partition ratio on each
tier.

• m(x) is the original miss ratio function without any cache
partitioning.

Theorem 3 (Extension of Theorem 2) For an input IO

stream that is processed by N tiers of the cache with resulting

miss ratio function m(x), when a fraction ρρρ is applied to the

IO stream before each cache tier, the new fractional miss ratio

function is:

mN(x)=∏N
i=1ρi·m(x′), where x′=

[

x1
ρ1
, x2

ρ1ρ2
,..., xN

∏N
i=1ρi

]

.

Extension of Equation 3. The eMRC partitioning parameter
for each cache tier is defined using the following equations:

ρi =
Xi

2 − xi

Xi
2 −Xi

1

,∀i ∈ {1,2, ...,N}

σi = ρi
X i

1

xi
,∀i ∈ {1,2, ...,N}.

Extension of Equation 5. The miss ratio after the tier-N
cache is composed of 2N different miss ratios (from 2N parti-
tions; see Figure 8). Hence, meMRC(x) is computed by aggre-

gating all the 2N miss ratios meMRC(x) = ∑2N

i=1 mN
i , where mN

i

is the miss ratio after each partition at the tier-N cache.
By applying Theorem 3 into this equation, we finally obtain

our eMRC miss ratio function:

meMRC(x) = ∑
b∈B

(

N

∏
i=1

fi ·m(b)

)

,

where fi =

{

ρi, bi = Xi
1

1−ρi, bi = Xi
2

,∀i ∈ {1,2, ...,N}.

4 eMRC-based Cache Orchestration

We present the ORCA (ORchestration for CAches) multi-
tier cache orchestration framework, which identifies the op-
timal cache configuration that meets tenants’ diverse SLO
requirements using eMRC while also minimizing the cloud
provider’s cost. ORCA is designed for a cloud provider to
serve customers with elastic cache resources. This objective
can be achieved by providing each tenant with the lowest pos-
sible cache cost to meet its SLO and accommodate as many
tenants as possible.

While our approach addresses N-tier caching systems for
N ≥ 2, we consider a two-tier caching distributed storage
system to simplify our discussion. The system consists of a
faster and more expensive tier-1 cache (e.g., DRAM) closer
to the clients and a slower and relatively cheaper tier-2 cache
(e.g., NVMe SSD) while having a central storage backend
(e.g., SATA SSD). For each tenant i with a specific SLO
requirement in IOPS (which is a key SLO metric for storage
IO), denoted as Ri

IOPS, our cache orchestration framework will
find an optimal cache configuration {Pi

1,P
i
2,T

i
1 ,T

i
2} satisfying

tenant i’s SLO with a provisioned IOPS Pi
IOPS ≥ Ri

IOPS while
minimizing overall cache resources allocated, where Pi

j is

the cache eviction policy at tier- j for tenant i, and T i
j is the

allocated cache capacity at tier- j for tenant i.

4.1 SLO Modeling with eMRC

To find an optimal cache size and policy configuration for a
given SLO, we first need to map eMRC’s miss ratio informa-
tion to IOPS. The provisioned IOPS of a storage workload
depends on both the cache configuration {Pi

1,P
i
2,T

i
1 ,T

i
2} and

the performance of the underlying hardware.

An exact analysis of IOPS performance is complicated
with MRCs, as it requires all the input IO to be reorganized
into an equal chunk size (e.g., 4KB), making it difficult to
study any performance benefit of large sequential IOs. We
treat both read and write IOs as cache references during MRC
generation, modeling a simple write-back cache policy. We
present an analytical lower bound of provisioned IOPS using
4KB random IO performance at the tier-1 cache (IOPST1

), the
tier-2 cache (IOPST2

), and the storage backend (IOPSB). Miss
ratios for each cache tier, Mi

1 and Mi
2, as well as the joint miss

ratio Mi can be obtained from a eMRC miss ratio function for
tenant i: (Mi,Mi

1,M
i
2) = FeMRCi(T

i
1 ,T

i
2 ,P

i
1,P

i
2).

The provisioned IOPS of tenant i can then be modeled as:

IOPSi =
1

1−Mi
1

IOPST1

+
Mi

1 −Mi

IOPST2

+
Mi

IOPSB

(6)

where 1−Mi
1, Mi

1 −Mi and Mi represents the probability that
a storage IO is executed at the tier-1 cache, the tier-2 cache
and storage back-end, respectively.

The IOPS function FIOPS(T i
1 ,T

i
2 ,P

i
1,P

i
2) from Eq. 6 is visu-

alized by a 3D plot in Figure 9. This IOPS surface shows the
relationship of provisioned IOPS with respect to the cache
size at each tier for a specific cache policy combination, e.g.,
tier-1 uses LRU and tier-2 uses ARC.

eMRC surface is convex, and the corresponding IOPS sur-
face will be an always increasing surface for the cache size in
each tier, according to Eq. 6.

USENIX Association 19th USENIX Conference on File and Storage Technologies 299

Figure 9: IOPS surface translated from eMRC surface for
MSR proj_3 trace.

4.2 Cache Orchestration with eMRC

ORCA provides an optimal cache configuration {T i
1, T i

2, Pi
1,

Pi
2} that minimizes the overall cost of cache resources while

meeting each tenant’s SLO requirements. The cost on cache
resource of tenant i with capacity configuration {T i

1, T i
2} can

be denoted as Ci = C1 ×T i
1 +C2 ×T i

2, where C1 and C2 are
the unit costs for the tier-1 and tier-2 caches, respectively.

For M tenants, the problem can be formulated as follows:

minimize
M

∑
i=1

Ci (7a)

subject to Ci =C1T i
1 +C2T i

2 (7b)

IOPSi = FIOPS(T
i

1 ,T
i

2 ,P
i
1,P

i
2) (7c)

IOPSi ≥ Ri
IOPS,∀i ∈ {1, ...,M} (7d)

var. {T i
1 ,T

i
2 ,P

i
1,P

i
2} (7e)

The unit cost of the tier-1 and tier-2 caches (C1 and C2)
are adjustable by the cloud provider. By adjusting the ratio
of C1/C2, the cloud provider will be able to shift utilization
between the tier-1 and tier-2 caches.

4.3 Two-Stage ORCA Optimization

The cache orchestration problem is challenging even with
eMRC. We need to search through tons of configuration can-
didates for each tenant’s optimal multi-tier cache configura-
tion, with all the SLO and cache capacity constraints, which
would incur a heavy computation overhead. Because an online
cache orchestration system requires an efficient and yet accu-
rate algorithm to adapt to large-scale, dynamic workloads, we
propose an efficient Two-stage ORCA optimization algorithm.
The ORCA optimization splits the optimization over its ob-
jective (minimizing cache resource cost) and its constraints
(required IOPS and cache sizes), significantly reducing the
search space for the optimization problem.

We propose Algorithm 1 to construct the set Bi, which
contains cache configurations that are just enough to satisfy
Ri

IOPS +Di for tenant i, where Ri
IOPS is the requested IOPS

from tenant i and Di is an additional margin added to account
for the prediction error caused by spatial downsampling and
workload dynamics. We define the tier-1 cache size x1, algo-
rithm step m as a function of cache size resolution res and

Algorithm 1: ORCA-Space Search

Input: TMAX ,FIOPS,res,Ri
IOPS,D

i

tier-1 cache size x1[m] = m
res−1 ·TMAX ,m ∈ range(res)

tier-2 cache size x2[n] =
n

res−1 ·TMAX ,n ∈ range(res)

Ri
IOPS = Ri

IOPS +Di

for each cache policy combination (Pi
1,P

i
2) do

Do binary search to find m such that

FIOPS(x1[m−1],x2[0])< Ri
IOPS and

FIOPS(x1[m],x2[0])>= Ri
IOPS

Add (x1[m],x2[0],P
i
1,P

i
2,) to Bi

for n in [1, ..., res−1]) do
m′ = m

use (x1[m
′],x2[n]) as starting point to find m such

that

FIOPS(x1[m−1],x2[n])< Ri
IOPS and

FIOPS(x1[m],x2[n])>= Ri
IOPS

Add (x1[m],x2[n],P
i
1,P

i
2) to Bi

end

end

Output: Bi, a reduced set of cache configurations

TMAX
2. We define x2 as the tier-2 cache size and the algo-

rithm step as n in a similar way. Then, for each cache policy
configuration {Pi

1, Pi
2}, we first find the first cache configura-

tion (via binary search) that satisfies the IOPS SLO when the
tier-2 cache size is zero x2[0] = 0. Then we search among its
nearest neighbor points where x2[1] =

1
res−1 ·TMAX to find the

next candidate cache configuration.

The algorithm will complete when the search reaches TMAX

for the tier-2 cache size; at this point, Bi will be constructed
for a given cache policy configuration. We do this for all
cache policy configurations to construct a complete set of Bi

for each tenant i; such a set of Bi includes all cache config-
urations that are just enough to satisfy tenant i’s SLO plus
a margin. We then apply Algorithm 2 to perform optimiza-
tion over cache configuration set Bi for each tenant i, which
will provide the cache configuration with minimum cache
resource cost, defined in Eq. (7a) and Eq. (7b). According
to Eq. (7a), ∑M

i=1 Ci gets minimized when each Ci gets mini-
mized; thus Algorithm 2 aims at minimizing the cost for each
tenant i over cache configurations that already meet the SLO
requirements from Algorithm 1.

5 Performance Evaluation

We evaluated our eMRC approximation technique and ORCA
on a server with two Xeon Gold 6142 CPUs at 2.6GHz with
384GB of memory, with a subset of Microsoft’s MSR IO
traces obtained from SNIA [1, 18]. We treat both read and
write IOs as cache references during MRC generation, mod-
eling a simple write-back cache policy. We break any large
IOs into 4KB blocks. For IOs smaller than 4KB, we treat
them as a full 4KB access. The traces we use all have more

2The unique IO entries in the trace.

300 19th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 2: ORCA-Cost Objective

for each cache tenant i do
Call ORCA-Space Search (Algorithm #1) to obtain

cache configuration set Bi

Initialize cmin=MAX

for b in Bi do
Compute current cost objective value c from b

if c < cmin then
cmin = c , bout = b

end

end

Add (i,bout ,cmin) to S

end

Output: S

Server Function Traces Used

hm Hardware monitoring 0, 1

mds Media server 0, 1

prn Print server 0, 1

proj Project directories 0, 1, 2, 3, 4

prxy Firewall/web proxy 0, 1

rsrch Research projects 0

src1 Source control 0, 1, 2

src2 Source control 0, 1, 2

stg Web staging 0, 1

ts Terminal server 0

usr User home directories 0, 1, 2

wdev Test web server 0

web Web/SQL server 0, 1, 2

Table 1: Microsoft MSR traces [1] used.

than one million 4KB IO entries after processing, their names
and functions are shown in Table 1. We omitted small traces
inappropriate for downsampling methods. In our evaluation
for eMRC and ORCA, where we used the entire trace, we
applied different spatial sampling rates ranging from 0.1 for
traces with 1M entries to 0.0001 for traces with more than
600M entries.

For the ORCA evaluation, we assume that we have a stor-
age cloud that uses DRAM as the tier-1 cache, NVMe SSDs as
the tier-2 cache, and SATA SSD as the backend storage; and
for random 4KB IOs they perform at IOPST 1 = 10,000,000,
IOPST 2 = 100,000, and IOPSB = 20,000.

5.1 eMRC Performance

Computation speedup with convex-hull approximation.
The main challenge of utilizing miss ratio information in
multi-tier caching is the exponentially increasing size of all
cache configurations. With eMRC’s convex-hull approxima-
tion, only a limited number of cache configurations will be
evaluated to reduce the computation cost. We evaluated two
to four tiers of caches using a mix of stack and non-stack
based replacement policies (e.g., LRU→ARC→LRU→ARC)
on all the traces we have with resolution res = 51, meaning
the cache size of each tier can take 51 different values during

MRC generation.
We compare the number of data points required to gener-

ate eMRC’s continuous and convex miss ratio function with
and without convex-hull approximation. Figure 10 shows the
speedup factor for a different number of cache tiers. We can
see that the benefits increase with the number of cache tiers.
The convex-hull approximation resulted in 14x speedup on
average for two cache tiers and 4,527x speedup on average for
four cache tiers. We have more speedup for workloads with
more cliff regions and less for the ones without many cliffs be-
cause the presence of cliffs reduces the number of data points
that need to be evaluated. Most real workloads have some
level of cliff features, and these features will help to speed
up our algorithm. Figure 10 shows the number of data points
required but the actual processing time will vary based on the
eviction policies used in each cache tier because stack-based
eviction policies can benefit from SHARDS, which can eval-
uate multiple cache sizes with a single pass of the trace. For
the two-tier caching using LRU and ARC policy, the largest
difference in computation time is 54 seconds for the src1_0
trace with 200M IO entries with sample rate R = 0.0002 com-
pared to 42 minutes for generating the whole original MRC
(47 times faster). The smallest difference in computation time
is 2 minutes versus 8.2 minutes for the prxy_0 trace with
22M IO entries with R = 0.02 (4.1 times faster).

Accuracy of cliff removal. For each trace, we also evaluated
2,601 individual cache configurations for two-tier caching
with eMRC partitioning parameters and compared it with the
predicted miss ratio using eMRC. We use the Mean Absolute
Error (MAE) to examine the distance between these two sur-
faces. As shown in Figure 11, we were able to achieve < 2%
MAE for all the traces we use, meaning the eMRC partitioned
caches act as predicted in removing performance cliffs.

Convex-hull approximation. Our convex-hull algorithm is
based on the two miss ratio curves at the edge of the miss
ratio surface; the convex hull points along the edges are the
majority of the vertices of the ideal convex MRC. The shape
of the original miss ratio surface dictates how much we can
reduce the miss ratios by removing cliffs, and also the number
of regions generated by the convex-hull algorithm, which is
related to computation time. Figure 13 highlights the convex-
hull algorithm with several traces with representative shapes.

For traces with shapes like proj_2 and the web_2 trace
shown earlier, our algorithm is able to construct the whole
eMRC surface with very few data points and significantly
reduces the performance cliffs in the entire space.

For traces with shapes like prxy_0, the original surface
does not have any significant cliffs; our algorithm needs more
data points to construct the whole eMRC surface. Although it
only reduces performance cliffs in small areas, it only needs
to evaluate 25% cache size configurations compared with
generating the complete miss ratio surface.

For the prn_0 trace, the particular shape of the original
MRC causes our algorithm to produce non-convex regions in

USENIX Association 19th USENIX Conference on File and Storage Technologies 301

Figure 10: Comparison of data points
required to generate the whole eMRC,
with and without convex-hull approxi-
mation.

Figure 11: Error between the predicted
eMRC surface versus the evaluated
miss ratio surface using eMRC parti-
tioning parameters over all traces.

Figure 12: MRC generation error with-
out any partitioning, with respect to dif-
ferent down-sampling factor R.

the area marked by red lines in Figure 13. This can be easily
corrected by combining the multiple small regions in question
into a single large region using the red lines’ four boundary
points. Since all cache simulations on the marked data points
are already done, reconfiguring the grid regions and applying
eMRC does not have any additional overheads. This also
demonstrates the flexibility of our eMRC partitioning scheme;
it can remove a cliff in any region marked by four boundary
points with known miss ratio values.

Spatial downsampling in multi-tier cache. Other re-
searchers have studied the effect of spatial downsampling
for a single-tier cache. Our experiments show that it also
works well for multi-tier caching. When downsampled with
a factor R, the computation time is proportionally reduced
by R while maintaining a relatively accurate miss ratio es-
timation. To evaluate the accuracy, we calculated the MAE
between two discrete miss ratio surfaces with and without
spatial downsampling using the first 10M entries of all the
traces. Both surfaces are generated without any cache parti-
tioning. Figure 12 shows the MAE distribution for different
downsampling rates across the evaluation traces. Note that
the traces are downsampled only once before the IO stream is
processed at the tier-1 cache. We can see that single-tier and
two-tier caches have similar error rates.

5.2 ORCA Performance

This subsection shows how our approach can help cloud
providers determine efficient cache configurations for cloud
tenants with diverse SLOs. We assume the SLOs of tenants
are expressed in requested IOPS RIOPS.

Cache optimization for a single tenant. We consider LRU
and ARC cache policies. Then four different cache policy
combinations are possible (four eMRC surfaces per trace).
For all the traces, we use resolution res = 51. ORCA will first
obtain each eMRC surface with cache partitioning. eMRC
can then determine the cache partitioning parameters for each
cache size combination in the first and second-tier caches.
From the eMRC surface, we can derive the FIOPS surface, as
shown in Figure 14b. Because the MAE between our eMRC
prediction and eMRC evaluation is very small, the FIOPS sur-
face is also very close to F ′

IOPS evaluated values (with the

Mean Absolute Percentage Error (MAPE) of 1% using all
traces). From Figures 14a and 14b, we can see that by utiliz-
ing cache partitioning, we not only improved overall IOPS
performance but also removed performance plateaus and local
dips.

Figure 14b shows FIOPS with eMRC cache partitioning
where the tier-1 replacement policy is LRU and the tier-2 pol-
icy is ARC. Due to page limitations, we are only presenting
the results for six traces here. In Figure 14b, the solid blue ar-
eas represent cache configurations that lead to IOPS > RIOPS.
Note that we do not have to search the entire FIOPS surfaces,
which contains 2,601 sampling points for every cache policy
combination when using resolution res = 51. We are only
interested in the sampling points that are just enough to meet
the tenant’s SLO, eliminating unnecessary solutions; hence
they will be ≤ 51 cache size combinations for each cache
policy pair. By using Algorithm 1, we can calculate the entire
related cache configuration set B within a second.

Cache optimization for multiple tenants. In this experi-
ment, we test how ORCA can effectively allocate cache re-
sources for multiple tenants. Six tenants are using the six
traces presented in Figure 14 with the corresponding require-
ments RIOPS, respectively. We assume the cloud provider can
handle many tenants and has sufficient cache resources to ini-
tially accommodate these six tenants but seeks to limit the re-
sources to meet the requirements. In the ORCA optimization
equation (Eq. 7b), the cost ratio between the two cache tiers
C1/C2 can be tuned by the cloud provider to adjust utilization
between them. This evaluation sets C1/C2 = 10, roughly rep-
resenting the per-GB cost difference between DDR4 DRAM
and datacenter NVMe SSDs.

Table 2 shows how ORCA allocates cache resources for
the six tenants with provisioned IOPS PIOPS. As seen in the
table, tenants using mds_1, proj_2 and src1_0 traces with
relatively low RIOPS requirements will be only assigned the
tier-2 cache, and other tenants will be assigned combined
tier-1 and tier-2 caches.

6 Related Work

Research on efficient cache allocation among tenants has
focused on single-tier caching architectures. Two recent

302 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 13: Effect of convex hull algorithm on various original miss ratio surface shapes.

Tenant
trace/size

R RIOPS PIOPS
Tier1 cache
GB/policy

Tier2 cache
GB/policy

mds_1/ 25M 0.002 21500 21580 0 6.72/ARC

proj_2/ 340M 0.0002 40000 40397 0 294.29/LRU

proj_3/ 7.7M 0.01 60000 61012 0.12/ARC 1.63/ARC

src2_2/ 17M 0.004 60000 60081 15.79/LRU 19.84/LRU

src1_0/ 406M 0.0002 60000 61785 0 106.34/ARC

web_2/ 74M 0.001 60000 60361 20.08/ARC 65.60/ARC

Table 2: Cache optimization by ORCA for 6 tenants.

works [21, 22] present an approach allowing host-side page
caches to be partitioned by VMs individually so those cache
parameters can be configured independently between tenants.
Cloudcache [2] proposes an on-demand cache management
solution to meet each tenant’s performance demand by intro-
ducing a new cache demand model. Recent MRC approxima-
tion techniques [7,10,24–26] also have focused on improving
MRC efficiency for online cache management for single-tier
caching.

Existing efforts on multi-tier caching include works focus-
ing on minimizing the duplication in cached data among dif-
ferent cache tiers to improve cache efficiency [9,14,15,19,27–
29, 31, 32]. Stefanovici et al. [23] propose a software-defined
cache allocation approach for multi-tier caching, which al-
lows cloud providers to coordinate multiple tiers of cache to
provide isolation and QoS for tenants.

Dynacache [5] is an LP (Linear Programming) solver to
find an optimal slab cache configuration when the total cache
size is fixed for single-tenant, single-tier cache scenarios.

Cliffhanger [6] extends Dynacache. Cliffhanger uses a novel
iterative algorithm to identify a local hit rate gradient without
constructing the whole MRC and uses the gradient at differ-
ent cache slabs to determine the optimal cache configuration.
It also utilizes the Talus algorithm to remove performance
cliffs. However, both Cliffhanger and Dynacache tackle the
single-tier cache focusing on single application optimization,
whereas our work targets multi-tier, multi-tenant caching sys-
tems.

7 Discussion

eMRC allows the efficient study of miss ratio profiles with
built-in cliff removal for multi-tier caching systems. It is the
first step towards efficient online cache management for multi-
tier caching with two challenges: 1. how to efficiently recom-
pute miss ratio profiles/MRCs periodically, 2. how to manage
the boundary migration of cache partitions.

Recomputing MRC periodically. Prior works generate the
MRC for single-tier cache in a fixed time or using a fixed rate
periodically. Talus [4] is originally designed for CPU cache.
It recalculates the MRC on a fixed interval (e.g., 10ms) and
uses that to configure cache partitions for the next interval.
SLIDE [24] in Miniature Simulation recalculates the MRC
every 1M IO entries with Exponentially Weighted Moving
Average (EWMA). Both Talus and SLIDE require the knowl-

USENIX Association 19th USENIX Conference on File and Storage Technologies 303

(a) IOPS surfaces without cache partitioning. (b) IOPS surfaces with cache partitioning.

Figure 14: IOPS surfaces with and without cache partitioning for 6 MSR traces.

edge of the whole MRC to perform cliff removal and cache
management. Cliffhanger [6] is another Talus inspired work
that can remove performance cliff without knowledge of the
whole MRC, but due to the limited visibility, it can only work
for one cliff. Talus based approaches require the knowledge
of the entire MRC to achieve maximum utility. This makes
multi-tier cache analysis and management challenging, as the
computation time goes up exponentially. Our eMRC with a
convex-hull approximation can construct multi-tier miss ra-
tio functions with regional cliff removal while using limited
data points without generating the whole original miss ratio
function. This enables the timely and periodic generation of
multi-dimensional miss ratio functions for multi-tier caching.

Managing the boundary migration of cache partitions.
Our eMRC based approach relies heavily on cache partition-
ing within each workload, 2N partitions for the Nth cache tier
to be specific. For a practical online system, the size and par-
titioning parameters of caches will change over time, and it
may cause some cached items to fall into the wrong partitions.
Talus [4] builds on top of CPU cache partitioning schemes
such as Vantage [20]. SLIDE [24] uses a shadow partition-
ing based approach to manage partition boundary migration.
SLIDE uses a single unified cache to handle IO and defer
partitioning decisions till eviction time.

Our future work includes incorporating such boundary mi-

gration mechanisms for cache partitions into our ORCA de-
sign and evaluating it with more real-world traces.

8 Conclusion

Our eMRC approximation technique enables efficient MRC
generation for multi-tier caching. eMRC uses 1) a partition-
ing scheme to remove performance cliffs in a grid region
with known boundary miss ratio values and 2) a convex hull
approximation technique that generates all grid regions effi-
ciently using a small number of sampling points. Based on
eMRC, we also designed ORCA, a multi-tier cache orchestra-
tion framework that uses a lightweight two-stage algorithm
that effectively provides efficient cache configurations for ten-
ants with diverse SLOs. Our performance evaluation shows
that our eMRC and ORCA are useful tools for multi-tier cache
orchestration.

Acknowledgments

Thanks to our shepherd Carl Waldspurger and other anony-
mous reviewers for their valuable feedback and suggestions.
This research is supported in part by NSF award #1705095.

304 19th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] SNIA IOTTA repository. http://iotta.snia.org.

[2] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan
Sundararaman, and Ming Zhao. Cloudcache: On-
demand flash cache management for cloud computing.
In 14th USENIX Conference on File and Storage Tech-

nologies (FAST 16), pages 355–369, Santa Clara, CA,
2016. USENIX Association.

[3] C Bradford Barber, David P Dobkin, David P Dobkin,
and Hannu Huhdanpaa. The quickhull algorithm for con-
vex hulls. ACM Transactions on Mathematical Software

(TOMS), 22(4):469–483, 1996.

[4] Nathan Beckmann and Daniel Sanchez. Talus: A simple
way to remove cliffs in cache performance. In 2015

IEEE 21st International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 64–75.
IEEE, 2015.

[5] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Dynacache: Dynamic cloud caching. In
7th USENIX Workshop on Hot Topics in Cloud Comput-

ing (HotCloud 15), 2015.

[6] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs in
web memory caches. In 13th USENIX Symposium on

Networked Systems Design and Implementation NSDI

16), pages 379–392, 2016.

[7] D. Eklov and E. Hagersten. Statstack: Efficient mod-
eling of lru caches. In 2010 IEEE International Sym-

posium on Performance Analysis of Systems Software

(ISPASS), pages 55–65, March 2010.

[8] Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez
Zadok. Desperately seeking... optimal multi-tier cache
configurations. In 12th USENIX Workshop on Hot Top-

ics in Storage and File Systems (HotStorage 20), 2020.

[9] Binny S. Gill. On multi-level exclusive caching: Offline
optimality and why promotions are better than demo-
tions. In 6th USENIX Conference on File and Storage

Technologies (FAST 08), San Jose, CA, 2008. USENIX
Association.

[10] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo,
Chen Ding, and Zhenlin Wang. Kinetic modeling of data
eviction in cache. In 2016 USENIX Annual Technical

Conference (USENIX ATC 16), pages 351–364, Denver,
CO, 2016. USENIX Association.

[11] Dejun Jiang, Yukun Che, Jin Xiong, and Xiaosong Ma.
ucache: A utility-aware multilevel ssd cache manage-
ment policy. In 2013 IEEE 10th International Con-

ference on High Performance Computing and Commu-

nications & 2013 IEEE International Conference on

Embedded and Ubiquitous Computing, pages 391–398.
IEEE, 2013.

[12] Richard E. Kessler, Mark D Hill, and David A Wood.
A comparison of trace-sampling techniques for multi-
megabyte caches. IEEE Transactions on Computers,
43(6):664–675, 1994.

[13] R. Koller, A. J. Mashtizadeh, and R. Rangaswami. Cen-
taur: Host-side ssd caching for storage performance
control. In 2015 IEEE International Conference on

Autonomic Computing, pages 51–60, July 2015.

[14] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri
Narasimhan, Tony Zhang, and Ming Zhao. Cachededup:
In-line deduplication for flash caching. In 14th USENIX

Conference on File and Storage Technologies (FAST

16), pages 301–314, Santa Clara, CA, 2016. USENIX
Association.

[15] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer
Sachedina, and Shaobo Gao. Second-tier cache man-
agement using write hints. In Proceedings of the 4th

Conference on USENIX Conference on File and Storage

Technologies - Volume 4, FAST’05, pages 9–9, Berkeley,
CA, USA, 2005. USENIX Association.

[16] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.
Evaluation techniques for storage hierarchies. IBM Syst.

J., 9(2):78–117, June 1970.

[17] Nimrod Megiddo and Dharmendra S. Modha. Arc: A
self-tuning, low overhead replacement cache. In Pro-

ceedings of the 2Nd USENIX Conference on File and

Storage Technologies, FAST ’03, pages 115–130, Berke-
ley, CA, USA, 2003. USENIX Association.

[18] Dushyanth Narayanan, Austin Donnelly, and Antony
Rowstron. Write off-loading: Practical power manage-
ment for enterprise storage. ACM Transactions on Stor-

age (TOS), 4(3):10, 2008.

[19] L. Ou, X. He, M. J. Kosa, and S. L. Scott. A unified
multiple-level cache for high performance storage sys-
tems. In 13th IEEE International Symposium on Model-

ing, Analysis, and Simulation of Computer and Telecom-

munication Systems, pages 143–150, Sept 2005.

[20] Daniel Sanchez and Christos Kozyrakis. Vantage: scal-
able and efficient fine-grain cache partitioning. In Pro-

ceedings of the 38th annual international symposium on

Computer architecture, pages 57–68, 2011.

USENIX Association 19th USENIX Conference on File and Storage Technologies 305

[21] P. Sharma, P. Kulkarni, and P. Shenoy. Per-vm page
cache partitioning for cloud computing platforms. In
2016 8th International Conference on Communication

Systems and Networks (COMSNETS), pages 1–8, Jan
2016.

[22] Prateek Sharma and Purushottam Kulkarni. Singleton:
System-wide page deduplication in virtual environments.
In Proceedings of the 21st International Symposium on

High-Performance Parallel and Distributed Computing,
HPDC ’12, pages 15–26, New York, NY, USA, 2012.
ACM.

[23] Ioan Stefanovici, Eno Thereska, Greg O’Shea, Bianca
Schroeder, Hitesh Ballani, Thomas Karagiannis, Antony
Rowstron, and Tom Talpey. Software-defined caching:
Managing caches in multi-tenant data centers. In Pro-

ceedings of the Sixth ACM Symposium on Cloud Com-

puting, SoCC ’15, pages 174–181, New York, NY, USA,
2015. ACM.

[24] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and optimization
using miniature simulations. In 2017 USENIX Annual

Technical Conference (USENIX ATC 17), pages 487–
498, Santa Clara, CA, 2017. USENIX Association.

[25] Carl A. Waldspurger, Nohhyun Park, Alexander Garth-
waite, and Irfan Ahmad. Efficient MRC construction
with SHARDS. In 13th USENIX Conference on File and

Storage Technologies (FAST 15), pages 95–110, Santa
Clara, CA, 2015. USENIX Association.

[26] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas
J. A. Harvey, and Andrew Warfield. Characterizing stor-
age workloads with counter stacks. In 11th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 14), pages 335–349, Broomfield, CO,
2014. USENIX Association.

[27] Theodore M. Wong and John Wilkes. My cache or
yours? making storage more exclusive. In Proceed-

ings of the General Track of the Annual Conference on

USENIX Annual Technical Conference, ATC ’02, pages
161–175, Berkeley, CA, USA, 2002. USENIX Associa-
tion.

[28] C. Wu, X. He, Q. Cao, and C. Xie. Hint-k: An efficient
multi-level cache using k-step hints. In 2010 39th In-

ternational Conference on Parallel Processing, pages
624–633, Sept 2010.

[29] Gala Yadgar, Michael Factor, and Assaf Schuster.
Karma: Know-it-all replacement for a multilevel cache.
In Proceedings of the 5th USENIX Conference on File

and Storage Technologies, FAST ’07, pages 25–25,
Berkeley, CA, USA, 2007. USENIX Association.

[30] Juncheng Yang. Pymimircache. https://github.

com/1a1a11a/. Retrieved Dec. 2020.

[31] Yuanyuan Zhou, Zhifeng Chen, and Kai Li. Second-
level buffer cache management. IEEE Trans. Parallel

Distrib. Syst., 15(6):505–519, June 2004.

[32] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-
queue replacement algorithm for second level buffer
caches. In Proceedings of the General Track: 2001

USENIX Annual Technical Conference, pages 91–104,
Berkeley, CA, USA, 2001. USENIX Association.

306 19th USENIX Conference on File and Storage Technologies USENIX Association

The Storage Hierarchy is Not a Hierarchy:
Optimizing Caching on Modern Storage Devices with Orthus

Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan†,
Rathijit Sen‡, Kwanghyun Park‡, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin–Madison †VMware Research ‡Microsoft

Abstract. We introduce non-hierarchical caching (NHC), a
novel approach to caching in modern storage hierarchies.
NHC improves performance as compared to classic caching
by redirecting excess load to devices lower in the hierarchy
when it is advantageous to do so. NHC dynamically adjusts
allocation and access decisions, thus maximizing performance
(e.g., high throughput, low 99%-ile latency). We implement
NHC in Orthus-CAS (a block-layer caching kernel module)
and Orthus-KV (a user-level caching layer for a key-value
store). We show the efficacy of NHC via a thorough empirical
study: Orthus-KV and Orthus-CAS offer significantly better
performance (by up to 2⇥) than classic caching on various
modern hierarchies, under a range of realistic workloads.

1 Introduction
The notion of a hierarchy (i.e., a memory hierarchy or storage
hierarchy) has long been central to computer system design.
Indeed, assumptions about the hierarchy and its fundamental
nature are found throughout widely used textbooks [28, 46,
85]: “Since fast memory is expensive, a memory hierarchy is
organized into several levels – each smaller, faster, and more
expensive per byte than the next lower level, which is farther
from the processor. [46]”

To cope with the nature of the hierarchy, systems usually
employ two strategies: caching [3, 73] and tiering [5, 43, 93].
Consider a system with two storage layers: a (fast, expensive,
small) performance layer and a (slow, cheap, large) capacity
layer. With caching, all data resides in the capacity layer, and
copies of hot data items are placed, via cache replacement
algorithms, in the performance layer. Tiering also places hot
items in the performance layer; however, unlike caching, it
migrates data (instead of copying) on longer time scales. With
a high-enough fraction of requests going to the fast layer, the
overall performance approaches the peak performance of the
fast layer. Consequently, classic caching and tiering strive to
ensure that most accesses hit the performance layer.

While this conventional wisdom of optimizing hit rates may
remain true for traditional hierarchies (e.g., CPU caches and
DRAM, or DRAM and hard disks), rapid changes in storage
devices have complicated this narrative within the modern
storage hierarchy. Specifically, the advent of many new non-
volatile memories [20,54,77] and low-latency SSDs [8,13,16]
has introduced devices with (sometimes) overlapping perfor-

mance characteristics. Thus, it is essential to rethink how such
devices must be managed in the storage hierarchy.

To understand this issue better, consider a two-level hierar-
chy with a traditional Flash-based SSD as the capacity layer,
and a newer, seemingly faster Optane SSD [8] as the perfor-
mance layer. As we will show (§3.2), in some cases, Optane
outperforms Flash, and thus the traditional caching/tiering ar-
rangement works well. However, in other situations (namely,
when the workload has high concurrency), the performance
of the devices is similar (i.e., the storage hierarchy is actually
not a hierarchy), and thus classic caching and tiering do not
utilize the full bandwidth available from the capacity layer. A
different approach is needed to maximize performance.

To address this problem, we introduce non-hierarchical
caching (NHC), a new approach to caching for modern stor-
age hierarchies. NHC delivers maximal performance from
modern devices despite complex device characteristics and
changing workloads. The key insight of NHC is that when
classic caching would send more requests to the performance
device than is useful, some of that excess load can be dy-
namically moved to the capacity device. This improves upon
classic caching in two ways. First, by monitoring performance
and adapting the requests sent to each device, NHC delivers
additional useful performance from the capacity device. Sec-
ond, NHC avoids data movement between the devices when
this movement does not improve performance. While the idea
of redirecting excess load to devices lower in the hierarchy
applies to both caching and tiering, we focus on caching.

Previous work has addressed some of the limitations of
caching [19,56], offloading excess writes from SSDs to under-
lying hard drives. However, as we show (§6.4), they have two
critical limits: they do not redirect accesses to items present in
the cache (hits), and they do not adapt to changing workloads
and concurrency levels (which is critical for modern devices).

We implement NHC in two systems: Orthus-CAS, a generic
block-layer caching kernel module [32], and Orthus-KV, a
user-level caching layer for an LSM-tree key-value store [64].
Under light load, Orthus implementations behave like classic
caching; in other situations, they offload excess load at the
caching layer to the capacity layer, improving performance.
Through rigorous evaluations, we show that Orthus implemen-
tations greatly improve performance (up to 2⇥) on various
real devices (such as Optane DCPM, Optane SSD, Flash SSD)

USENIX Association 19th USENIX Conference on File and Storage Technologies 307

a c

Dhi
<latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit>

d
a b
c

Dlo
<latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit>

cache
access

A

replacement
traffic

Caching

a c

Dhi
<latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit>

d
a b
c

Dlo
<latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit>

cache
access

A

replacement
traffic

Non-Hierarchical Caching

a c

Dhi
<latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit>

b d

Dlo
<latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit>

A

background
migration

split
access

Tiering

Figure 1: Caching, Tiering, and Non-Hierarchical Caching. The
figure shows the different approaches to managing a storage hierarchy.
Caching copies data items to the performance layer upon a miss. Tiering
splits access to each layer and migrates items in the background (on longer
time scales). Non-hierarchical caching (§4), our new approach, offloads
excess load at the performance layer to the capacity layer.

and other simulated ones for a range of workloads (YCSB [35]
and ZippyDB [31]). We show NHC is robust to dynamic work-
loads, quickly adapting to load and locality changes. Finally,
we compare NHC against prior caching strategies and demon-
strate its advantages. Overall, the non-hierarchical approach
extracts high performance from modern storage hierarchies.

2 Motivation
In this section, we discuss classic solutions to storage hier-
archy management. We then review current and near-future
devices and discuss how they alter the storage hierarchy.
2.1 Managing the Storage Hierarchy
A storage hierarchy is composed of multiple heterogeneous
storage devices and policies for transferring data between
those devices. For simplicity, we assume a two-device hierar-
chy, consisting of a performance device, Dhi, and a capacity
device, Dlo; commonly, Dhi is more expensive, smaller, and
faster, whereas Dlo is cheaper, larger, and slower.

Traditionally, two approaches have been used for managing
such a hierarchy: caching and tiering (Figure 1). With caching,
popular (hot) data is copied from Dlo into Dhi (e.g., on each
miss); to make room for these hot data items, the cache evicts
less popular (cold) data, as determined by algorithms such as
ARC, LRU, or LFU [4, 65, 67, 74, 89, 104]. The granularity of
data movement is usually small, e.g., 4-KB blocks.

Tiering [43, 57, 81], similar to caching, usually maintains
hot data in the performance device. However, unlike caching,
when data on Dlo is accessed, it is not necessarily promoted
to Dhi; data can be directly served from Dlo. Data is only
periodically migrated between devices on longer time scales
(over hours or days) and longer-term optimizations determine
data placement. Tiering typically does such migration at a
coarser granularity (an entire volume or a large extent [43]).
While caching can quickly react to workload changes, tiering
cannot do so given its periodic, coarser-granularity migration.

Both classic caching and tiering, to maximize performance,
strive to ensure that most accesses are served from the per-
formance device. Most caching and tiering policies are thus
designed to maximize hits to the fast device. In traditional hi-

Example Latency Read (GB/s) Write (GB/s) Cost ($/GB)
DRAM 80ns 15 15 ~7

NVDIMM 300ns 6.8 2.3 ~5
Low-latency SSD 10us 2.5 2.3 1
NVMe Flash SSD 80us ~3.0 ~2.0 0.3
SATA Flash SSD 180us 0.5 0.5 0.15

Table 1: Diversified Storage Devices. Data taken from SK Hynix
DRAM(DDR4, 16GB), Intel Optane DCPM [6,7], low-latency SSDs (Optane
SSD 905P [8], Micron X100 SSD [13]), NVMe Flash SSD (Samsung 970
Pro [14, 15]) and SATA Flash SSD (Intel 520 SSD [9]). Low-latency SSD
and NVMe Flash SSD assume PCIe 3.0.

1 2 4 8 16 32
-2
+2
+4
+6
+8

+10
+12
+14
+16

Reads

Threads

Pe
rfo

rm
an

ce
 R

at
io DRAM/NVM

NVM/Optane
Optane/Flash

1 2 4 8 16 32
-2
+2
+4
+6
+8

+10
+12
+14
+16

Writes

Threads

Figure 2: Performance Ratios Across Modern Devices. The ratio
of throughput, for varying concurrency, across device pairings. We disable
the cache prefetcher and use non-temporal stores for DRAM and NVM. NVM
is used as App-Direct mode. Note there is no value between -1 and +1.

erarchies where the performance of Dhi is significantly higher
than Dlo, such approaches deliver high performance. However,
with the storage landscape rapidly changing, modern devices
have overlapping performance characteristics and thus it is
essential to rethink how such devices must be managed.
2.2 Hardware Storage Trends
As shown in Table 1, storage systems are undergoing a rapid
transformation with a proliferation of high-performance tech-
nologies, including persistent memory (e.g., 3D XPoint mem-
ory [1, 44]), low-latency SSDs (e.g., Intel Optane SSD [8],
Samsung Z-SSD [16], and Micron X100 SSD [13]), NVMe
Flash SSDs ([14,15]), and SATA Flash SSDs ([9]). Although
a seeming ordering exists in terms of latency, bandwidth dif-
ferences are less clear, and a total ordering is hard to establish.

To better understand the performance overlap of these de-
vices, Figure 2 shows the throughput of a variety of real de-
vices for both 4KB read/load and write/store while varying
the level of concurrency. The figure plots the performance
ratio between pairs of devices: DRAM/NVM plots the band-
width of memory (SK Hynix 16GB DDR4) vs. a single Intel
Optane DCPM (128GB); NVM/Optane uses the DCPM vs.
the Intel 905P Optane SSD; finally, Optane/Flash uses the
same Optane SSD and the Samsung 970 Pro Flash SSD. For
any pair X/Y, a positive ratio (X

Y) is plotted if the performance
of X is greater than Y; otherwise, a negative ratio (�Y

X) is
plotted (in the gray region).

For reads with low concurrency, one can see significant
differences between device pairs. Thus, one might conclude
that a total ordering exists. However, for reads under high con-

308 19th USENIX Conference on File and Storage Technologies USENIX Association

currency, the ratios change dramatically. In the most extreme
case, the Optane SSD and Flash SSD have nearly identical
performance. For writes, the results are even more intriguing;
because of the low performance of NVM concurrent writes, in
one case (NVM/Optane), the ratio changes from much better
under low load to much worse under high load.

To summarize, the following are the key trends in the stor-
age hierarchy. Unlike the traditional hierarchy (e.g., DRAM
vs. HDD), the new storage hierarchy may not be a hierarchy;
the performance of two neighboring layers (e.g., NVM vs.
Optane SSD) can be similar. Second, the performance of new
devices vary depending upon many factors including different
workloads (reads vs. writes) and level of concurrency. Man-
aging these devices with traditional caching and tiering is
no longer effective. Given our focus on improving caching
approaches in this paper, we next demonstrate the limitations
of caching in modern hierarchies.

3 Characterizing Caching in Traditional and
Modern Storage Hierarchies

We now explore caching in different storage hierarchies. Our
goal is simple: to understand how caching performs in both
traditional and modern hierarchies. In doing so, we hope
to build towards a technique that addresses the limitation
of caching when running on modern, complex devices and
underneath a range of dynamic workloads.

For a deeper intuition, we first model caching performance.
We then conduct an empirical analysis on real devices, filling
in important details not captured by the model. We also model
an approach that we call splitting to highlight the drawbacks
of classic caching. In splitting, data is simply split across de-
vices, and no migration is performed at run time. Splitting
outperforms caching when accesses are optimally split be-
tween the performance and capacity devices. In contrast to
caching and tiering, splitting is impractical: it is not suitable
for workloads where popular items change over time; we use
it only as a baseline to build up to our solution.

3.1 Modeling Caching Performance
We assume there are two devices, Dhi and Dlo, where each
performs at a fixed rate, Rhi and Rlo ops/s; of course, real
devices are more complex, with internal concurrency and per-
formance that depends on the workload, but this simplification
is sufficient for our purposes.

We also assume that the workload has either little concur-
rency (i.e., one request at a time) or copious concurrency (i.e.,
many requests at a time). This allows us to bound the caching
performance between these extremes. We assume that the
workload is read only; this simplifies our analysis in that we
do not account for dirty writebacks upon a cache replacement.

3.1.1 Model
We develop a model of caching performance based on hit rate,
H 2 [0,1]. As stated above, we model two extremes: low and

high concurrency. For one request at a time, the average time
per request is:

Tcache,1 = H ·Thit +(1�H) ·Tmiss (1)
Thit is simply the inverse of the rate of the fast device,

i.e., Thit = 1
Rhi

; Tmiss is the cost of fetching the data from the
slow device and also installing it in the faster device, i.e.,
Tmiss = 1

Rhi
+ 1

Rlo
, or Rhi+Rlo

Rhi·Rlo
.

The resulting bandwidth is the inverse of Tcache,1:

Bcache,1 =
Rhi ·Rlo

H ·Rlo +(1�H) · (Rhi +Rlo)
(2)

We now model concurrent workloads. Assume N requests.
H ·N are hits, (1�H) ·N are misses. Note that only misses
are serviced by the slow device, whereas all requests must
be serviced by the fast one (data admissions). The time to
process N requests on the slow or fast device is:

Tslow(N) = N · (1�H) · 1
Rlo

(3)

Tf ast(N) = N · (1�H) · 1
Rhi

+N ·H · 1
Rhi

= N · 1
Rhi

(4)

Total time is the maximum of these two, i.e., whichever
device finishes last determines the workload time.

Tcache,many(N) = max(Tslow(N),Tf ast(N)) (5)
= max(N · 1�H

Rlo
,N · 1

Rhi
) (6)

Dividing by N (not shown) yields the average time per
request. Finally, the bandwidth can be computed, as it is the
inverse of the average time per request:

Bcache,many =
1

max(1�H
Rlo

, 1
Rhi

)
(7)

We model splitting performance based on the split rate,
S 2 [0,1], which determines the fraction S of requests serviced
at Dhi; the remaining requests (1 � S) are served at the tier
Dlo. Compared to caching, splitting eliminates the cost of
installing misses on the faster device. Its throughput can be
computed as follows (in a similar way as caching, note the
different formula for Dhi):

Bsplit,1 =
1

1�S
Rlo

+ S
Rhi

(8)

Bsplit,many =
1

max(1�S
Rlo

, S
Rhi

)
(9)

3.1.2 Model Exploration
We explore different parameter settings with our model. Fig-
ure 3 shows the results for four settings, starting with a large
difference in performance between Dhi and Dlo, and then
slowly increasing the performance of Dlo.

The first graph shows a traditional hierarchy where the per-
formance of Dhi is much (100⇥) higher than the performance
of Dlo. This graph shows that both caching and splitting can
deliver high performance on traditional hierarchies. The key
is to direct as many requests as possible to Dhi. Caching and
splitting perform well if nearly all requests hit in Dhi. Even

USENIX Association 19th USENIX Conference on File and Storage Technologies 309

0.0 .25 .50 .75 1.0
0

50

100

150

200
Ratio 100:1

Ba
nd

w
id

th
 (O

ps
/S

ec
)

Cache (many)
Cache (1)
Split (many)
Split (1)

0.0 .25 .50 .75 1.0
0

50

100

150

200
Ratio 100:10

0.0 .25 .50 .75 1.0
0

50

100

150

200
Ratio 100:50

H (cache) or S (split)

Ba
nd

w
id

th
 (O

ps
/S

ec
)

0.0 .25 .50 .75 1.0
0

50

100

150

200
Ratio 100:100

H (cache) or S (split)

Figure 3: Modeled Performance. This figure shows model-predicted
throughput for caching and splitting across a range of different device per-
formance levels. We show performance for high (“many”) and low (“1”)
concurrency. The faster device performs at a fixed rate of 100 ops/sec.

with 80% hit/split rate, overall performance is quite low, as
the slow device dominates.

The next graph (upper right) examines a case where the
performance ratio between the devices is still high (10⇥).
Optimizing for a high hit/split rate still works well. Note the
slight difference between the low and high concurrency cases;
with higher concurrency, these approaches can achieve peak
performance even with slightly less than a perfect hit rate, as
outstanding requests hide the cost of misses.

The next two graphs represent modern hierarchies where
the performance of Dhi is closer to that of Dlo (Dhi deliv-
ers bandwidth either 2⇥ Dlo or equal to it). We make two
important observations from these graphs.

First, classic caching is limited by the performance of Dhi
and cannot realize the combined performance of both devices.
Even with a 100% hit ratio, caching can only deliver 100
ops/sec as it does not utilize the bandwidth of Dlo. Splitting
(with an optimal split rate) significantly outperforms caching,
exposing critical limitations of caching in modern hierarchies.

Second, in modern hierarchies, maximizing the number of
requests served by Dhi does not always yield the best perfor-
mance. Consider the case where Dhi is 2⇥ faster than Dlo.
With copious concurrency, when about two-thirds of the re-
quests are directed to Dhi, splitting realizes the aggregate
bandwidth of Dhi and Dlo. Increasing the split rate further
only degrades performance. Thus, in modern hierarchies, in-
stead of maximizing the hit or split rate, the key is to find the
right proportion of requests that must be sent to each device.

Th
ro

ug
hp

ut
 (k

op
s/

s)

Concurrency 1 4

DRAM/
Flash

8 16

NVM/
Optane

Optane/
Flash

Caching Splitting

0

100

0

200
0

500

0 1
 Hit/Split Rate

0 1 0 1 0 1

Figure 4: Performance of Caching and Splitting. This figure shows
the throughput of read-only workloads. Horizontal dotted lines represent the
combined bandwidth of both devices (the maximum possible throughput).

3.2 Evaluation with Optane DCPM and Optane SSD
Next, we demonstrate that the observations from our model
hold for real storage stacks. We use one traditional hierarchy
consisting of DRAM and a Flash SSD [14]. We also use two
modern stacks: first, NVM (Optane DCPM 128GB) and an
Optane 905P SSD; second, an Optane SSD and a Flash SSD.
We use these hierarchies to cover a wide range of performance
differences; meantime, DCPM and Optane SSD are the most
popular emerging devices nowadays. While there could be
many hierarchies (e.g., with different versions of these de-
vices), we believe our hierarchies are adequate to validate our
modeling and draw meaningful implications for our designs.

For these experiments, we have implemented a new bench-
marking tool, called the Hierarchical Flexible I/O Benchmark
Suite (HFIO). HFIO contains a configurable hierarchy con-
troller that implements caching and splitting. HFIO uses the
LRU-replacement policy for caching. HFIO generates syn-
thetic workloads with a variety of parameters (e.g., mix of
reads and writes, locality, and the number of concurrent ac-
cesses). HFIO precisely controls the caching layer size and
access locality to obtain a desired hit rate. We fix the block
size to 32 KB and consider only random accesses. We run
our experiments on an Intel Xeon Gold 5218 CPU at 2.3GHz
(16 cores), running Ubuntu 18.04. All experiments ran long
enough to fill the cache and deliver steady-state performance.

We begin by replicating the results from our model by
running read-only workloads and measuring the throughput.
Figure 4 shows the results on three hierarchies and workloads
with different levels of concurrency. First, in the traditional
hierarchy (DRAM+Flash SSD, the first row of Figure 4), as
expected, both caching and splitting can achieve high perfor-
mance. Caching and splitting perform similarly, exactly as
our model predicted (Figure 3, 100:1 and 100:10 cases).

The second two rows of Figure 4 show that caching in new
storage hierarchies (e.g., NVM+Optane, Optane+Flash) be-
haves much differently than in the traditional hierarchy. With
low concurrency (1 or 4), the caching device (i.e., DCPM or
Optane SSD) is not fully utilized and thus optimizing the hit/s-

310 19th USENIX Conference on File and Storage Technologies USENIX Association

plit rate still improves performance. However, for workloads
with more concurrency, maximizing the hit/split rates does not
lead to peak performance in either of the NVM+Optane or Op-
tane+Flash hierarchies. In these situations, capacity devices
such as Optane SSD provide substantial performance com-
pared to their caching layers (e.g., DCPM). Splitting (with
an optimal split rate) can thus deliver significantly greater
performance than caching.

Our experiments with real devices reveal several complexi-
ties that the models do not: the optimal split rate depends upon
several factors. From Figure 4, we can see that the optimal
split rate varies significantly from one device to another and
with the level of parallelism of the workload. Write ratios also
influence the optimal split rate. As shown in Figure 5, for Op-
tane+Flash, the optimal split rate for a read-heavy workload
is 90%, while it is about 60% when the workload is write-
heavy. This change occurs because the difference between
the write performances of Optane and Flash is smaller than
the difference between their read performances. We observe
similar results for the NVM+Optane hierarchy.

Summary and Implications: Our performance character-
ization (modeling and evaluation) of caching provides im-
portant lessons for our design. Classic caching is no longer
effective in modern hierarchies: it does not exploit the consid-
erable performance that can be delivered by the capacity layer.
With high hit rates and when the cache layer is under heavy
load, some of the requests can be offloaded to the capacity
device. Such high hit rates and heavy load are quite common
in production caching systems. For instance, a recent study at
Twitter showed that eight out of the ten Twemcache clusters
have a miss ratio lower than 5% [98]. Studies have also shown
that cache layers often experience heavy load (i.e., they are
bandwidth saturated) [17, 56].

In the modern hierarchy, the capacity layer can offer sub-
stantial performance and should thus be exploited in such
situations. An alternative solution is to increase the number
of cache devices in the hierarchy; however, this approach can
be prohibitively expensive as performance devices are more
costly. In contrast, offloading requests to the capacity layer
offers a more economic way to realize significant improve-
ments. Such an offloading approach can deliver the aggregate
performance of all devices by optimally splitting the requests
to each device. For the offloading approach to work well, it
is essential to dynamically adjust the split rate because the
optimal rate varies widely in modern hierarchies depending
upon factors such as write ratios and level of concurrency.

We note that classic tiering (which also aims to direct most
requests to the performance layer) suffers from similar short-
comings as caching in modern hierarchies. In this work, we
focus on improving caching for two main reasons. First, get-
ting tiering to optimally split accesses is fundamentally hard.
Migration or replication to match the current optimal split in
tiering may hurt performance. In contrast, caching can readily
bypass cache hits to capacity devices; copies of hot data are

Th
ro

ug
hp

ut

(k
op

s/
s)

Optane/Flash (PAR 4)

0.1
0.5
0.9

Read Ratio

0

50

100

Split Ratio
0 1

(a) Optane SSD + Flash

NVM/Optane (PAR 8)

0

100

200

Split Ratio
0 1

(b) NVM + Optane SSD

Figure 5: Mixed Reads and Writes Workloads. The figure shows
the performance of splitting with read-write workloads; PAR: workload
parallelism/concurrency.

always available on both devices. Second, we believe there
are many scenarios where caching may be the only suitable
solution and tiering may not be appropriate. For instance, ap-
plications can only use DRAM as a cache when persistence is
required and cannot tier in the DRAM+NVM hierarchy. We
believe many systems use caching for such reasons and an
approach that improves upon classic caching can be beneficial
for many such systems.

4 Non-Hierarchical Caching
We present non-hierarchical caching (NHC), a caching frame-
work that utilizes the performance of devices that would have
been treated as only a capacity layer with classic caching.
NHC has the following goals:
(i) Perform as well or better than classic caching. Classic
caching optimizes the performance of a storage hierarchy by
optimizing the performance from the higher-level device, Dhi;
this performance is optimized by finding the working set that
maximizes the hit rate. NHC should degenerate in the worst-
case to classic caching and should be able to leverage any
classic caching policy (e.g., eviction and write-allocation).
(ii) Require no special knowledge or configuration. NHC
should not make more assumptions than classic caching. NHC
should not require prior knowledge of the workload or detailed
performance characteristics of the devices. NHC should be
able to manage any storage hierarchy.
(iii) Be robust to dynamic workloads: Workloads change
over time, in their amount of load and working set. NHC
should adjust to dynamic changes.

The main idea of NHC (Figure 1) is to offload excess
load to capacity devices when doing so improves the overall
caching performance. NHC can be described in three steps.
First, when warming up the system (or after a significant
workload change), NHC leverages classic caching to identify
the current working set and load that data into the Dhi; this
ensures that NHC performs at least as well as classic caching.
Second, after the hit rate has stabilized, NHC improves upon
classic caching by sending excess load to the capacity device,
Dlo. This excess load has two components: read hits that are
not delivering additional performance on Dhi because Dhi is
already at its maximum performance, and read misses that

USENIX Association 19th USENIX Conference on File and Storage Technologies 311

cause unnecessary data movement between the two devices.
Classic caching moves data from Dlo to Dhi when a miss
occurs to improve the hit rate. However, improving hit rate
is not beneficial when Dhi is already delivering its maximum
performance. Therefore, NHC decreases the amount of data
admissions into Dhi . Using a feedback-based approach, NHC
determines the excess load; it requires no knowledge of the
device or the workload. Finally, if a workload change is ob-
served, NHC returns to classic caching; if the workload never
stabilizes, the algorithm degenerates to classic caching. NHC
can leverage the same write-allocation policies as a classic
cache (e.g., write-around or write-back).

4.1 Formal Definitions
To describe NHC, we introduce a few terms. We assume
that the storage hierarchy is still composed of two devices,
Dhi and Dlo. Caching performance is determined by how the
workload is distributed across those two devices. We denote
the total workload over a time period dt as a constant W , a
finite set of accesses to data items. We use w to refer to the
subset of W served by Dhi, and use its complement set W �w
for that served by Dlo. We model performance in the time
period dt as P(W,w) = phi(w)+ plo(W � w). We make the
following assumptions about the devices:

Assumption 1: Performance of a device has an upper
bound. The performance of a device cannot increase after it
is fully utilized. Lhi and Llo represent the maximum possible
performance that can be delivered by each device for the
current workload, W . We note w0 as the smallest subset of w
such that phi(w0) = Lhi.

Assumption 2: Increasing the workload on a device
does not decrease performance. This implies phi(x) and
plo(x) are monotonically increasing functions. Note that HDD
performance can decrease with more random requests due
to more seeks, but the assumption generally holds for high-
performing devices such as DRAM, NVM, and SSDs.

Assumption 3: Before reaching upper limits, phi(x) has
a larger gradient than plo(x). Based on our observations
from real devices, the potential performance gain of using Dhi
is greater than that of using Dlo.

We define classic caching as an approach that optimizes
P(W,w) by maximizing only phi(w). Classic caching attempts
to maximize P(W,w) by finding some working set wmax that
maximizes the hit rate of Dhi.

The key insight of NHC is that, when w0 < wmax, an oppor-
tunity exists to move some portion of the workload wmax �w0
away from Dhi to Dlo. Since phi(w0) = phi(wmax) = Lhi, re-
moving wmax � w0 from Dhi does not decrease the perfor-
mance of Dhi below Lhi and now Dlo can deliver some amount
of performance for wmax � w0. Thus, NHC can always per-
form as well or better than classic caching.

4.2 Architecture
As shown in Figure 6, classic caching can be upgraded to
NHC by adding decision points to its cache controller and

Non-Hierarchical
Cache Scheduler

Optimizer
X = argmax f(X) Load

Admission
Switch

Hit?

Capacity
Layer (Dlo)

Performant
Layer (Dhi)

User/Application

Monitor f(X)

Tune

Insert(item) Get/Lookup(item)

NO

YES

Classic Cache Controller

data_admit

TRUE

clean �
(p > load admit)

<latexit sha1_base64="y92lmO0Py2E93QUQhz0DZ5YNjm8=">AAACHnicbVBNSxxBEK1RE83mw4055tK4CIbAMiOInsKilxwVXBV2lqWmp2Zt7OkZumvUZdhf4sW/4sWDIQRy0n9j764Hvx40/Xiviqp6SamV4zC8D+bmF969X1z60Pj46fOX5ebXlUNXVFZSVxa6sMcJOtLKUJcVazouLWGeaDpKTncn/tEZWacKc8Cjkvo5Do3KlET20qC5GTNdcJLV05+5lprQjMciPqd0SCKOG+ul+CWELjCNB5jmin80Bs1W2A6nEK9J9EhandX45xUA7A2a/+O0kFVOhqVG53pRWHK/RsvKDxw34spRifIUh9Tz1GBOrl9PzxuLNa+kIiusf4bFVH3aUWPu3ChPfGWOfOJeehPxLa9Xcbbdr5UpKyYjZ4OySgsuxCQrkSpLkvXIE5RW+V2FPEGLkn2ikxCilye/Jocb7ShsR/tRq7MDMyzBd1iFdYhgCzrwG/agCxIu4Rpu4U9wFdwEf4N/s9K54LHnGzxDcPcAYjijZQ==</latexit><latexit sha1_base64="rWk5hLQFaB5Vb/VQtPvLSZMfAMo=">AAACHnicbVDLSitBEO3xbfRq1KWbxiAoF8LMhYuuJOjGpYJRIRNCTU9NbOzpGbpr1DDkL9y58VfcuFBEcKV/Yydx4etA04dzqqiqE+VKWvL9N29sfGJyanpmtjI3/2dhsbq0fGyzwghsikxl5jQCi0pqbJIkhae5QUgjhSfR+d7AP7lAY2Wmj6iXYzuFrpaJFEBO6lT/h4RXFCXl8CcqhULQ/T4PLzHuIg/DykbOdzhXGcRhB+JU0malU635dX8I/pMEH6TWWAv/Xr81eged6ksYZ6JIUZNQYG0r8HNql2BIuoH9SlhYzEGcQxdbjmpI0bbL4Xl9vu6UmCeZcU8TH6qfO0pIre2lkatMgc7sd28g/ua1Ckq226XUeUGoxWhQUihOGR9kxWNpUJDqOQLCSLcrF2dgQJBLdBBC8P3kn+T4Xz3w68FhUGvsshFm2CpbYxssYFuswfbZAWsywW7YHXtgj96td+89ec+j0jHvo2eFfYH3+g5roqTr</latexit><latexit sha1_base64="rWk5hLQFaB5Vb/VQtPvLSZMfAMo=">AAACHnicbVDLSitBEO3xbfRq1KWbxiAoF8LMhYuuJOjGpYJRIRNCTU9NbOzpGbpr1DDkL9y58VfcuFBEcKV/Yydx4etA04dzqqiqE+VKWvL9N29sfGJyanpmtjI3/2dhsbq0fGyzwghsikxl5jQCi0pqbJIkhae5QUgjhSfR+d7AP7lAY2Wmj6iXYzuFrpaJFEBO6lT/h4RXFCXl8CcqhULQ/T4PLzHuIg/DykbOdzhXGcRhB+JU0malU635dX8I/pMEH6TWWAv/Xr81eged6ksYZ6JIUZNQYG0r8HNql2BIuoH9SlhYzEGcQxdbjmpI0bbL4Xl9vu6UmCeZcU8TH6qfO0pIre2lkatMgc7sd28g/ua1Ckq226XUeUGoxWhQUihOGR9kxWNpUJDqOQLCSLcrF2dgQJBLdBBC8P3kn+T4Xz3w68FhUGvsshFm2CpbYxssYFuswfbZAWsywW7YHXtgj96td+89ec+j0jHvo2eFfYH3+g5roqTr</latexit><latexit sha1_base64="0Oj6zeKq0otzbbMGO9kjtiu9Lh0=">AAACHnicbVBNS8NAEN34bf2qevSyWAS9lEQQPUnRi0cFq0JTymQzqYubTdidqCX0l3jxr3jxoIjgSf+N29qDXw+Wfbw3w8y8KFfSku9/eGPjE5NT0zOzlbn5hcWl6vLKmc0KI7ApMpWZiwgsKqmxSZIUXuQGIY0UnkdXhwP//BqNlZk+pV6O7RS6WiZSADmpU90JCW8pSsrhT1QKhaD7fR7eYNxFHoaVzZzvc64yiMMOxKmkrUqnWvPr/hD8LwlGpMZGOO5U38I4E0WKmoQCa1uBn1O7BEPSDexXwsJiDuIKuthyVEOKtl0Oz+vzDafEPMmMe5r4UP3eUUJqbS+NXGUKdGl/ewPxP69VULLXLqXOC0ItvgYlheKU8UFWPJYGBameIyCMdLtycQkGBLlEByEEv0/+S86264FfD06CWuNgFMcMW2PrbJMFbJc12BE7Zk0m2B17YE/s2bv3Hr0X7/WrdMwb9ayyH/DePwFPuaHc</latexit>

dirty �
p � load admit

<latexit sha1_base64="TPbXGj6XiLHOq3vqXY4hu/gLLF8=">AAACHXicbVC7TsNAEFzzDOYVoKQ5ESFRoMhGSFBG0FCCREikOLLO5zWcOD/wrRGRlR+h4VdoKECIggbR8SlcHgUEprnRzI5ud4JMSU2O82lNTc/Mzs1XFuzFpeWV1era+oVOi1xgU6QqzdsB16hkgk2SpLCd5cjjQGEruD4e+K1bzLVMk3PqZdiN+WUiIyk4Gcmv7nuEdxRE5fAlKkOZU6/fZ55JMs+zM8PwhjGV8tDzeRhLsv1qzak7Q7C/xB2TWoN5u18AcOpX370wFUWMCQnFte64TkbdkuckhcK+7RUaMy6u+SV2DE14jLpbDq/rs22jhCwy60RpQmyo/kyUPNa6FwdmMuZ0pSe9gfif1ykoOuyWMskKwkSMPooKxShlg6qYqQIFqZ4hXOTS7MrEFc+5IFPooAR38uS/5GKv7jp198ytNY5ghApswhbsgAsH0IATOIUmCLiHR3iGF+vBerJerbfR6JQ1zmzAL1gf30CGpBM=</latexit><latexit sha1_base64="PPwACCNid0bo6xPn71z3x5nq5F4=">AAACHXicbVC7SgNBFJ31lbi+opY2g0GwkLArgpZBG8sI5gHZJczO3k2GzD7cuSuGJR+ijb9iY6GIhY3Y+yFOHoUmnmYO59zD3Hu8RAqFlvVlLCwuLa8Uiqvm2vrG5lZpe6eh4izlUOexjNOWxxRIEUEdBUpoJSmw0JPQ9PoXI795C6kScXSNgwTckHUjEQjOUEud0omDcIdekI9fxNwXKQ6GQ+roJHUcM9EMbiiVMfOdDvNDgWanVLYq1hh0nthTUq5S5+jbvy/UOqUPx495FkKEXDKl2raVoJuzFAWXMDSdTEHCeJ91oa1pxEJQbj6+bkgPtOLTQK8TxBHSsfo7kbNQqUHo6cmQYU/NeiPxP6+dYXDm5iJKMoSITz4KMkkxpqOqqK4COMqBJoynQu9KeY+ljKMudFSCPXvyPGkcV2yrYl/Z5eo5maBI9sg+OSQ2OSVVcklqpE44eSBP5IW8Go/Gs/FmvE9GF4xpZpf8gfH5A6GqpRs=</latexit><latexit sha1_base64="PPwACCNid0bo6xPn71z3x5nq5F4=">AAACHXicbVC7SgNBFJ31lbi+opY2g0GwkLArgpZBG8sI5gHZJczO3k2GzD7cuSuGJR+ijb9iY6GIhY3Y+yFOHoUmnmYO59zD3Hu8RAqFlvVlLCwuLa8Uiqvm2vrG5lZpe6eh4izlUOexjNOWxxRIEUEdBUpoJSmw0JPQ9PoXI795C6kScXSNgwTckHUjEQjOUEud0omDcIdekI9fxNwXKQ6GQ+roJHUcM9EMbiiVMfOdDvNDgWanVLYq1hh0nthTUq5S5+jbvy/UOqUPx495FkKEXDKl2raVoJuzFAWXMDSdTEHCeJ91oa1pxEJQbj6+bkgPtOLTQK8TxBHSsfo7kbNQqUHo6cmQYU/NeiPxP6+dYXDm5iJKMoSITz4KMkkxpqOqqK4COMqBJoynQu9KeY+ljKMudFSCPXvyPGkcV2yrYl/Z5eo5maBI9sg+OSQ2OSVVcklqpE44eSBP5IW8Go/Gs/FmvE9GF4xpZpf8gfH5A6GqpRs=</latexit><latexit sha1_base64="rzsCFgyraUrGySQ4B6aESV5gca8=">AAACHXicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CHFVnQ+r5NTzg98a0Rk+Udo+BUaChCioEH8DRcnBSRMc6OZHd3ueIkUCi3r21haXlldW69sVDe3tnd2zb39toqzlEOLxzJOux5TIEUELRQooZukwEJPQscbXU38zj2kSsTRLY4TcEM2iEQgOEMt9c0zB+EBvSAvX8TcFymOi4I6Okkdp5poBneUypj5Tp/5ocBq36xZdasEXST2jNTIDM2++en4Mc9CiJBLplTPthJ0c5ai4BKKqpMpSBgfsQH0NI1YCMrNy+sKeqwVnwZ6nSCOkJbq70TOQqXGoacnQ4ZDNe9NxP+8XobBhZuLKMkQIj79KMgkxZhOqqK6CuAox5owngq9K+VDljKOutBJCfb8yYukfVq3rbp9Y9cal7M6KuSQHJETYpNz0iDXpElahJNH8kxeyZvxZLwY78bHdHTJmGUOyB8YXz/ZVaJL</latexit>

Figure 6: Non-Hierarchical Caching Architecture. This figure
shows the architecture of NHC. NHC adds decision points and a scheduler to
classic caching. As before, NHC is transparent to users. Any classic caching
implementation can be upgraded to be a NHC one. Note that decision points
only tune cache read hits/misses.

a non-hierarchical cache scheduler. The classic cache con-
troller serves reads and writes from a user/application to the
storage devices (i.e., Dhi and Dlo) and controls the contents of
Dhi based on its replacement policy (e.g., LRU). A new cache
scheduler monitors performance and controls whether classic
caching is performed and where cache read hits are served.
The scheduler optimizes a target performance metric that can
be supplied by the end-user (e.g., ops/sec) or use device-level
measurements (e.g., request latency).

The NHC scheduler performs this control with a boolean
data_admit (da) and a variable load_admit (la). The da
flag controls behavior when a read miss occurs on Dhi: when
da is set, missed data items are allocated in Dhi, according
to the cache replacement policy; when da is not set, the miss
is handled by Dlo and not allocated in Dhi. Classic caching
corresponds to the case where the da flag is true.

The la variable controls how read hits are handled and
designates the percentage of read hits that should be sent to
Dhi; when la is 0, all read hits are sent to Dlo. Specifically,
for each read hit, a random number R 2 [0,1.0] is generated;
if R <= la, the request is sent to Dhi; else, it is sent to Dlo.
In classic caching, la is always 1.

The NHC framework works with any classic caching write-
allocation policy (specified by users), which handles write
hits/misses. NHC admits write misses into Dhi according to
the policy; da, la do not control write hits/misses. With write-
back, cache writes introduce dirty data in Dhi and data on
Dlo can be out-of-date; in this case, NHC does not send dirty
reads to Dlo.

4.3 Cache Scheduler Algorithm
The NHC scheduler adjusts the behavior of the controller to
optimize a target performance metric. As shown in Algorithm
1, the scheduler has two states: increasing the amount of data
cached on Dhi to maximize hit rate, or keeping the data cached
constant, while adjusting the load sent to each device.

312 19th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 1: Non-hierarchical caching scheduler
cache: classic cache controller
step: the adjustment step size for load_admit
f(x): function that measures target performance metric when

load_admit = x, the value is measured by setting
load_admit = x for a time interval

1 while true do
State 1: Improve hit rate

2 data_admit = true, load_admit = 1.0
3 while cache.hit_rate is not stable do
4 sleep_a_while()

5 data_admit = false, start_hit_rate = cache.hit_rate
State 2: Adjust load_admit

6 while true do
7 ratio = load_admit

Measure f(ratio-step) and f(ratio+step)
8 max_f = Max(f(ratio-step), f(ratio), f(ratio+step))

Modify load_admit based on the slope
9 if f(ratio-step) == max_f then

10 load_admit = ratio - step

11 else if f(ratio+step) == max_f then
12 load_admit = ratio + step

13 else if f(ratio) == max_f then
14 load_admit = ratio
15 if load_admit == 1.0 then
16 goto line 2 # Quit tuning if w < w0

Check whether workload locality changes
17 if cache.hit_rate < (1-a)start_hit_rate then
18 goto line 2

State 1: Improve hit rate. The NHC scheduler begins by
letting the cache controller perform classic caching with its
default replacement policy (da is true and la is 1); during this
process, the cache is warmed up and the hit rate improves as
the working set is cached in Dhi. The NHC scheduler monitors
the hit rate of Dhi and ends this phase when the hit rate is
relatively stable; at this point, the performance delivered by
Dhi for the workload wmax is near its peak.

State 2: Adjust load between devices. After Dhi contains
the working set leading to a high hit rate and performance,
the NHC scheduler explores if sending some requests to Dlo
increases the performance of Dlo, while not decreasing the per-
formance of Dhi, i.e., the algorithm moves from wmax toward
w0. In this state, da is set to false and feedback is used to tune
la to maximize the target performance metric. Specifically,
the scheduler (Lines 6–18) modifies la; in each iteration, per-
formance is measured with la +/- step over a time interval
(e.g., 5ms see §5). The value of la is adjusted in the direction
indicated by the three data points. When the current value of
la leads to the best performance, the scheduler sticks with the
current value. The value of la is kept in the acceptable domain
of [0, 1.0] with a negative penalty function. If the scheduler
finds the optimal la is 1, it quits tuning and moves back to

State 1; intuitively, this means NHC has moved the current
workload w below w0 and hence requires classic caching to
improve the hit rate to further improve performance.

Since NHC relies on classic caching to achieve an accept-
able hit rate, it restarts the optimization process when work-
load locality changes. The NHC scheduler monitors the cache
hit rate at runtime; if the current hit rate drops, the scheduler
re-enters State 1 to reconfigure the cache with the current
working set. If the workload never stabilizes, NHC behaves
like classic caching.

Target Performance Metrics: NHC can improve different
aspects of performance. NHC can be configured to optimize
metrics such as throughput, latency, tail latency, or any com-
bination. The target metrics can also capture performance at
various levels of the system (e.g., hardware, OS, or applica-
tion). f is a function that measures the target metric.

Write Operations: NHC handle writes with the write-
allocation policy (specified by users) in the classic cache
controller. NHC does not adjust the write-allocation policy
because it may be chosen for factors other than performance:
endurance [37, 86], persistence, or consistency [59].

Adapting to Dynamic Workloads: NHC periodically
measures the target metric (e.g., throughput) using f and opti-
mizes it by adjusting load-admission ratios (in a way similar
to gradient-descent). NHC only needs Df to determine the
optimal split of accesses. Since tuning involves only one pa-
rameter (load-admission ratio), it is cheap and converges fast.
NHC can thus handle frequently-changing workloads with
continual tuning.

Summary: Non-hierarchical caching optimizes classic
caching to effectively use the performance of capacity de-
vices. NHC improves on classic caching in two ways. First,
NHC does not admit read misses into Dhi when the perfor-
mance of Dhi is fully utilized. Second, when the performance
of Dhi is at its peak, NHC delivers useful performance from
the Dlo device by sending some of the requests that would
have hit in Dhi to Dlo instead. By determining at run-time the
appropriate load, NHC obtains useful performance from Dlo
instead of using Dlo only to serve misses into Dhi.

5 Implementation
We implement non-hierarchical caching in two places: Orthus-
CAS, a generic block-layer caching kernel module, and
Orthus-KV, a user-level caching layer for a key-value store.

Open CAS [32] is caching software built by Intel that ac-
celerates accesses to a slow backend block device by using a
faster device as a cache. It supports different write-allocation
policies such as write-around, write-through, and write-back,
and uses an approximate LRU policy for eviction. Open CAS
is a kernel module that we modify to leverage NHC. Orthus-
CAS works with all policies supported in Open CAS.

We also implement NHC within a persistent block cache
for Wisckey [64], an LSM-tree key-value store. LSM trees are
a good match for Optane SSD, and have garnered significant

USENIX Association 19th USENIX Conference on File and Storage Technologies 313

industry interest [2,12,38]. Wisckey is derived from LevelDB;
the primary difference is that Wisckey separates keys from
values to reduce amplification. While keys remain in the
LSM-tree, values are stored in a log and each key points to
its corresponding value in the log. Separating keys and values
also improves caching because it avoids invalidating values
when compacting levels; this is similar to the approach in
memcached [11] for spilling data to SSD. We integrate NHC
with Wisckey’s persistent block cache layer. The cache keeps
hot blocks (both LSM-tree key and value blocks, 4KB in size)
on the cache device using sharded-LRU. Eviction occurs in
units of 64 blocks. We call this implementation Orthus-KV.
Detecting Hit-rate Stability: NHC considers the hit-rate to
be stable (Algorithm 1, Lines 3-4) when it changes within
0.1% in the last 100-milliseconds. This simple heuristic works
well as NHC does not require perfect hit-rate-stability detec-
tion. With intensive workloads, a higher hit-rate will only let
NHC bypass more hits; with light workloads, NHC switches
to classic caching quickly.
Target Performance Metrics: Our implementations support
three target metrics: throughput, average latency, and tail (P99)
latency, with throughput being the default. When optimizing
throughput, we use the Linux block-layer statistics [10] to
track device throughputs. When optimizing for latency, we
track the end-to-end request latency of the caching system.
Tuning Parameters: NHC implementations must measure
the target metrics and tune parameters periodically. The speed
at which NHC adapts to workload changes depends on both
the interval between target performance measurements and
the step size. With a smaller interval, tuning converges faster.
Though frequent tuning means more CPU overheads, our CPU
overheads are negligible. We found the Linux block layer
counters [10] are not accurate when the interval is smaller
than 5 ms, so we use the smallest yet accurate interval of 5
ms. A large step size leads to faster convergence but may get
sub-optimal results. NHC adjusts the load ratio by 2% in each
step; we have found this gives a reasonable converging time
with end results similar to smaller step sizes. We leave an
adaptive step size for future work.
Implementation Overhead: We find that implementing
NHC into existing caching layers is fairly straightforward
and requires nominal developer effort. We added only 460
(not including cache mode registration code) and 228 LOC
into Open CAS and Wisckey, respectively.

6 Evaluation
Our evaluation aims to answer the following questions:
• How does NHC in Orthus-CAS perform across hierarchies,

write-allocation policies, and target metrics? (§6.1)
• How does NHC as implemented in Orthus-KV perform on

static workloads? (§6.2)
• How does Orthus-KV handle dynamic workloads? How

does it adapt to changes in load and data locality? (§6.3)
• How does NHC compare to previous work? (§6.4)

Setup. We use the following real devices: a SK Hynix DDR4
module (denoted as DRAM), an Intel Optane 128GB DCPM
(NVM), an Intel Optane SSD 905P (Optane), and a Samsung
970 Flash SSD (Flash). We also use FlashSim [58] to simulate
flash devices with different performance characteristics.

6.1 Orthus-CAS
We begin by evaluating NHC as implemented in Orthus-CAS
running on microbenchmarks where the workloads do not
change over time. The accesses are uniformly random and
64KB (the suggested page size for Open CAS). We use 1GB
of the cache device and generate workloads with different hit
ratios. We report the stable performance of classic caching; for
NHC, we report when its tuning stabilizes. Unless otherwise
noted, we use throughput as the target function.

6.1.1 Storage Hierarchies
We show the normalized throughput of Open CAS and
Orthus-CAS for read-only workloads with different hierar-
chies, amounts of load, and hit ratios in Figure 7. We define
Load-1.0 as the minimum read load to achieve the maximum
read bandwidth of the cache device; we generate Load-0.5,
1.5, and 2.0 by scaling load-1.0. We investigate hierarchies
that include DRAM, NVM, Optane SSD, and Flash. We also
mimic hierarchies with two performance differences (50:10
and 50:25) using FlashSim; we configure FlashSim to simu-
late devices with maximum speeds of 50MB/s, 25MB/s, and
10MB/s. We make the following observations from the figure:

First, when load is light (e.g., Load-0.5), cache devices
always outperform capacity devices. In this case, NHC does
not bypass any load and behaves the same as classic caching.

Second, when the workload can fully utilize the cache
device, Orthus-CAS improves performance. Intuitively, a
higher hit ratio and load gives NHC more opportunities by-
pass requests and improve performance. Figure 7 confirms
the intuition: with 95% hit ratio and Load-2.0, NHC ob-
tains improvements of 21%, 32%, 54% for DRAM+NVM,
NVM+Optane, and Optane+Flash, respectively. Such im-
provements are marginally reduced with an 80% hit ratio.

Third, among these hierarchies, Optane+Flash improves
the most with Orthus-CAS since the performance differ-
ence between Optane and Flash is the smallest, followed by
NVM+Optane and DRAM+NVM. Our results with FlashSim
show how practitioners can predict the improvement of using
NHC on their target hierarchies.

Finally, our measurements indicate that Orthus-CAS adapts
to complex device characteristics. With an 80% hit ratio, clas-
sic caching does not achieve 1.0 normalized throughput on
any real hierarchy because cache misses introduce additional
writes to the cache device. NHC handles such complexities.

Latency Improvement. As shown in Figure 7, Orthus-
CAS also improves average latency on all hierarchies. For
instance, with Load-2.0, NHC reduces average latency by
19%, 25%, 39%, for DRAM+NVM, NVM+Optane, and Op-
tane+Flash hierarchies, respectively.

314 19th USENIX Conference on File and Storage Technologies USENIX Association

(a) 95% Hit Rate (b) 80% Hit Rate

Figure 7: Orthus-CAS on Various Hierarchies. Read-only workloads; (a) and (b) show different cache hit rates. All throughputs are normalized to the
maximum read bandwidth of the caching device. We show latency (µs) on top of each bar (not comparable across hierarchies).

MFWA : WA
MFWB: WB
MFWT: WT

Sp
ee

du
p

1.0
1.2
1.4
1.6

Write Ratio
10% 30% 50%

(a) Optane + Flash, 20% Dirty Reads

Sp
ee

du
p

1.0
1.2
1.4
1.6

Write Ratio
10% 30% 50%

(b) Optane + Flash, 80% Dirty Reads

Sp
ee

du
p

1.0
1.1
1.2
1.3

Write Ratio
10% 30% 50%

(c) NVM + Optane, 20% Dirty Reads

Sp
ee

du
p

1.0
1.1
1.2
1.3

Write Ratio
10% 30% 50%

(d) NVM + Optane, 80% Dirty Reads

Figure 8: Orthus-CAS with Different Write-allocation Policies.
The figure shows Orthus-CAS overall throughput speedup (against Open
CAS) with different write-allocation policies: WA, WB, and WT are write-
around, write-back, and write-through. Workloads have a concurrency level
of 16 and 95% hit rates.

6.1.2 Write-Allocation Policies

Open CAS can use a variety of write-allocation policies (write-
around, write-back, and write-through) and Figure 8 shows
that NHC improves performance relative to classic caching
with each policy. The experiments vary the storage hierarchy,
the write ratio, and the dirty-read ratio. We control the dirty-
read ratio by limiting the percentage of the working set that
writes can touch (e.g., if writes go to 80% of the working set,
then 80% of the reads will be dirty).

NHC improves reads irrespective of write ratios. When
reads or writes overload the cache device, NHC bypasses
read hits, improving performance (e.g., significantly so on
NVM+OptaneSSD where NVM writes interfere with reads
dramatically). As shown in Figure 8, the overall improve-
ments are dependent upon a combination of the workload
write and dirty-read ratios and the write-allocation policy.
NHC offers more benefits when there are fewer writes. With
write-back, NHC cannot offload reads of dirty items to the ca-
pacity device and thus performs much better with fewer dirty
reads. Write-around and write-through maintain consistent
copies and thus Orthus-CAS offers benefits independent of
the dirty-read ratio.

Target
Metric

NVM + Optane Optane + Flash
Throughput

GB/s
Avg. lat.

µs
P99 lat.

µs
Throughput

GB/s
Avg. lat.

µs
P99 lat.

µs
Open CAS 6.7 77 115 2.3 227 269
Throughput 8.0 64 147 3.9 132 289

Avg. lat. 8.0 64 143 3.9 132 285
P99 lat. 6.9 75 106 3.3 155 245

Table 2: Different Target Metrics. The figure shows Orthus-CAS
performance using different target performance metrics. We use read-only
workloads (concurrency level of 8, 95% hit ratio). The best result for each
metric is in bold.

6.1.3 Target Performance Metrics
NHC can improve different performance metrics by using dif-
ferent measure functions f . Table 2 shows the performance of
Open CAS and Orthus-CAS when using throughput, average
latency, and tail (P99) latency as target metrics. Optimizing
throughput or average latency yields similar improvements
to both metrics on both hierarchies, but increases tail latency.
This increase occurs because in each of these storage hier-
archies, the performance device has much better tail latency
than the capacity device; thus classic caching defaults to ap-
propriate behavior. When NHC is configured with P99 latency
as the target metric, Orthus-CAS has better tail latency than
Open CAS and than it does with other targets.

6.2 Orthus-KV: Static Workloads
We use Orthus-KV, the NHC implementation in Wisckey, to
show the benefits for real applications. Caching in Wisckey
uses write-around, due to the LSM-tree’s log-structured writes.
In these experiments we focus on Optane+Flash since it is
often used for key-value stores [12, 38]. We set the caching
layer to 33 GB, 1/3 of the 100 GB dataset. We use cgroup to
limit the OS page cache to 1 GB to focus on caching in the
storage system instead of caching in main memory.

Our initial evaluation uses the YCSB workloads [35]. Most
YCSB workloads are constant: their load does not change and
they have a stable key popularity distribution (i.e., Zipfian).
These workloads cover different read/write ratios (e.g., YCSB-
C: 100% reads, YCSB-A: 50% reads and 50% updates), as
well as various operations (e.g., YCSB-E involves 95% range
queries and 5% inserting new keys, while Workload-F has
50% read-modify-writes). We evaluate YCSB-D as a dynamic
workload (§6.3).

Gets: Figure 9 compares the throughput of Wisckey

USENIX Association 19th USENIX Conference on File and Storage Technologies 315

1 8 16 24 32
0

100

200

300

400

Threads

Th
ro

ug
hp

ut
(K

Op
s/s

ec
) Classic

Orthus-KV

(a) V:1KB theta:0.6

1 8 16 24 32

Threads
(b) V:1KB theta:0.8

1 8 16 24 32

Threads
(c) V:16KB theta:0.8

Figure 9: Orthus-KV, YCSB-C Performance. YCSB-C workload
has 100% reads. We use 16B keys and 1KB or 16KB values. Accesses follow
a Zipfian distribution (theta).

1KB 1KB 16KB
0

1000

2000

3000

4000

I/O
 T

hr
ou

gh
pu

t (
M

B/
s)

Value:
Threads: 24 32 32

Op
ta

ne
Fl

as
h

Classic
Orthus-KV

Figure 10: Bandwidth
Breakdown. Optane/Flash
read bandwidth breakdown during
YCSB-C.

A B E F
0

100

200

300

Th
ro

ug
hp

ut
 (K

Op
s/s

ec
)

Workload

Classic
Orthus-KV

Figure 11: Other YCSB
Workloads. 16B keys, 1KB val-
ues, 32 threads and theta = 0.6.

and Orthus-KV for three YCSB-C workloads and different
amounts of concurrency. Orthus-KV achieves equivalent or
higher throughput than Wisckey for all workloads. Orthus-KV
significantly improves throughput at high load levels: with
32 threads, 46%, 30%, and 71% higher throughput for the
three workloads. When load is high enough to saturate Op-
tane, the relative benefits of Orthus-KV depend on how much
it can avoid unnecessary data movement and perform better
load distribution. Figure 10 illustrates these two benefits with
the read bandwidth delivered by each device. First, classic
caching suffers from unnecessary data admissions into Op-
tane: its effective Optane read bandwidth never reaches the
peak (2.3GB/s). NHC avoids this wasteful data movement.
Second, classic caching never delivers more than the maxi-
mum Optane bandwidth to the application. In contrast, NHC
improves the performance out of the hierarchy by distributing
some cache hits to the Flash SSD.

Updates, Inserts, and Range Queries: Figure 11 shows
Orthus-KV handles a range of operations (gets, updates, in-
serts, and range queries) and always performs at least as well
as Wisckey. NHC improves all YCSB workloads, with greater
benefits with more get operations.

Latency Improvement: With throughput as its target,
Orthus-KV reduces YCSB average latency by up to 42%. For
YCSB-C (32 threads, 0.8 theta), Orthus-KV provides 30% and
38% lower latency for 1KB and 16KB values, respectively.

CPU Overhead: Orthus-KV increases CPU utilization
slightly (0-2% for 24 threads) due to a few additional counters
that track caching behavior and device performance over time.

6.3 Orthus-KV: Dynamic Workloads
We evaluate NHC for dynamic workloads using the same
experimental setting as §6.2. We explore how Orthus-KV

handles time-varying workloads and dynamic working sets.

6.3.1 Dynamic Load
We evaluate how well NHC handles load changes with the
Facebook ZippyDB benchmark [31]. ZippyDB is a distributed
key-value store built on RocksDB and used by Facebook. The
ZippyDB benchmark generates key-value operations accord-
ing to realistic trace statistics: 85% gets, 14% puts, 1% scans
following a hot range-based model; the request rate models
the diurnal load sent to ZippyDB servers. We note that the
access patterns (e.g., read sizes) of the ZippyDB benchmark
vary significantly as their value sizes range from bytes to MBs.
We speed up the replay of Zippydb requests by 1000 to stress
the storage system and to better evaluate NHC’s reactions to
changes in load.

As shown in Figure 12a (top), Orthus-KV outperforms Wis-
ckey during the day by up to 100%, but performs similarly
when the load is lower at night. Figure 12a (bottom) shows
how Orthus-KV adjusts data and load admit ratios. During the
night, both are around 100%; Orthus-KV occasionally adjusts
the load admit ratio when the hit rate is stable, but quickly
returns to classic caching after finding no improvements. Dur-
ing the day, Orthus-KV keeps the data admit ratio at 0 and
adjusts the load admit ratio to adapt to the dynamic load.

6.3.2 Dynamic Data Locality
We demonstrate that NHC reacts well to abrupt changes in the
working set in Figure 12b. The experiments base on YCSB-C,
beginning with one working set (Zipfian theta=0.8, hot spot
at beginning of the key space), and then changing at time 10s
(a hot spot at the end of the key space). The graph shows that
when the working set changes (time=10s), Orthus-KV quickly
detects the change in hit rate and switches to classic caching:
the load and data admit ratios increase to 1.0. After the hit
rate begins to stabilize (time=11s), Orthus-KV tunes the load
admit ratio. Initially (11s-28s), because the hit rate is still
not high enough,Orthus-KV often identifies 1.0 as the best
load admit and returns to classic caching with data movement.
Approximately 20s after the workload change, the hit rate
stabilizes and Orthus-KV reaches steady-state performance
that is 60% higher than classic caching.

Finally, we show that NHC can outperform classic caching
even when the working set changes gradually. Figure 12c
shows Orthus-KV’s performance on YCSB-D (95% reads, 5%
inserts), where locality shifts over time as reads are performed
on recently-inserted values. Due to the locality changes and
not admitting new data to the cache, the hit rate in Orthus-KV
decreases over time, until NHC identifies that 1.0 is the best
load admit rate. Then Orthus-KV returns to classic caching
and raises the hit rate. Once the hit rate restabilizes, the cycle
resumes with Orthus-KV adjusting the load admit rate.

We also explore the alternative approach of always per-
forming data admission while tuning the load admit rate in
Figure 12c. As shown, this alternative maintains a stable
hit rate, avoiding abrupt phases of admitting new data; this

316 19th USENIX Conference on File and Storage Technologies USENIX Association

0

100

200

(K
O

ps
/s

)

0 40 80 120 160 200 240
0

50

100

Time (thousands of seconds)

R
at

io
 (%

)
Th

ro
ug

hp
ut

night night night

day day day

Load Admit Data Admit (window=5)

Orthus-KV Classic

(a) ZippyDB Workloads

0

100

200

0 10 20 30 40
0

50

100

Time (Seconds)

Change

Warm Up with Classic Caching

Tuning Stable

(b) Sudden Change in Data Locality

0

250

500

0 5 10 15 20
0

50

100

Time (seconds)

H=85%
H=68%

Orthus-KV (Data Admit=100)

(c) Gradual Changes in Data Locality

Figure 12: Orthus-KV with Dynamic Workloads. This figure shows the throughput of Orthus-KV and classic caching (top graphs), as well as
load/data admit ratio over time in Orthus-KV (bottom graphs). Because data admit is 0 or 1, we show a fractional windowed sum of its value over 5 time steps
for readability. In (a), we replay the ZippyDB benchmark on a single machine. The average value size is 16KB; the number of key ranges is 6. We use 32 threads
for the maximum load and adjust the number of threads dynamically according to the diurnal load model. We speed up the two-day workload by 1000⇥. In (b),
the workload is similar to YCSB-C 16KB value, 32 threads, but with two different working sets before and after 10s. In (c), we use YCSB-D with 16B keys, 1KB
values, 32 threads. We also show throughput of a modified Orthus-KV that always performs data admit in (c).

always performs better than classic caching but its peak per-
formance does not reach that of the default Orthus-KV. Our
results illustrate the interesting tradeoff between avoiding un-
necessary data movement and maintaining a stable hit rate for
dynamically changing workloads.

6.4 Comparisons with Prior Approaches
We now show that NHC significantly outperforms two other
approaches that have been suggested for utilizing the perfor-
mance of a capacity device: SIB [56] and LBICA [19]. SIB
targets HDFS clusters with many SSDs and HDDs, in which
case the aggregate HDD throughput is non-trivial: SIB uses
SSDs as a write buffer (does not admit any read miss), and pro-
poses using the HDDs for handling extra read traffic. LBICA
determines when a performance layer is under “burst load” at
which point it will not allocate new data to the performance
layer; unlike NHC, LBICA does not redirect any read hits.

To compare NHC against SIB and LBICA, we have imple-
mented these approaches in Open CAS. To make SIB suitable
for general-purpose caching environments, we have improved
it in two ways. First, SIB operates on a per-process granular-
ity instead of per-request: the traffic from some processes is
not allowed to use the SSD cache; we altered SIB so that it
adjusts load per-request (SIB+). Second, we modified SIB so
that it admits read misses into the cache (SIB++).

Using the experimental setup from §6.1 on Optane+Flash,
we start with a read-only workload in Figure 13.a. SIB+ does
not perform well because it does not admit read misses into
Optane. SIB++ performs better, but suffers when the workload
changes as in Figure 13.b; in these workloads, the amount
of write traffic is changed every period, for periods between
10 and 0.5 seconds. SIB cannot handle dynamic workloads
because SIB has two phases; in its training phase, SIB learns
the maximum performance of the caching device for the cur-
rent workload; in the inference phase, SIB judges whether
the caching device is saturated and, if it is, bypasses some

(a) Static Workload (b) Dynamic Workloads

Figure 13: NHC vs. SIB and LBICA. (a) uses a static read-only
workload. (b) uses dynamic workloads; the write-ratio is fixed in each period
(e.g., 10s), but changes (randomly between 0% to 50%) across periods. We
use workloads with parallelism/concurrency 16, 95% hits, runtime 100s on
Optane+Flash hierarchy.

processes (requests). As we have shown, the maximum per-
formance of modern devices depends on many workload pa-
rameters: read-write ratios, load, and access patterns. Thus, if
the workload changes in any way, SIB must either relearn the
target maximum performance or use an inaccurate target. In
our experiments, as the duration of each phase decreases, the
performance of SIB decreases dramatically. Unlike SIB, NHC
uses a simple, continuous feedback-based tuning approach
and thus converges rapidly and adapts to dynamic workloads
well. Finally, LBICA performs poorly because it does not
redirect any read hits to use the capacity device; it simply
does not allocate more data to the performance device when
it is overloaded.

7 Related Work
Algorithms and Policies in Hybrid Storage Systems: Al-
gorithms and policies for managing traditional hierarchy have
been studied extensively [65, 67, 68, 70, 78, 89, 91, 96, 104].
Techniques have been introduced to optimize data alloca-
tion [3,49,80,84,89,90], address translation [25,82], identify
hot data [4, 51, 53, 71, 73, 75, 79, 88, 91, 95] and perform data
migration [26, 33, 40, 43, 70, 87, 91, 100]. Most previous work
improves performance by focusing on workload access lo-
cality. In contrast, NHC improves by taking all devices and

USENIX Association 19th USENIX Conference on File and Storage Technologies 317

workloads into account.
Storage Optimization: A long line of pioneering work

in storage management [21–23, 89, 91] shows how to trace
workloads and optimize storage decisions for improved perfor-
mance; NHC could fit into such a system, making short-term
decisions to handle more dynamic workload changes, leaving
longer-term optimization to a higher-level system.

Storage Aware Caching/Tiering: Our paper shares as-
pects with storage-aware caching/tiering [19,29,42,43,47,52,
56, 59, 60, 72, 93, 99], which considers more factors than hit
rate. For instance, Oh et al. [72] propose over-provisioning
in Flash to avoid the influence of SSD garbage collection.
Modern devices like NVDIMM and Optane SSD have distinc-
tive characteristics compared to Flash. We study the implica-
tions of these important emerging devices to caching/tiering.
BATMAN [34] shares a similar motivation to NHC: classic
caching is not effective when the bandwidth of the capacity
layer is a significant fraction of overall bandwidth. However,
it investigates a much simpler hierarchy with fixed perfor-
mance difference (4:1 between high-bandwidth memory and
DRAM). Given the fixed difference, BATMAN splits cache
accesses between HBM and DRAM statically. This approach
would not work effectively on modern hierarchies where per-
formance differences vary dynamically (e.g., depending upon
the amount of writes or the level of parallelism in the work-
load). Wu et al. [93] study tiering on SSDs and HDDs and
recognize a similar problem: SSDs (or faster devices) can
be the throughput bottleneck. To mitigate the problem, they
proposed to periodically migrate data from SSDs to HDDs
when the SSD response time is higher than that of HDDs.
This approach is limited in three aspects. First, due to its tier-
ing nature, it cannot react to workload changes quickly, its
migration traffic can be significant, and it requires extra meta-
data to track objects across devices. Second, similar to SIB
approach, it estimates workload intensity in a period and then
migrates data based on the estimation; it hence struggles with
dynamic workloads. Third, it is tuned for a specific hierarchy
(SSDs and hard drives). Unlike this approach, NHC focuses
on improving caching, adapts its behavior during runtime, can
react to complex and dynamic workloads, and works well on
a range of modern devices.

Managing NVM-based Devices: Other related work in-
tegrates NVM-based devices into the memory-storage hi-
erarchy [18, 27, 44, 45, 48, 63, 69, 83]. This work includes
extensive measurements for both Optane SSD [92] and Op-
tane DCPM [50, 97]. New file systems and databases were
proposed to manage NVDIMM [76, 94] and low latency
SSDs [61, 66, 101]. Many works have evaluated the poten-
tial benefits of caching and tiering on NVM. Kim et al. [55]
provide a simulation-based measurement of NVM caching
with performance numbers from a Micron all-PCM SSD pro-
totype. [41] provides a I/O cache simulator that assists the
analysis of caching workloads on new storage hierarchies.
Strata [62] and Ziggurat [103] are file systems that tier data

across a DRAM, NVM, and SSD hierarchy. Dulloor et al. [36],
Arulraj et al. [24] and Zhang et al. [102] proposed NVM-
aware data placement strategies for the new storage hierarchy.
These strategies optimize data placements in a longer pe-
riod (e.g., offline or periodically). NHC can work with them,
providing further improvement by handling more dynamic
workload changes. Finally, there have been many companies
utilizing NVM/ Optane SSD as a caching layer [30, 38, 39].
Our paper is the first to analyze general caching and tiering on
modern hierarchies through modeling and empirical evalua-
tion. We are also the first to propose a generic solution (NHC)
to realize the full performance benefits of such a hierarchy.

8 Conclusion
In this paper, we show how emerging storage devices have
strong implications for caching in modern hierarchies. We in-
troduced non-hierarchical caching, a new approach optimized
to extract peak performance from modern devices. NHC is
based upon a novel cache scheduling algorithm, which ac-
counts for workload and device characteristics to make alloca-
tion and access decisions. Through experiments, we showed
the benefits of NHC on a wide range of devices, cache con-
figurations, and workloads. We believe NHC can serve as a
better foundation to manage storage hierarchies.

Acknowledgments
We thank Song Jiang (our shepherd), the anonymous review-
ers and the members of ADSL for their valuable input. This
material was supported by funding from NSF CNS-1838733,
CNS-1763810, VMware, Intel, Seagate, and Microsoft. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and may not
reflect the views of NSF or any other institutions.

References
[1] 3D XPoint. https://en.wikipedia.org/wiki/3D_

XPoint.

[2] Accelerate Ceph Clusters with Intel Optane DC SSDs.
https://www.intel.com/content/dam/www/
public/us/en/documents/solution-briefs/
accelerate-ceph-clusters-with-optane-dc\
-ssds-brief.pdf.

[3] Cache (computing). https://en.wikipedia.org/
wiki/Cache_(computing).

[4] Cache replacement policies. https://en.
wikipedia.org/wiki/Cache_replacement_
policies.

[5] Caching and Tiering. https://storageswiss.com/
2014/01/15/whats-the-difference-between\
-tiering-and-caching/.

318 19th USENIX Conference on File and Storage Technologies USENIX Association

[6] Intel Optane DC Persistent Memory.
https://www.intel.com/content/www/
us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[7] Intel Optane DIMM Pricing. https:
//www.tomshardware.com/news/
intel-optane-dimm-pricing-performance,
39007.html.

[8] Intel Optane SSD 905P. https:
//www.tomshardware.com/reviews/
intel-optane-ssd-905p,5600-2.html.

[9] Intel SSD 520 Series. https://ark.intel.com/
content/www/us/en/ark/products/series/
66202/intel-ssd-520-series.html.

[10] Linux block layer statistics. https://www.kernel.
org/doc/Documentation/block/stat.txt.

[11] Memcached Exstore. https://memcached.org/
blog/nvm-caching/.

[12] Micron Heterogeneous-Memory Stor-
age Engine. https://www.micron.
com/products/advanced-solutions/
heterogeneous-memory-storage-engine.

[13] Micron X100 NVMe SSD. https://www.
micron.com/products/advanced-solutions/
3d-xpoint-technology/x100.

[14] Samsung 970 Pro. https://www.samsung.
com/semiconductor/minisite/ssd/product/
consumer/970pro/.

[15] Samsung 980 Pro Flash SSD. https:
//www.anandtech.com/show/15352/ces-2020\
-samsung-980-pro-pcie-40-ssd-makes\
-an-appearance.

[16] Samsung Z-NAND SSD. https://www.samsung.
com/semiconductor/ssd/z-ssd/.

[17] SDC2020: Caching on PMEM: an Iterative Approach.
https://www.youtube.com/watch?v=lTiw4ehHAP4,
2020.

[18] Ahmed Abulila, Vikram Sharma Mailthody, Zaid
Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong,
and Wen-Mei Hwu. Flatflash: Exploiting the byte-
accessibility of ssds within a unified memory-storage
hierarchy. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
971–985. ACM, 2019.

[19] Saba Ahmadian, Reza Salkhordeh, and Hossein Asadi.
Lbica: A load balancer for i/o cache architectures. In
2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1196–1201. IEEE, 2019.

[20] Ameen Akel, Adrian M Caulfield, Todor I Mollov, Ra-
jesh K Gupta, and Steven Swanson. Onyx: A prototype
phase change memory storage array. HotStorage, 1:1,
2011.

[21] Guillermo A Alvarez, Elizabeth Borowsky, Susie Go,
Theodore H Romer, Ralph Becker-Szendy, Richard
Golding, Arif Merchant, Mirjana Spasojevic, Alistair
Veitch, and John Wilkes. Minerva: An automated re-
source provisioning tool for large-scale storage sys-
tems. ACM Transactions on Computer Systems
(TOCS), 19(4):483–518, 2001.

[22] Eric Anderson, Michael Hobbs, Kim Keeton, Susan
Spence, Mustafa Uysal, and Alistair Veitch. Hippo-
drome: running circles around storage administration.
In Proceedings of the 1st USENIX Symposium on File
and Storage Technologies (FAST ’02), Monterey, Cali-
fornia, January 2002.

[23] Eric Anderson, Susan Spence, Ram Swaminathan, Ma-
hesh Kallahalla, and Qian Wang. Quickly finding near-
optimal storage designs. ACM Transactions on Com-
puter Systems (TOCS), 23(4):337–374, 2005.

[24] Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi.
Multi-tier buffer management and storage system
design for non-volatile memory. arXiv preprint
arXiv:1901.10938, 2019.

[25] Shi Bai, Jie Yin, Gang Tan, Yu-Ping Wang, and Shi-
Min Hu. Fdtl: a unified flash memory and hard disk
translation layer. IEEE Transactions on Consumer
Electronics, 57(4):1719–1727, 2011.

[26] Swapnil Bhatia, Elizabeth Varki, and Arif Merchant.
Sequential prefetch cache sizing for maximal hit rate.
In 2010 IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommu-
nication Systems, pages 89–98. IEEE, 2010.

[27] Timothy Bisson and Scott A Brandt. Flushing policies
for nvcache enabled hard disks. In 24th IEEE Con-
ference on Mass Storage Systems and Technologies
(MSST 2007), pages 299–304. IEEE, 2007.

[28] Randal E Bryant, O’Hallaron David Richard, and
O’Hallaron David Richard. Computer systems: a pro-
grammer’s perspective, volume 281. Prentice Hall
Upper Saddle River, 2003.

USENIX Association 19th USENIX Conference on File and Storage Technologies 319

[29] Nathan C Burnett, John Bent, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. Exploiting
gray-box knowledge of buffer-cache management. In
USENIX Annual Technical Conference, General Track,
pages 29–44, 2002.

[30] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng
Zhu, Song Zheng, Yuhui Wang, and Guoqing Ma. Po-
larfs: an ultra-low latency and failure resilient dis-
tributed file system for shared storage cloud database.
Proceedings of the VLDB Endowment, 11(12):1849–
1862, 2018.

[31] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David HC Du. Characterizing, modeling, and bench-
marking rocksdb key-value workloads at facebook. In
18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 209–223, 2020.

[32] Open CAS. Open Cache Acceleration Software.
https://open-cas.github.io/.

[33] Yue Cheng, Fred Douglis, Philip Shilane, Grant Wal-
lace, Peter Desnoyers, and Kai Li. Erasing belady’s
limitations: In search of flash cache offline optimal-
ity. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 379–392, 2016.

[34] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi.
Batman: Techniques for maximizing system bandwidth
of memory systems with stacked-dram. In Proceedings
of the International Symposium on Memory Systems,
pages 268–280, 2017.

[35] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking
Cloud Serving Systems with YCSB. In Proceedings
of the ACM Symposium on Cloud Computing (SOCC

’10), pages 143–154, Indianapolis, IN, June 2010.

[36] Subramanya R Dulloor, Amitabha Roy, Zheguang
Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh
Sankaran, Jeff Jackson, and Karsten Schwan. Data tier-
ing in heterogeneous memory systems. In Proceedings
of the Eleventh European Conference on Computer
Systems, page 15. ACM, 2016.

[37] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 65–78, 2019.

[38] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing DRAM

Footprint with NV M in Facebook. In Proceedings of
the Thirteenth EuroSys Conference. ACM, 2018.

[39] Assaf Eisenman, Maxim Naumov, Darryl Gardner,
Misha Smelyanskiy, Sergey Pupyrev, Kim Hazelwood,
Asaf Cidon, and Sachin Katti. Bandana: Using Non-
volatile Memory for Storing Deep Learning Models.
arXiv preprint arXiv:1811.05922, 2018.

[40] Ahmed Elnably, Hui Wang, Ajay Gulati, and Peter J
Varman. Efficient qos for multi-tiered storage systems.
In HotStorage, 2012.

[41] Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez
Zadok. Desperately seeking... optimal multi-tier cache
configurations. In 12th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 20),
2020.

[42] Brian Forney, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. Storage-aware caching: Revisiting
caching for heterogeneous storage systems. Technical
report, University of Wisconsin-Madison Department
of Computer Sciences, 2002.

[43] Jorge Guerra, Himabindu Pucha, Joseph S Glider,
Wendy Belluomini, and Raju Rangaswami. Cost ef-
fective storage using extent based dynamic tiering. In
FAST, volume 11, pages 20–20, 2011.

[44] Frank T Hady, Annie Foong, Bryan Veal, and Dan
Williams. Platform Storage Performance With 3D
XPoint Technology. Proceedings of the IEEE, 105(9),
2017.

[45] Theodore R Haining and Darrell DE Long. Manage-
ment policies for non-volatile write caches. In 1999
IEEE International Performance, Computing and Com-
munications Conference (Cat. No. 99CH36305), pages
321–328. IEEE, 1999.

[46] John L Hennessy and David A Patterson. Computer
architecture: a quantitative approach. Elsevier, 2011.

[47] David A Holland, Elaine Angelino, Gideon Wald, and
Margo I Seltzer. Flash caching on the storage client.
In Presented as part of the 2013 USENIX Annual Tech-
nical Conference (USENIX ATC 13), pages 127–138,
2013.

[48] Morteza Hoseinzadeh. A survey on tiering and caching
in high-performance storage systems. arXiv preprint
arXiv:1904.11560, 2019.

[49] Ilias Iliadis, Jens Jelitto, Yusik Kim, Slavisa Sarafi-
janovic, and Vinodh Venkatesan. Exaplan: queueing-
based data placement and provisioning for large tiered
storage systems. In 2015 IEEE 23rd International

320 19th USENIX Conference on File and Storage Technologies USENIX Association

Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 218–
227. IEEE, 2015.

[50] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim,
Xiao Liu, Amirsaman Memaripour, Yun Joon Soh,
Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
Basic performance measurements of the intel op-
tane dc persistent memory module. arXiv preprint
arXiv:1903.05714, 2019.

[51] Jaeheon Jeong and Michel Dubois. Cost-sensitive
cache replacement algorithms. In The Ninth Inter-
national Symposium on High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings., pages
327–337. IEEE, 2003.

[52] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan,
and Xiaodong Zhang. Dulo: an effective buffer cache
management scheme to exploit both temporal and spa-
tial locality. In Proceedings of the 4th conference on
USENIX Conference on File and Storage Technologies,
volume 4, pages 8–8, 2005.

[53] Shudong Jin and Azer Bestavros. Popularity-aware
greedy dual-size web proxy caching algorithms. In
Proceedings 20th IEEE International Conference on
Distributed Computing Systems, pages 254–261. IEEE,
2000.

[54] Takayuki Kawahara. Scalable Spin-transfer Torque
RAM Technology for Normally-off Computing. IEEE
Design & Test of Computers, 28(1):52–63, 2010.

[55] Hyojun Kim, Sangeetha Seshadri, Clement L Dickey,
and Lawrence Chiu. Evaluating phase change memory
for enterprise storage systems: A study of caching and
tiering approaches. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST
14), pages 33–45, 2014.

[56] Jaehyung Kim, Hongchan Roh, and Sanghyun Park.
Selective i/o bypass and load balancing method for
write-through ssd caching in big data analytics. IEEE
Transactions on Computers, 67(4):589–595, 2017.

[57] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Pi-
otr Berman, and Anand Sivasubramaniam. Hybrid-
Store: A Cost-Efficient, High-Performance Storage
System Combining SSDs and HDDs. MASCOTS ’11,
2011.

[58] Youngjae Kim, Brendan Tauras, Aayush Gupta, and
Bhuvan Urgaonkar. Flashsim: A Simulator for Nand
Flash-based Solid-State Drives. In Proceedings of the
First International Conference on Advances in System
Simulation (SIMUL ’09), Porto, Portugal, September
2009.

[59] Ricardo Koller, Leonardo Marmol, Raju Rangaswami,
Swaminathan Sundararaman, Nisha Talagala, and
Ming Zhao. Write policies for host-side flash caches.
In Presented as part of the 11th USENIX Conference
on File and Storage Technologies (FAST 13), pages
45–58, 2013.

[60] Ricardo Koller, Ali José Mashtizadeh, and Raju Ran-
gaswami. Centaur: Host-side ssd caching for storage
performance control. In 2015 IEEE International Con-
ference on Autonomic Computing, pages 51–60. IEEE,
2015.

[61] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsi-
das. Reaping the performance of fast {NVM} storage
with udepot. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 1–15, 2019.

[62] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the
26th ACM Symposium on Operating Systems Princi-
ples (SOSP ’17), Shanghai, China, October 2017.

[63] Chun-Hao Lai, Jishen Zhao, and Chia-Lin Yang. Leave
the cache hierarchy operation as it is: A new persis-
tent memory accelerating approach. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2017.

[64] Lanyue Lu and Thanumalayan Sankaranarayana Pillai
and Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST ’16), pages 133–148, Santa Clara, California,
February 2016.

[65] Donghee Lee, Jongmoo Choi, Jun-Hum Kim, Sam H.
Noh, Sang Lyul Min, Yookum Cho, and Chong Sang
Kim. On The Existence Of A Spectrum Of Policies
That Subsumes The Least Recently Used (LRU) And
Least Frequently Used (LFU) Policies. In Proceed-
ings of the 1999 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (SIG-
METRICS ’99), Atlanta, Georgia, May 1999.

[66] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation
of a fast persistent key-value store. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles, pages 447–461, 2019.

[67] Nimrod Megiddo and Dharmendra S Modha. Arc:
A self-tuning, low overhead replacement cache. In
Proceedings of the 2nd USENIX Symposium on File
and Storage Technologies (FAST ’03), San Francisco,
California, April 2003.

USENIX Association 19th USENIX Conference on File and Storage Technologies 321

[68] Michael Mesnier, Feng Chen, Tian Luo, and Jason B
Akers. Differentiated storage services. In Proceedings
of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 57–70. ACM, 2011.

[69] Sparsh Mittal and Jeffrey S Vetter. A survey of software
techniques for using non-volatile memories for storage
and main memory systems. IEEE Transactions on
Parallel and Distributed Systems, 27(5):1537–1550,
2015.

[70] David Montgomery. Extent migration scheduling for
multi-tier storage architectures, November 5 2013. US
Patent 8,578,107.

[71] Junpeng Niu, Jun Xu, and Lihua Xie. Hybrid stor-
age systems: a survey of architectures and algorithms.
IEEE Access, 6:13385–13406, 2018.

[72] Yongseok Oh, Jongmoo Choi, Donghee Lee, and
Sam H Noh. Caching less for better performance:
balancing cache size and update cost of flash memory
cache in hybrid storage systems. In FAST, volume 12,
2012.

[73] Elizabeth J O’neil, Patrick E O’neil, and Gerhard
Weikum. The lru-k page replacement algorithm
for database disk buffering. Acm Sigmod Record,
22(2):297–306, 1993.

[74] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum. The LRU-K Page Replacement Algorithm
For Database Disk Buffering. In Proceedings of
the 1993 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’93), pages 297–306,
Washington, DC, May 1993.

[75] Dongchul Park and David HC Du. Hot Data Identifica-
tion for Flash-Based Storage Systems Using Multiple
Bloom Filters. In Proceedings of the 27th IEEE Sym-
posium on Mass Storage Systems and Technologies
(MSST ’11), Denver, Colorado, May 2011.

[76] Sheng Qiu and AL Narasimha Reddy. Nvmfs: A hybrid
file system for improving random write in nand-flash
ssd. In 2013 IEEE 29th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–5. IEEE,
2013.

[77] Simone Raoux, Geoffrey W Burr, Matthew J Bre-
itwisch, Charles T Rettner, Y-C Chen, Robert M Shelby,
Martin Salinga, Daniel Krebs, S-H Chen, H-L Lung,
et al. Phase-change random access memory: A scalable
technology. IBM Journal of Research and Develop-
ment, 52(4.5):465–479, 2008.

[78] Benjamin Reed and Darrell DE Long. Analysis
of caching algorithms for distributed file systems.
ACM SIGOPS Operating Systems Review, 30(3):12–
21, 1996.

[79] John T. Robinson and Murthy V. Devarakonda. Data
cache management using frequency-based replacement.
In Proceedings of the 1990 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’90), Boulder, Colorado, April
1990.

[80] Reza Salkhordeh, Hossein Asadi, and Shahriar
Ebrahimi. Operating system level data tiering using
online workload characterization. The Journal of Su-
percomputing, 71(4):1534–1562, 2015.

[81] Mohit Saxena, Michael M Swift, and Yiying Zhang.
Flashtier: a lightweight, consistent and durable storage
cache. In Proceedings of the 7th ACM european con-
ference on Computer Systems, pages 267–280. ACM,
2012.

[82] Andre Schaefer and Matthias Gries. Adaptive address
mapping with dynamic runtime memory mapping se-
lection, 2012. US Patent 8,135,936.

[83] Priya Sehgal, Sourav Basu, Kiran Srinivasan, and
Kaladhar Voruganti. An empirical study of file systems
on nvm. In 2015 31st Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–14. IEEE,
2015.

[84] Haixiang Shi, Rajesh Vellore Arumugam, Chuan Heng
Foh, and Kyawt Kyawt Khaing. Optimal disk storage
allocation for multitier storage system. IEEE Transac-
tions on magnetics, 49(6):2603–2609, 2013.

[85] Abraham Silberschatz, Greg Gagne, and Peter B
Galvin. Operating system concepts. Wiley, 2018.

[86] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh
Balakrishnan, and Ted Wobber. Extending ssd lifetimes
with disk-based write caches. In FAST, volume 10,
pages 101–114, 2010.

[87] Elizabeth Varki, Allen Hubbe, and Arif Merchant. Im-
prove prefetch performance by splitting the cache re-
placement queue. In IEEE International Conference
on Advanced Infocomm Technology, pages 98–108.
Springer, 2012.

[88] Giuseppe Vietri, Liana V Rodriguez, Wendy A Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami,
Ming Zhao, and Giri Narasimhan. Driving cache re-
placement with ml-based lecar. In 10th USENIX Work-
shop on Hot Topics in Storage and File Systems (Hot-
Storage 18), 2018.

322 19th USENIX Conference on File and Storage Technologies USENIX Association

[89] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and optimization
using miniature simulations. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 487–
498, 2017.

[90] Hui Wang and Peter Varman. Balancing fairness and
efficiency in tiered storage systems with bottleneck-
aware allocation. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST
14), pages 229–242, 2014.

[91] John Wilkes, Richard Golding, Carl Staelin, and Tim
Sullivan. The HP AutoRAID Hierarchical Storage
System. ACM Transactions on Computer Systems,
14(1):108–136, February 1996.

[92] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. Towards an unwritten contract of intel op-
tane ssd. In 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 19). USENIX
Association, Renton, WA, 2019.

[93] Xiaojian Wu and AL Narasimha Reddy. A novel
approach to manage a hybrid storage system. JCM,
7(7):473–483, 2012.

[94] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main mem-
ories. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, 2016.

[95] Gala Yadgar, Michael Factor, and Assaf Schuster.
Karma: Know-it-all replacement for a multilevel cache.
In Fast, volume 7, pages 25–25, 2007.

[96] Gala Yadgar, Michael Factor, and Assaf Schuster. Co-
operative caching with return on investment. In 2013
IEEE 29th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–13. IEEE, 2013.

[97] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
arXiv preprint arXiv:1908.03583, 2019.

[98] Juncheng Yang, Yao Yue, and KV Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
191–208, 2020.

[99] Zhengyu Yang, Morteza Hoseinzadeh, Allen Andrews,
Clay Mayers, David Thomas Evans, Rory Thomas Bolt,
Janki Bhimani, Ningfang Mi, and Steven Swanson. Au-
totiering: automatic data placement manager in multi-
tier all-flash datacenter. In 2017 IEEE 36th Interna-
tional Performance Computing and Communications
Conference (IPCCC), pages 1–8. IEEE, 2017.

[100] Gong Zhang, Lawrence Chiu, and Ling Liu. Adaptive
data migration in multi-tiered storage based cloud envi-
ronment. In 2010 IEEE 3rd International Conference
on Cloud Computing, pages 148–155. IEEE, 2010.

[101] Jie Zhang, Miryeong Kwon, Donghyun Gouk,
Sungjoon Koh, Changlim Lee, Mohammad Alian, My-
oungjun Chun, Mahmut Taylan Kandemir, Nam Sung
Kim, Jihong Kim, et al. Flashshare: punching through
server storage stack from kernel to firmware for
ultra-low latency ssds. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 477–492, 2018.

[102] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vig-
fusson. Optimal data placement for heterogeneous
cache, memory, and storage systems. Proceedings of
the ACM on Measurement and Analysis of Computing
Systems, pages 1–27, 2020.

[103] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: a tiered file system for non-volatile
main memories and disks. In 17th USENIX Conference
on File and Storage Technologies (FAST 19), pages
207–219, 2019.

[104] Yuanyuan Zhou, James F. Philbin, and Kai Li. The
Multi-Queue Replacement Algorithm for Second Level
Buffer Caches. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’01), pages 91–104,
Boston, Massachusetts, June 2001.

USENIX Association 19th USENIX Conference on File and Storage Technologies 323

ACommunity CachewithComplete Information

ManiaAbdi⋆, AminMosayyebzadeh◇,MohammadHosseinHajkazemi⋆, EmineUgur Kaynar◇,
Ata Turk‡, Larry Rudolph†, OrranKrieger◇, PeterDesnoyers⋆

‡State Street, †TwoSigma, ◇BostonUniversity, ⋆Northeastern University

Abstract
Kariz is a new architecture for caching data from datalakes
accessed, potentially concurrently, by multiple analytic
platforms. It integrates rich information from analytics
platforms with global knowledge about demand and resource
availability to enable sophisticated cache management and
prefetching strategies that, for example, combine historical
run time information with job dependency graphs (DAGs),
information about the cache state and sharing across compute
clusters. Our prototype supports multiple analytic frameworks
(Pig/Hadoop and Spark), and we show that the required
changes aremodest.We have implemented three algorithms
in Kariz for optimizing the caching of individual queries
(one from the literature, and two novel to our platform) and
three policies for optimizing across queries from, potentially,
multiple di�erent clusters.With an algorithm that fully exploits
the rich information available from Kariz, we demonstrate
major speedups (as much as 3×) for TPC-H and TPC-DS.

1 Introduction
Large-scale data-�ow oriented analytic frameworks, such as
Spark [72], Hive [62], and Pig [56], are broadly used inmany
public and private cloud environments. Today, cloud deploy-
ments commonly use centralized “data lakes” [3, 9, 10, 42, 58]
such as Amazon S3 [4], Azure Data Lake Store [11], and
Ceph [67] that are used by all the frameworks running in the
cloud. Although such dis-aggregation of storage o�ers many
bene�ts, it also carries major performance costs [61].
Caching and prefetching, which move frequently-used

datasets close to the analytic frameworks, are standard
techniques for improving performance [20, 50]. Data-�ow
oriented analytical frameworks share a number of features
that provide the opportunity to explore caching strategies that
di�er from prior work on CPU, page-based, and variable-sized
(e.g. web) caching:

• they expose the input objects and inter-job dependency
withDirected Acyclic Graphs (data-�owDAGs), where
complex DAGs providing a detailed view into future I/O
behavior;

• units of data access and computation are large, tak-
ing many seconds to access or run, allowing complex
strategiesnot feasible inmanyothercachingdomains; and

• recurring jobs,where the same code runs ondi�erentdata,
are common [19, 24, 48], allowing accurate prediction of
execution timing and characteristics [21, 40, 46, 66],

To illustrate these features, we consider con�dential traces
shared with us by an industrial partner recording 4 months

Figure 1:¿e value at the top shows the total amount of data
accesses in each hour. Green is the proportion of the accesses
to data that was not accessed previously in the hour. Orange
is the accesses that go to data previously accessed in the same
hour by the same analytic framework. Red is accesses to data
that was last accessed by another framework in that hour.¿is
analysis suggests that caching can be e�ective both to capture
repeated access to the same data from a framework, and access
by di�erent frameworks to the same data.

of usage from amid-sized (>100 nodes) cluster in production
use which is runningHive/Hadoop, Spark, nativeMapReduce,
and streaming jobs. Although themajority of jobs were small
(1-4 nodeDAGs), 90% of input data was read by complexDAG-
basedjobswith5nodesormore,withsomeDAGsinvolvingover
50 nodes. IndividualDAG stages averaged 5minuteswith some
stages taking as 6 hours. Over 90%of the jobs seen over the four
monthswere jobs that repeatedmany times,andmore than90%
of object reads were to objects repeatedly read. Clearly, there is
an enormous opportunity to optimize performance for repeat-
ing I/O intensive jobs that provide complete visibility in future
accesses and whereminutes are available to compute strategies.
In fact, a number of groups have started exploiting these charac-
teristics to developmore sophisticated caching and prefetching
strategies within analytics clusters [17, 20, 37, 44, 57, 69, 71].
Kariz is a platform designed to enable di�erent strategies

for caching and prefetching at the storage level. It collects
DAG information from analytic platforms and the execution
time that stages of the DAG take to execute. It alsomaintains
global information about what data is cached and resource
availability (e.g. storage bandwidth). ¿is information is
used by Kariz to accurately (§3.3) predict stage run-time.
We have implemented a number of strategies, including the
previously published strategy MRD [57] (Most Reference
Distance) that exploit DAGs to maximize cache hit rate, and
two new strategies, we call CP (Critical Path) and CMR (Cache
for Minimizing Runtime). CP exploits the stage run-time
prediction to cache data in order to reduce the critical path of

USENIX Association 19th USENIX Conference on File and Storage Technologies 325

stages in the DAGs. CMR relies on support in Kariz for partial
�le caching, prefetch partial data from each stage of the DAG
to improve performance beyond a single critical path.
¿e focus in Kariz for optimizing the critical path is not

primarily to improve the latency. Analytic platforms like Spark
typically reserve resources until the entire DAG has completed.
By optimizing the critical path, the resources reserved for a
DAG can be freed earlier, improving throughput; potentially
huge savings for complicated DAGs where the critical path
takesmuch longer thanmost of the work.
A fundamental di�erence between Kariz and previous

work [57,69,71,72] is thatKariz implements a community cache,
wheremultiple clusters, potentially running di�erent analytic
platforms, can concurrently share a single instance of Kariz.
A community cache is based on the idea that the near past of
a community of clusters data accesses may be a good predictor
of the near future data access pattern of new jobs from a cluster.
For example, within some �nancial services companies (e.g.

the employers of two of the authors) di�erent groups o en
create individual clusters with varied frameworks accessing
the same shared data-lake, with reasons for this fragmentation
including regulatory issues, security, organizational structure,
or preference. When new datasets arrive (e.g. recent market
data), many jobs are submitted independently bymembers of
di�erent groups, resulting in heavy access across most or all
frameworks and clusters. Anecdotal reports (e.g. as described
by the authors ofQuiver [48]) indicate similar behavior by data
scientists, who o en use company-wide datasets for joins or
trainingMLmodels. Finally,wesee similarbehaviorin thecon�-
dential traces,e.g. inFigure 1 at 3AMthe692 jobs aredistributed
across frameworks (11% Spark, 20% Oozie, 16% MapReduce,
47%Hive/MapReduce); 36% of Spark jobs share objects (42%
of total data) withHive, while tables accessed byOozie were a
subset of Hive accesses.
In contrast to previousworks [57,69,71], that focusedonopti-

mizing individual queries, Kariz also supports strategies for op-
timizingmultiple concurrent queries coming from potentially
di�erent analytic platforms to the community cache.We have
implemented two such strategies: 1) Shortest JobFirst (SJF) that
focuses cache resources to accelerate the fastest predictedquery
to free resources as quickly as possible. 2)Cache forMinimizing
Runtime ofmultiple DAGs (CMR-M), that additionally takes
into account storage bandwidth and the sharing of data across
multiple queries in selecting data to be cached and prefetched.
We have adapted two analytic platforms to exploit Kariz

(PIG/Hadoop and SPARK) and found that while signi�cant
e�ortwas required tounderstand the platform, the endchanges
were less than 100 LOC in each platform.
We experimentally evaluated our system on a 16-node bare-

metal cluster.Weuse thecharacteristicsof the con�dential trace
(includingquerysubmission rate,DAGstructure,dataaccessed,
data reuse) to runamixof syntheticworkloads fromTPCHand
TPC-DS. We demonstrate experimentally that the new algo-
rithms enabled by the rich information collected by Kariz (and

its support for partial caching) result in major performance
advantages with our synthetic workload on both Pig/Hadoop
(mean across all queries of 1.25x andmaximum 2x) and Spark
(mean 1.8x and 3x).¿rough simulation,we show that there are
signi�cant advantages to a community cache; e.g., an improve-
ment of up to 1.5x over separate per-analytics platform caches.
Key contributions of this work are: 1) demonstrating the

value of partial over than full �le caching, 2) a high-accuracy
run-time prediction based on the amount of cached state and
available storage bandwidth, 3) demonstrate that it is possible,
andin factsimple,toextract the informationneededforoptimiz-
ing performance frommultiple analytics platforms, 4) showing
that strategies can be developed and e�ective that target the di-
rect improvement of predicted run-time by optimizing critical
paths rather than implicit characteristics such as hit rate, and �-
nally, 5) a newarchitecture that demonstrates that a community
caching layer foranalyticsplatforms is feasible ando�ersvalue.

2 Background andRelatedWork
We begin by describing the data analytics frameworks targeted
by Kariz in further detail, providing an example to motivate
our approach, and then brie�y survey related work.
DAG-based frameworks: Oneway inwhich frameworks such
as Spark [72], Hive [62], Impala [47] and Pig [56] di�er from
traditional large-scale applications is in their use of Directed
Acyclic Graphs (DAGs) of operations (vertices) and their
input/output dependencies (edges). Before a user query is
executed, a query planner parses it, generating an unoptimized
logical plan with resolved tables and columns.¿e optimizer
performs optimizations such as predicate pushdown, prunes
columns and partitions, andmay even remove data from the
logical plan.¿e planner transforms the optimized logical plan
to a corresponding physical plan—e.g. the logical operation
TableScan is transformed to JsonScan or ParquetScan, and
byte ranges within input objects are assigned to each physical
operator before the physical execution plan is sent to the
execution engine. It is this physical execution plan which Kariz
uses for intelligent prefetching and caching.
De�nitions: As there are di�erences in terminology used by
each framework, in this paper we use the following terms: A
task, t, is the smallest unit of computation; tasks are scheduled
by the lower-level framework scheduler (e.g. Yarn [65]). A
stage, s, is a set of parallel tasks that execute the same code and
are submitted for execution simultaneously (e.g. mappers); a
higher-level scheduler (e.g. Spark’s DAG-scheduler) decides
when to submit a stage of tasks to the lower-level framework
scheduler. Data-�ow oriented frameworks have di�erent
terms for a set of stages linked by dependencies; we will follow
common usage and use the term DAG for them. For each
stage there is a set Is of input objects and their byte ranges for
that stage. Finally, some data-�ow oriented frameworks (e.g.
Pig [56]) divideDAGs into stage-sets, sets of stages in the DAG
without inter-dependencies, which may run in parallel but
must complete before the next stage starts.

326 19th USENIX Conference on File and Storage Technologies USENIX Association

Max,	Min
job	runtime st

ag
e-

se
t1

{input	file:	size}

S2
{C:	14}	
{9,	2} {14,	10}

{D:	12}	
S3	

{13,	10}
{E:	6}	

S4

{14,	6}
{B:	24}	

S1S0 {A:	6}	
{9,	6}

{13,	9}
{B:	24}	

S5

st
ag
e-

se
t2

st
ag
e-

se
t3

tim
e:
	4
1

S0 S1

S2 S3 S4

S5

9 14

9 14 13

13

(a) (b)
Figure 2: (a) 6-stage DAG divided into 3 stage-sets. Each stage
is labeled with run-time (max=no input in cache, min=all input
in cache), input �le name and size. (b) Execution schedule with
no prefetching or caching for gang-scheduling.

Disaggregated Storage:¿ese frameworks typically default to
usingHDFS [61],which stores data locally on computenodes in
a cluster. Yet inmodern practice, storage is o en disaggregated
from the systemsperforming analysis [42,52,54,58]. Data is typ-
ically stored on remote object stores such as S3 [4], Azure Blob
Store [23], or on-premises equivalents such as Ceph [8], and
accesseddirectly via e.g. the S3Aconnector [5].¿is enables, for
example, elastic analytics clusters [3] and serverless data analyt-
ics [59], but with a performance penalty, e.g. in 2018 the NetCo
researchers [42] measured object storage speeds of less than
50MB/s per VM (or 4MB/core) on widely-used cloud services.
Motivational example: Kariz is a caching and prefetching
system to accelerate computation in these frameworks; we
provide a simple example to give intuition about our approach
and how it contrasts with previous approaches. Figure 2 shows
a DAGmade up of 6 stages divided into three stages-sets (sets
of stages in the DAGwithout inter-dependencies, whichmay
run in parallel butmust complete before the next stage starts),
with the stages executing from the top to bottom. For each
stage, theDAG speci�es the input �les and size; we have labeled
each stage with its input �le (A/B/...) and size, and run-time
with (a) no data is in the cache, and (b) all inputs are cached
or prefetched by Kariz. We assume Kariz can predict stage
run-time from prior execution times, and that it can perform
�ne-grained partial caching with proportional speedup.
In stage-set 1 (top), we can see that there is no value in

prefetching input B for S0 (uncached duration 9) until we
have addressed S1 (duration 14), which determines the stage
completion time. If we cache all of the input to S1, however
(see Figure 2a), reducing its run-time to 6, some of that cache
space (and remote bandwidth) will be wasted, as S0 will now
determine stage-set completion time. Kariz instead caches
“just enough”ofeach input tominimize stage-set run-time—e.g.
caching 15 units of B will bring S1 duration down to 9, and
additional prefetching will be applied to both S0 and S1.

2.1 Relatedwork
We focus on recent work on informed (rather than history-
based) caching and prefetching for analytics frameworks, and
omit the vast literature on disk/�le [32, 33, 38, 39, 60], web [18],

and CPU/memory caching [29, 30, 34, 64].
Caching and prefetching rely on the existence of patterns

and correlations in real workloads; Jockey [31] and Corral [41]
show that the data access patterns of analytics frameworks are
highly repetitive and predictable. In Ernest [66] we see that in
real world deployments job run-times are predictable as well,
based on factors such as input size and jobs DAG structure.
Unlike Kariz, MC2 [70] and CD-LDS [27] are targeted to

caching/prefetching (of �les andmemory respectively) for gen-
eral applications, using OS and compiler hints rather than the
job DAG available in ourmore speci�c scenario. Unlike Kariz
which extracts the exact I/O access patterns from the analytic
applications, Quiver [48] builds a deep learning speci�c cache
layer and exploits the predictability of accesses in these appli-
cations for cachemanagement.MRD [57]makes prefetch and
evictiondecisionsbasedongraphdistance,with thegoalofmax-
imizing cache hit rate; accesses at the next stage in the graph are
prioritized over those farther in the future. LRC [71] does not
prefetch, butmakes eviction decisions based on reference count,
i.e. the number of references to input in stages not yet executed.
Dagon[69] ties cachingwiththeDAGscheduler,using the stage
schedulingpriorities toevict/prefetchdata.MemTune[68]man-
ages RAM-based caching in Spark, evicting/prefetching data
using only information from the currently runnable tasks.
Alluxio [2] (based on Tachyon [50]) and Apache Ignite [7]

are widely used for caching in analytics frameworks; the
caching component of Kariz is similar to these, although
with extensions for partial caching of objects. A number of
replacement and prefetching policies (as opposed to systems)
speci�c to analysis frameworks have been developed, as well:
PacMan [20] attempts to minimize run-time by considering
MapReduce job wave widths; while NetCo [42] and MRD
implement approximations to Belady’sMIN algorithm based
on predicted job execution order.
Kariz di�ers from these prior works in several ways: (1)

it makes use of partial caching, which gives signi�cant gains
when the cache size is not large compared to input object
sizes, and (2) it explicitly tries to minimize predicted DAG
completion time, rather than e.g. cache hit rate.

3 Kariz design
Kariz is a cache management and prefetching system that
controls admission/eviction to/from a storage cache, and
calculates prefetching schedules for data-�ow oriented
frameworks.We show the Kariz architecture (§3.1), its partial
caching (§3.2), runtime estimation (§3.3) and availability and
scalability strategies(§3.4).

3.1 Architecture
As shown in Figure 3, Kariz implements a community cache,
wheremultiple clusters, potentially running di�erent analytic
platforms, can concurrently share a single cache. Kariz
interfaces with the frameworks to obtain data-�ow DAGs,
execution states, and scheduling events, and collects historical

USENIX Association 19th USENIX Conference on File and Storage Technologies 327

Cluster	Resource
management

Datalake

Hive
PIG

Cache	Planning

AlgorithmsSpark-SQL

Physical	execution	plan

Query	planner

Analytic
framework

Execution	engine DAG	scheduler
scheduling	event

Distributed	Cache

Compute	Cluster history

Kariz	cache
management

Run-time
Prediction

Bandwidth
monitoringPartial	cache

Cache	Decision

History
Records

Cache	status

Figure3:Karizarchitecture.¿eKarizcomponents extractDAGS,
schedulerandrun-time information fromtheanalytic framework.
¿e run-time predictor uses historical run-time information to
predict stage execution time.¿e Kariz cache management algo-
rithms generate caching/prefetching plans forDAGs by exploiting
the predicted execution time, partial caching, and data sharing
acrossDAGs.¿e cache planningmakes caching,prefetching,and
eviction decisions based on the generated plans to minimize the
DAGs runtimewhile taking account of data sharing for e�ciency.

information (logs) to use in predicting the run-time of future
jobs.¿e cache controller maintains information about what
data is cached and estimates bandwidth available to the storage
cluster. ¿e run-time prediction component estimates stage
completion time based on prior runtimes and current state.
¿e algorithms make up the core of the system, where the
task of a single-DAG planner is to come upwith a plan for an
individual DAG that is then combined into an overall plan
by themulti-DAG planner, which issues cache, prefetch, and
eviction commands to the cache controller and cache.
Interaction with analytics framework: ¿e framework
interface noti�es Kariz of DAG submission, providing the
physical query execution plan detailing input objects, sizes,
formats,operation (e.g.map,�lter, join), andparallel task count.
Kariz is also noti�ed when a stage-set (Pig) or stage (Spark)
begins or �nishes execution. In addition, Kariz needs job
(DAG) history information (i.e. logs) for prediction; typically
this is available through existing framework interfaces.
Storage bandwidth: Prefetching is constrained not only
by cache capacity but also by the e�ective bandwidth from
back-end storage, limited by the speed of the network or
the storage system itself. Kariz schedules operations to �t
within this bandwidth, which is currently con�gured based
onmeasurements but could be estimated dynamically as well.
Planners: In Kariz, scheduling of cache capacity and storage
bandwidth is performed in two stages.¿e single DAGplanner
examines individual DAGs and stages to determine caching
candidates—sets of data from one ormore objects which can
be prefetched or retained in the cache to speed DAG execution.
¿e multi-DAG planner, in turn, determines which of these
caching candidates to put into e�ect within constraints of
cache size and backend bandwidth, prioritizing completion
time within a DAG and throughput across DAGs, taking

Wordcount
{A: 32G}

S0 Wordcount
{B: 32G}

S1

Wordcount
{C: 31G}

S2

St
ag

e-
se

t2
St

ag
e-

se
t1

0 250 500 750 1000
Runtime (sec)

Remote
All or nothing
Partial Cache
Infinite cache

Figure 4: Physical experiment to illustrate partial caching: DAG
with 3 wordcount jobs with 32 GiB inputs and 63GiB total cache
capacity.

account of data sharing for e�ciency.
Cache control:¿e cache controller provides an abstract cache
interface to the Kariz planner. It is responsible for tracking
currently cacheddata, andmanaging the prefetching, retention,
and eviction processes; as a distributed cache scales [44] this
componentwillbe replicated. Its interface to thecachehasmeth-
ods to prefetch data on a �ne-grained basis, “pin” it in cache
or release it, and enumerate cache contents (e.g. on startup).

3.2 Partial caching
Hadoop and Spark are sensitive to stragglers [49], longer-
running taskswhichdelay completion of a computational stage.
Prior prefetching work [20, 42, 57, 71] assumes partial caching
of stage inputs will lead to such stragglers, giving no bene�t.
¿is will occur when done naively, as some tasks will �nd their
entire input in the cache, while others will fetch their full input
from remote storage.We instead assume �ne-grained control
over prefetching and cache retention/eviction, allowing data to
be cached in stridesmuch smaller than the input to a single task.
We see the utility of partial caching for real workloads with

limited caching in Figure 4.We de�ne an arti�cial DAGwith
three wordcount Mapreduce stages, dependent on the other
two; each with 32GiB input.With all-or-nothing caching we
can only cache the input to S2, minimizing stage 2 runtime, but
cannot speed up stage 1.With partial caching we still cache the
entire input to S2, yielding the highest runtime reduction per
unitofcaching,butcandistribute the remainingcacheacrossS0
and S1, reducing runtime closer to the fully-cachedminimum.
Kariz architecture explicity supports column-oriented for-

mats like Parquet [51] and Arrow [6]. It relies on physical
query plans to identify object ranges, rather than entire objects;
prefetch decisions would then bemade within these ranges.

3.3 Run-time prediction
Recent studies from in-production clusters atMicroso (e.g.
Graphene [36], NetCo [42], and others [24, 28, 40, 43]) show
that examined jobs are recurring—similar computations are
repeatedly executed on di�erent datasets. ¿e same studies
show that tasks extensively share common operands, and
that most user-de�ned operations are not custom programs,
but widely-used shared libraries (Cloudview Figure-(3) and
Figure-4(a & d) [43]). Recent studies, such as Ernest [66],
CherryPick [19], and Selecta [45] have shown good accuracy

328 19th USENIX Conference on File and Storage Technologies USENIX Association

when predicting run-time for such recurring workloads, as a
functionof input�le size, size of cluster andDAGstructure [66].
In Kariz, we extend the runtime predictionmodel proposed

by Ernest to incorporate caching and bandwidth di�erences be-
tween cache and remote storage. Similarly to Ernest,we assume
that computation time scales linearly with the input size [66]
and the communication patterns among stages of a DAG could
be represented as sequential, aggregate, and shu�e operations.
Unlike Ernest that assumes that builds a runtime prediction
model for the entire DAG, Kariz predicts the performance of
stages according to the operands executed on that stage and the
communication pattern with the previous stage.
We predict stage time T given total input size S, with f ⋅ S

in cache, bandwidth rs and rc to storage bandwidth and cache
bandwidth, T tasks (e.g. mappers)1 andN executors, �tting the
following equation:

T =θ0+θ1
(1− f)S
rs

+θ2
f S
rc
+θ3

T
N
+θ4log(N)+θ5N (1)

where terms represent �xed startup time (θ0), data fetch
from backend storage and cache (θ1, θ2); following Ernest we
also incorporate terms for sequential (θ3), aggregate (θ4), and
shu�e θ5) cross-stage communication. We use Lasso regres-
sion [63] with non-negative coe�cients and cross-validation
to be resilient to over�tting when training on limited data.
At each scheduling event, Kariz identi�es the available

backend storage2 and cache, iterates over the future stages to
�nd longest and "slack" paths. Kariz does this by predicting the
runtimeof each stage in twocases—data in cache anddataneed-
ing to be fetched from the remote and uses Bellman-Ford [22]
with negative weights to identify the order of the longest paths.
We discuss the accuracy of this model further in Section 6.3.

3.4 Availability and Scaling
Kariz takes a simple approach to availability, based on the
principle that prefetching and sophisticated cache control
are optional—DAG-based frameworks and associated caches
(e.g. Alluxio) are widely used today with no prefetching or
cross-DAG scheduling. If Kariz crashes, the cluster continues
to operate, and the caches fall back to LRU a er the current
commands have completed; on restart Kariz can fetch all
needed states (DAG queue, cache contents, execution history)
from other components and resume.
Most computation in Kariz occurs in the cache controller,

which is responsible for block-level caching and prefetching
commands; this scales by adding additional controllers, each
responsible for some set of caches. ¿e central planning
algorithm is not currently scalable, and the cluster size which
can be controlled by a single Kariz instance is limited by its

1¿is is predicted by the analytic framework during query planning
2 Currently, Kariz splits bandwidth equally between all runningDAGs in

a cluster.

0 14

14
13
10
9

2
12 0 6

S2 S3 S4

0

(a) Stage runtime vs. data in cache

time: 25

S0 S1

S2 S3 S4

S5

6 6

9 10 10

9

Kariz/CMR

time: 29

S0 S1

S2 S3 S4

S5

6 6

2 14 10

9

MRD

st
ag

e-
se

t 1
2
3

st
ag

e-
se

t 1
2
3

Kariz/CMR

MRD

Cache content

A
A
A

B

A
A
A

B
B

B
B
B

C
C

D
D

E
E

E
E

(b)Dag schedule and Cache status

Figure 5: (a) Job runtime vs. data in cache at job start for DAG
stage 2 (S2, S3, S4). Green represents caching needed to reduce
S3 runtime to that of S4; blue is caching to reduce S3, S4 to
their minimum runtime. Caching for S2 will never reduce stage
runtime, (b) With cache size 50, Kariz/CMR �nishes before
MRD (25 vs 29) despite a lower hit rate (83% vs 86%)

speed. In §6.8, we show that current unoptimized performance
should scale to a cluster of thousands of nodes.

4 Planners
We implement three planners in Kariz for scheduling caching
and prefetching: MRD [57], Critical Path (CP) [17], and our
new algorithm, Caching forMinimizing Runtime (CMR).
MRD (Most Reference Distance) is based on topological

distance, i.e. the number of DAG stages between two accesses
to a �le, evicting data with the longest distance until future
reference, and prefetching data with the shortest distance. CP,
described in an earlier workshop paper, prioritizes prefetching
and caching for jobs on the DAG critical path.We refer readers
to the respective publications for amore detailed description.
CMR considers the analytic framework DAG scheduling

schema andmakes full use of the runtime estimation, partial
caching, and bandwidth measurement features provided by
Kariz. To minimize DAG runtime, it jointly schedules cache
space and backend storage bandwidth.Whenmultiple DAGs
are active it divides cache space and prefetching opportunities
across DAGs using a heuristic that attempts tomaximize the
throughput—i.e. prioritizing shared data which will speed up
multiple DAGs.

4.1 CMROverview
To explain the intuition behind CMR, we again use the 6-stage
DAG fromAlgorithm2, scheduledwith gang scheduling, exam-
ining stage-set 2 (stages 2, 3, and 4) inmore detail. In Figure 5a,
we assume a graph of runtime vs. amount of input in the cache
for these stages. For the sake of simplicity of the discussion, it

USENIX Association 19th USENIX Conference on File and Storage Technologies 329

showsapiece-wise linear function forstage timeas a functionof
prefetched/retained data. In reality, we use runtime prediction
(Section 3.3) topredict the requiredcachesize toachievecertain
improvement. In Figure 5a, we see S3 runtime decreases from
14 to 10 as its 12 units of data are cached; S4 from 13 to 10 with
6 units of caching, and S2 from 9 to 2 with 14 units of caching.
In making prefetch/retention decisions CMR examines

candidate caching sets—sets of input objects and their ranges
which speed up one or more stages in a stage-set. ¿e �rst
candidate here, shown as a green horizontal bar, represents
the fraction of input to S3 needed to reduce its runtime to
that of S4.¿e next candidate, shown in blue, corresponds to
the remaining input to S3 and S4, reducing their runtime to a
minimum.Note that the input to S2 is not part of any candidate
set, as S2 will always complete before S3 and S4 and never a�ect
stage-set completion time.
¿ecoreofCMRconsistsofenumeratingthesecandidatesets

andpick them indecreasingorderof runtime improvementand
prefetching or retaining all sets which �t within cache size and
bandwidth constraints.We see CMR compared toMRD in Fig-
ure 5b,with a cache size of 50. AlthoughMRDachieves a higher
hit rate (86%) thanCMR(83%),CMR’s achieves a lowerruntime
(25vs 29)by ignoring stages like S2with“slack” in their schedule
and focusing on only ones determining stage-set runtimes.
In our simpli�ed example, there is no need to compare

caching candidates against each other—once we decide not to
cache input to S2, there is enough cache space for all remaining
input.With fewer resources, however, wemust choose between
e.g. retaining data for one future stage vs. prefetching for a
di�erent one.
We do this based onmarginal utility, i.e. the ratio of com-

pletion time saved by caching a candidate set to its size.¿is
is similar to the fractional knapsack problem, i.e. achieving
maximum reduction of run-time given a �xed cache capacity,
hence the use of cost:bene�t in comparisons.¿is allows com-
paring candidates acrossDAGstages, forexample, todetermine
whether cache space and storage systembandwidth in stage-set
1 would be better spent prefetching for stages in stage-set 2 or
stage-set 3.

4.2 CMR
¿eCMRplanner runs upon receiving the stage-set scheduling
events fromtheanalytic framework, identifying theprefetching
and cache pinning/unpinning operations to be executed
during that stage for execution in following stages; prefetching
is scheduled so that it will complete by the beginning of the
stage in which the data will be used. As with prior work, we
assume the existence of a “stage 0” before the DAG begins
execution; in practice, this would correspond to the last stage
of the previously-executed DAG.We describe CMR operation
in the case of a single DAG in two parts: enumeration of
caching candidates, in Algorithm 1, and candidate selection
and execution, in Algorithm 2.

Algorithm 1Caching candidate set enumeration

Input:
2: T1 , T2 , . . . no-cache job completion times, longest �rst

α1 , α2 , . . . per-job time improvement per unit cached
4: I1 , I2 , . . . job inputs

6: Output:
c1 , c2 , . . . caching candidates

8: c i speci�es data to be cached from I1 ...I i , and has value
(i.e. time saved) =Ti−Ti+1

10:
procedureCandidates(stage i)

12: Tmin =T1−α1 ⋅∣I1 ∣
t=(T1−T2), c1 ={I1 ∶ t

α1
}

14: t=(T2−T3), c2 ={I1 ∶ t
α1
, I2 ∶ t

α2
}

etc. while T >Tmin
16: end procedure

¿e candidate enumeration algorithm in Algorithm 1 exam-
ines stages from longest to shortestwithin a stage-set, enumerat-
ing candidates in decreasing order of bene�t (completion time
saved) to cost (size).¿e�rst candidatewill be from the input to
the longest stage, of su�cient size to reduce its runtime to that
of the next-longest—i.e. the green segment from Figure 5a.¿e
secondcandidate inFigure 5a corresponds to theblue segments,
reducing the runtime of S3 and S4. Candidate enumeration
stops when nomore candidates can be enumerated, e.g. in this
case where S3 and S4 runtimes are reduced to their minimum.
Candidate selection is performed by Algorithm 2; we

describe this �rst for the case of a single active DAG, before
discussing its operation acrossmultiple DAGs.
A er enumerating caching candidates for all future stage-

sets in decreasing bene�t:cost order, we compute the “slack”
back-end storage bandwidth available in each stage-set based
on the current estimated stage-set completion time andmea-
sured storage access rate. Candidates which are “too early” are
eliminated; these are ones that may be safely deferred to a later
stage-set and still complete by the time of the stage-set inwhich
they are needed.
We then consider the remaining candidates—if a candidate

“�ts” into the remaining cache space and bandwidth, we
schedule the prefetching operation (if needed) and “pin”
the candidate in cache until the end of the stage in which
it is needed. In the next step, CMR updates available cache
space and slack bandwidth (prefetch bandwidth), as well
as adjusting stage completion time estimations to account
for the speedup. If we run out of prefetch bandwidth before
cache space (omitted for clarity in Algorithm 2), we continue
examining in-cache candidates until we run out of cache space.
¿is strategy not only calculates a set of data to prefetch

but implicitly calculates evictions as well. Data currently in
the cache which is valuable for reducing the runtime of a later
DAG stage will be part of one of the selected candidate sets,
and will be pinned through the end of its scheduled use; the
remaining cache contents are unpinned and may be evicted

330 19th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 2Cache candidate selection: schedule
prefetching/pinning for later stages

Initial Conditions:
2: t0 =0, t i = t i−1+max(Ti ,∗) ▷ Estimated stage completion times

f etch i = sum(∣I i ,∗∣) ▷ committed bandwidth by stage
4:
Input:

6: candidate lists for each active DAG

8: Output:
prefetch, pin, and unpin operations

10:
procedure Plan(l ists)

12: while slackbw and cache available do

l ists← sort
⎛
⎜
⎜
⎝

Tl i st
∑

b∈ f rags(l i st)
(1
nb
)
for l ist in l ists

⎞
⎟
⎟
⎠

▷

nb ∶Ndags shared b.
14: link l1andl2 if l1 share blocks with l2 for each l1 and l2 in l ists

slackbw(j)← r ⋅(t j−t j−1) ▷ bandwidth slack in stage j
16: c=best(head(l ist) for l ist in l ists) ▷ best candidate

skip c if stage(c)>now and c �ts in slackbw (future)
18: s← stage(c)

f etchs← f etchs−∣c∣ ▷ ∣c∣ no longer demand-fetched
20: if c not in cache then

f etchnow← f etchnow+∣c∣
22: prefetch(c)

end if
24: adjust ts ,... for c speedup

pin c until end of s
26: cache used += ∣c∣

end while
28: end procedure

(e.g. in LRU order) if necessary tomake room for new data.
Event Scheduling: in most analytic frameworks that imple-
ment the event-based scheduling schema, e.g. Spark, the root
stages of the DAG (those with no-dependency) are responsible
for fetching DAG input data. In this case, CMR, for each root
stage, predicts the longest path to the leaf stages of the DAG
(those with that produce output).¿en, it sorts these paths ac-
cording to the predicted run-time and recursively identi�es the
cache candidates for them.

4.3 Multi-DAGScheduling
Next, we describe the algorithm that prefetches for multiple
DAGs simultaneously,Cache forMinimizing Runtime ofMul-
tiple DAGs (CMR-M). It attempts tomaximize throughput by
minimizing the time to completion of sequences of DAGs.
CMR-Massumes the use of static partitioning (default setup)

in Spark and Pig, where resources are allocated to a DAG for
the entire period of execution [14].
We enumerate caching candidates using Algorithm 1, then

we choose to execute candidates in Algorithm 2, as before;
selecting the “best” cache candidates fromcompetingper-DAG
lists via a heuristic score for data sharing, sharing-aware weight.
¿e sharing-aware weight is calculated per cache candidate and
gives preference to candidates that are shared by other running

DAGs, as the throughput increase from prefetching will be
higher than that indicated by the single-DAG value.
¿e sharing-aware weight is similar to the resident set size

(RSS) calculation [35] from ‘ps’: data sharedbymultipleDAGs is
split equally among them before calculating cost.We calculate
the sharing-aware weight on a block-per-block basis, counting
the number of DAGs nb sharing any block b (Equation 2).We
then calculate a "unique �le size",Uc , counting each block in
C shared between nb DAGs as having size 1

nb
(line 12− 14 in

Algorithm 1). We then re-compute themarginal utility using
this weight and use this utility to compare candidates across
DAGs. Finally, we �nd the “partners” to the selected candidate,
i.e. those sharing blocks with it, and select those for prefetch-
ing/caching as well.

Us = ∑
b∈ f rags(C)

(1
nb
) (2)

5 Implementation
¿e Kariz implementation combines a Kariz service with
a our previously developed [44] caching layer embedded
within the Ceph Rados Gateway (RGW [8]).Wemodi�ed this
caching layer for Kariz by integrating �ne-grained prefetching
and pinning (∼100 C++ LOC). We have also modi�ed both
Pig/Hadoop [56] (∼100 Java LOC) and Spark [72] (30 Scala
LOC) toworkwithKariz.Wediscuss eachof these components
in turn.

5.1 Kariz Service
Our Kariz prototype is about 5000 lines of Python3, including
the runtime predictor, theMRD, CP and CMRDAGplanners,
and the CMR-M multi-DAG planner. We use the sklearn
package for runtime prediction, and graph-tool for graph
traversal.¿eKariz service also includes a cache coordinator
that translates high-level operations from the planner into
individual block operations on the cache.
Interfaces between the analytic frameworks and Kariz are

listed in Table 1. ¿e newDAG, stageStart, and completeDAG
noti�cations from the framework trigger DAG planning
activities, and carry information (e.g. annotatedDAGs) needed
for planning.¿e prefetch, pin, and unpin requests to the cache
controller, in turn, translates high-level requests from the
planner (specifying object and stride) into requests to the
cache to fetch, pin/unpin, or evict individual blocks.

5.2 Caching layer
We build Kariz by extending the multi-tenant cooperative
caching architecture recently added to RGW [44]¿is RGW
cache layer expands to multiple clusters and allows di�erent
frameworks such as Hadoop MapReduce [26] and Apache
Spark [72] to cache and share their inputs. Our extension to
support Kariz involved around 100 C++ LOC.¿is involved

3http://github.com/maniaabdi/Kariz

USENIX Association 19th USENIX Conference on File and Storage Technologies 331

Table 1: Interface fromAnalytics framework (e.g. Pig or Spark)
to Kariz and between Kariz and the Cache

API Description
newDAG(ID, DAG) newDAG started

→
K
ar
iz stageStart(ID, Jobs in stage scheduled

stage) for execution
completeDAG(ID) DAG completed.
prefetch(blocks) Asynchronously fetch

→
C
ac
he

blocks into cache
pin(blocks) Lock blocks in cache.
unpin(blocks) Release blocks to be

replaced as space is needed

adding the operations to prefetch pin and unpin lists of
4MB chunks of datasets, as depicted in Table 1. ¿e small
changes required is evidence that we will be able to integrate
Kariz with other caching services. Kariz could integrate with
other distributed caching systems such as Alluxio [2, 50]
and coordinates their caches. In the case of Alluxio minor
modi�cations are needed to support partial prefetching.

5.3 Analytical frameworksmodi�cations
To exploit Kariz, an analytic framework must provide some
interface thatKariz can use to extract run time interface andno-
tifyKarizofnewDAGs, the startof stages, andDAGcompletion
using the interface in Table 1.We have found it relatively easy to
develop adaptors for two frameworks, Pig [56] and Spark [72];
suggesting that framework developers will �nd it easy to add
the required functionality to take advantage of Kariz.
Pigmodi�cations:Modi�cations toPig are 100 JavaLoC in the
following functions: (1) compile() inMapReduceLauncher.java
to extract the DAG, annotate it, and invoke newDAG. (2)
launchPig() inMapReduceLauncher.java to extract the stage
and invoke stageStart. (3) dumpStats() inMRPigStatsUtil.java
to invoke completeDAG; Kariz then request detailed statistics
fromHadoop history server.
Spark modi�cations: Modi�cations to Spark are 50 Scala
LoC in the following functions: (1) the constructor in SQLEx-
ecutionRDD.scala, and toRdd() in QueryExecution.scala to
annotate the RDDDAG, (2) runJob() in SparkContext.scala to
extract DAG and invoke newDAG, where the ID is based on a
UUIDand spark application ID, (3) submitStage() inDagSched-
uler.scala to extract the stage and invoke stageStart (4)When
the SparkContext shuts down, it invokes completeDAG; Kariz
then request detailed statistics from Spark history server.

6 Evaluation
We use a combination of experimental evaluation on our
prototype and simulation to evaluate Kariz. A er describing
the experimental infrastructure and simulator (§6.1), we
experimentally demonstrate the value of partial caching
(§6.2), examine the accuracy of our run-time prediction (§6.3),
and then show results for the di�erentDAGplanners with both
PIG and Spark (§6.4). ¿e remainder of the evaluation uses

Table 2: Hardware con�guration

Compute Server Cache Server
CPU 1x Intel E5-2650 2x Intel E5-2699v3
RAM 128GB 128GB
Disk 1x 500GBHDDs 2x Intel P3600 1.6 TB

5400RPM NVMe SSDs (RAID0)
Network 10Gb/s 40Gb/s

Table 3: So ware con�guration
Hadoop Pig Spark

Version 2.8.4 0.17.0 2.4.5

simulation to evaluate the single DAG planners for a larger
set of queries (§6.5), explore themulti-DAG planners for both
queries fromseparatePIGandSparkclusters, andwhenKariz is
simultaneously used by both PIG and Spark clusters (§6.6) and
�nally perform sensitivity (§6.7) and scalability (§6.8) analysis.

6.1 Setup
Infrastructure: ¿e physical experiments with Pig/Hadoop
and Spark are run on a 16 node cluster with the hardware and
so ware con�guration in Table 2 and Table 3.We provisioned
the compute nodes via diskless provisioning [53] and use the
local disks of the compute nodes to deploy local HDFS.We use
the NVMe SSDs of the cache servers to build the cache layer.
Simulator: We implement a simulated execution framework
and cache, allowing additional experiments not possible on the
physical cluster4. Execution time for each job to be simulated
was determined by the run-time prediction model trained
for each operation in Pig/Hadoop and Spark with di�erent
cache sizes. A random term was added to the runtime, with
standard deviation taken frommeasured run-time. Additional
simulator logic mimics the Kariz extensions to the framework
scheduler, allowing the same Kariz code to be used in physical
experiments and simulations.

6.2 Partial Caching
We evaluate a key premise of Kariz: that straggler-resistant
partial caching can reduce runtimes. In Figure 6a, we see
experimental results for Wordcount and TeraSort on a
16-node Hadoop cluster with 128 mappers and 32GiB input
�les. In Figure 6b, we see the Wordcount benchmark on
a 16-node Spark cluster with 64GiB input �les, and vary
bandwidth to remote storage.
With both Hadoop and Spark we see a linear relationship

between run time and cached data.While these are trivial ap-
plications, given that the platformpartitions the data across the
mappers, we believe this is good evidence that partial caching
canbe e�ective. In contrast, randomchoice of 4MiBblockswas
found to produce little or no speedupwhen less than 60%of the
inputwas cached, and (as expected) caching a strict pre�xof the
�le produced no improvement until the entire �le was in cache.

4Aswell as timely reproduction a er algorithm changes.

332 19th USENIX Conference on File and Storage Technologies USENIX Association

(a)Hadoop:WordCount and TeraSort, cached data vs. runtime, 128
mappers, 1Gbit backend bandwidth.

(b) Spark: cached data vs. runtime for WordCount and di�erent
backend bandwidth on 32GiB input, 128 partitions.

Figure 6: Partial caching

We also see that the slope varies with storage bandwidth and
application, motivating our design to build per-operation run-
time predictionmodel that incorporates storage bandwidth.

6.3 Runtime prediction
Training model: to train the runtime prediction models, we
ran Lasso regression with α=0.001 on each category. On our
test cluster, we run all 44 queries from Pig-TPCH [13] and
Spark-TPCH [16], 13 times each, with di�erent con�guration:
(1) input datasets randomly selected from 8GB to 80GB, (2)
number of cached blocks randomly selected from 0% to 100%,
(3) the bandwidth to backend storage restricted randomly
from 1Gbps to 40GBps, and (4) the number of executors per
query was con�gured randomly from the 2, 4, 8, 16. In total,
we captured statistics for 286 queries for Pig/Hadoop and 286
queries for Spark. We use the 80%/20% split to train and test
eachmodel. Table 4 shows the average run time of the test set,
the rootmean square error (RMSE) of the runtime prediction
model per operation and average absolute error.
Predictionaccuracy:¿ecaching andprefetchingplanners de-
pend on the Kariz runtime predictor being accurate enough to
predict the correct paths (longest, the 2nd -longest, etc.) to cache
for.We ran the 22 queries from the Spark TPCH benchmark,
with random input sizes, on a 16-node cluster with no caching.
Wepredict therun-timeusing the trainedmodels: for20queries
out of 22 the order for 1st , the 2nd , and 3rd longest path were
identi�edcorrectly. ForqueryQ11, itmis-predicts the 1st longest
path, and for query Q21, the order of the 2nd and 3nd longest
pathswere reversed. In these two cases, the errors were in paths
di�eringby less than 3s; in almost all cases eitherbothorneither
wouldbe cached,and themisprediction impactwouldbeminor.

In Figure 7, we see the ratio of the actual to predicted longest
path.¿emaximumerrorwas 27%andonaverage 7%.Weanno-
tate each bar with the bandwidth, the input size, and the actual
runtime of the longest path for that query. For Q6, where we
had themaximum relative error, the actual runtime was short.

6.4 Experimental evaluation
We compare CMR with two DAG-informed policies: (1)
MRD [57], which caches and prefetches in breadth-�rst order
to increase hit ratio, and (2) our CP [17] which caches and
prefetches for jobs on the DAG critical path.
Workloads: We use the characteristics of the con�dential
trace (including query submission rate, DAG structure, data
accessed, data reuse) to construct a mix of synthetic workload
using standard analytic benchmarks (TPC-H and TPC-DS) be-
cause of the lack of public workloads.¿e synthetic benchmark
represents anhourof data processing.We scale down the size of
our cluster and theDAGsubmission rate by a factor of 10; in the
con�dential traces, the job submission rate follows the Poisson
distribution with distribution parameter(λ) of 0.2 (on average

Table 4: Accuracy of runtime prediction per operation

(a) Pig operations

Operation runtime
(s) RMSE (s) Absolute

(s)
Co-group 330 63.27 61.14
Map only 5.8 0.33 0.26
Groupby 14.6 1.8 1.6
Combiner 23 8.3 2.8
Hash join 99.3 37 25
Replicated join 251 38.5 55
Order by 10.6 0.39 0.49
Sampler 10.74 0.58 0.54

(b) Spark operations

Operation runtime
(s) RMSE (s) Absolute

(s)
Hash aggregate (HA) 1.3 0.66 0.52
Scan 12 3.3 2
Scan, Filter 20.2 6.28 3.27
Scan, Filter &HA 30.6 5.2 3.97
Filter &HA 2 0.66 0.63
Sortmerge join 3.51 1.5 0.94
Sortmerge join&HA 3.53 0.75 0.53

Figure 7: Ratio of actual to predicted longest path on di�erent
Spark queries. See text for Q11.

USENIX Association 19th USENIX Conference on File and Storage Technologies 333

Figure 8: Pig-MapReduce performance for selected TPC-H
queries - small DAGs (1,4), long sequential (2,3,5), tree-like
(10,11,14), aggregate (15), large/complex (7,19-22). 64GiB data
set, 40GiB cache, cold start.

Figure 9: TPC-H query performance using Spark contrasting
CMR, CP,MRD and no caching.

702 queries were submitted per hour). ¿us, we use Poisson
distributionwith λ of 0.02 to generate query submission events
(result in 67 queries).¿en, at each event, a query is drawn from
a pool of 22 TPC-H [13], and 19 TPC-DS [12] queries translated
into Pig Latin [56]. To select queries from the pool, we cate-
gorize queries according to their DAG structure for a sampled
hour. We map each query in the pool to a category with the
maximumDAGsimilarity (maximumcommon subgraph [55]).
To be consistent, for Spark, we use the same set of queries from
Spark TPCH [16] and Spark TPC-DS benchmarks [15].
For the sampled hour, 30% of the objects were accessed at

least twice.¿is is similar to the ZipF distributionwith a=1.125.
Accordingly, we assign each query a dataset selected from this
distribution, giving a trace of 496 accesses over 357 unique
input objects, with 78 accesses to the most used input object,
consistent with our evaluated traces. ¿en, we associate the
input sizes to the datasets by randomly choosing from 4GB,
to 256GB. Finally, we use the standard TPC-H [13] and TPC-
DS [12] input generators to create CSV datasets.
¿e cache size is set to 40GB and the dataset size is 64GB.

¿eRGWcache network to datalake is throttled to 10Gbps. For
each query, we assume 5 seconds queue time, the minimum
observed queue time in the evaluated traces, before submitting
the �rst stage for execution to the execution engine. We take
advantage of the queue time to start prefetching for the DAG
andwe clear the cache before each run.¿e reported numbers
are the average of three runs.
Performanceevaluation: Figure 8 andFigure 9 shows runtime
of selected TPC-H queries in, respectively, Pig-Latin and Spark

comparing CMR, CP,MRD, and no caching.
Our evaluations show that relative to the no caching case,

CMR can improve query performance by up to 2 times for
Pig-MapReduce and up to 3.2x on Spark, withmean speedups
of 1.3x and 1.8x respectively. Running on the Pig-MapReduce
framework and comparing toMRD andCP, CMR can improve
the runtime by up to 2x and 1.8x and in average by 1.3x and
1.3x respectively. Our experiments using LRU shows similar
behavior to no-prefetching (gray bar).
With the Spark framework, CMR can improve the runtime

compared toMRD and CP by up to 3.1x and 3x and in average
by 1.8x and 1.7x respectively. Spark shows more sensitivity
to the backend storage bandwidth than MapReduce, Since
MapReduce imposes extra overheads such as JVM start
up([45, 46]).¿is results in sharper speed up slope for CMR
on the Spark framework than the Pig-MapReduce framework
and better cache space utilization compared toMRD andCP.
Q1 and Q4 represent small-sequential queries; with reads

only at the begining of the job in the graph. Due to the
partial caching strategy implemented by CMR, it has better
performance compared toMRD, CP on both Pig/MapReduce
and Spark frameworks.¿e table shows the average speedup:

Q1 andQ4 MRD CP no caching
Pig/MapReduce 1.5x 1.5x 1.6x

Spark 1.8x 1.4x 2.2x

For Q2, Q3, Q5, Q10, Q11, Q14, and Q15, the structure of
DAGs generated by Pig and Spark is di�erent, which leads
to di�erent caching decisions. On Pig-MapReduce, Q2, Q3,
andQ5 are long sequential queries with small reads in the �rst
stages and large reads in the following one. Here, the CMR
rankingmechanismmakes it possible to prioritize prefetching
plans that havemore e�ect on the sequential DAGs. Q10, Q11,
andQ14 are long sequential graphs andQ15 is a large aggregated
graph. For these, the combinations of stage oriented decisions
and partial caching leads to performance improvement.
Q7 and Q19 to Q22 have large complicated DAGs on both

Pig-MapReduce and Spark.¿e excellent relative performance
of CMR over the other options for these queries (see table
below) is encouraging, as our analysis of real-world traces in
§1 showed over 90% of data read by complex queries like these.

Q7 andQ19-Q22 Pig/MapReduce Spark

Average
MRD 1.4x 1.8x
CP 1.5x 1.5x

no caching 1.6x 2.8x

Maximum
MRD 1.8x 2.9x
CP 2x 2x

no caching 2x 3.2x

6.5 Simulated evaluation - SingleDAGs
We evaluate CMR across the synthetic workload (67 TPC-H
andTPC-DS queries) using our simulated cache and Pig frame-
work. In Figure 10 we see CMR, CP, andMRD performance

334 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 10:Runtime by DAG class for 67 queries; 128GiB cache,
10 Gb/s backend bandwidth.

relative to no cache, with a simulated cache size of 128GiB,
grouped by query type.
Median (center line) and 75th-percentile (top of the box)

performance are seen to be higher than MRD or CP in all
cases. CMR performance is much higher (1.6x vs 1.2x forMRD
and CP) for aggregation queries, although the top quartile
of queries achieved relatively similar speedups for CMR and
MRD. For complex queries CMR outperformed MRD by
large amounts, with a 75th-percentile speedup higher than the
maximumMRD speedup.

6.6 CMRPerformance onMultipleDAGs
Kariz is a community cache that considers data sharing between
DAGs running on one or several analytic frameworks.We sim-
ulate Kariz tomeasure the performance under two scenarios:
Multiple DAGs in a single analytic cluster: We compare
the performance of three multi-DAG strategies: CMR-M,
shortest-job-�rst (SJF) (prefetches/caches for DAGswith the
shortest remaining runtime), and Isolated (static isolated cache
partitioning for each DAG) [25]. In all three cases, CMR is
used tomanage within-DAG caching/prefetching decisions.
We simulate 1 TB of cache, 25Gbit/s network bandwidth,

and 100Gbit/s cache bandwidth.We generate a workload that
consists of 200 randomly-chosen Spark TPC-H [16] queries
with a dataset size of 164GB in a cluster that can handle 10
simultaneous queries. For the Isolated strategy, we allocate
128GiB of cache space to each query. To produce di�erent
sharing patterns, we generate 6 traces of 200 datasets generated
by changing the ZipF distribution parameter (a: 1.001-2.4)–
e.g. a = 1.001 giving a trace with 192 unique dataset accesses.
Finally, wemap each dataset in every trace to one query.
In Figure 11,we see the end-to-end runtimeof all 200TPC-H

Sparkquerieswith 6 traces,whenwe increase the reuse/sharing
of datasets within the trace. As seen, CMR-M outperforms
both isolated cache and shortest job �rst by up to 1.51× (a=1.23)
and 1.14× (a = 1.38), respectively. As depicted, the SJF policy
can degrade performance compared to isolated cache. ¿e
reason is SJF favorsDAGswith smaller predicted runtime.¿is
results in DAGs with longer runtime deprived of the cache and
therefore to readmost of their data from the backend. For the
Spark cluster, the runtime for the base case (all data remote)
is 13000 seconds; for a = 0.001, i.e. almost no data sharing, the

Figure 11: Performance of di�erent caching strategies when
di�erent level of data sharing exist within the cluster. (simulated)

Figure 12: Performance of di�erent frameworks with shared
cache vs isolated cache per framework. Each cache has 1 TB cache,
25 Gb/s storage-bandwidth, and 100Gb/s cache bandwidth.
(simulated)

performance gain over that comes from data prefetching.
Two analytic clusters: We compare the performance of Kariz
with multiple analytic clusters (Pig/MapReduce and Spark)
sharing a cache vs the case where the cache is statically parti-
tioned, using CMR-Mwith the CMR single-DAG planner.We
use the same 200 SparkTPC-Hqueries, combinedwith 100 Pig
TPC-H queries randomly selected from the same distribution,
generating 6 traces with 300 datasets each as described above.
As shown in Figure 12, by increasing the data sharing across

analytic clusters, both clusters have seen runtime improvement
vs the statically-partitioned case. Pig cluster runtime improves
by up to 1.5× (a=1.38), with amean of 1.3×.¿e Spark cluster
bene�ts from both prefetching and caching, improving on
average by 1.27× and up to 1.52× (a = 1.128). ¿e dashed
horizontal line in the Figure 12 shows the extreme case when
one dataset is shared by all the queries in both clusters.

6.7 Sensitivity Analysis
We analyze sensitivity to cache size and prediction errors.
Cache size: Figure 13 shows the average speed up of all DAGs
from the mixed workloads (§6.1) as we vary the cache size
from 16GB to 400GB (the size of the dataset) with the network
bandwidth to the backend set to 10Gbps. CMR achieves
substantially higher performance compared toMRD andCP
until the entire data set �ts in the cache. For example, when
the cache size is 64GB, CMR outperformsMRD and CP by up
to 51% and on average 10% and 8% respectively.
Impact of runtime mis-prediction: To see the e�ect of run-
timemisprediction we introduce amultiplicative error factor
Rerror . We simulate 27 queries with a total of 310 jobs from the

USENIX Association 19th USENIX Conference on File and Storage Technologies 335

Figure 13:Mean runtime across all queries vs. cache size, nor-
malized to uncached runtime; 10 Gb/s bandwidth. (simulated)

Figure 14: Sensitivity to misprediction error: introduced error
vs. performance degradation - 30% of predications adjusted by
factor of (1+Rerror). (simulated)

mixed workloads in single-DAGmode, with 60% of jobs recur-
ring, and randomly pick 130 jobs (∼42%) to adjust by Rerror .
In Figure 14 we see normalized change in runtime, relative

to nomis-estimation, for values of Re rror between 0.5 and 1.5.
CMR performance drops when the runtime is mispredicted,
especially in the negative direction, but when only a fraction
of jobs aremispredicted the e�ect is small.

6.8 Scalability
To analyze CMR scalability, we run (in simulation) a pool of 67
queries(DAGs) fromTPC-H and TPC-DS benchmarks. Using
timing fromtheAlibaba traces [1] (80%ofDAGstages complete
in less than one minute) we assign a random execution time
between 1s to 60s to each stage.We submit DAGs at a rate of 90
perminute andmeasure the execution time for CMR planning.
Figure 15 shows CMR planner runtime vs a number of

currently executing DAGs. Execution time (in unoptimized
Python) is seen to be under six seconds in all cases, with up to
160 concurrent DAGs. Based onAlibaba statistics this would
allow scaling a single controller to a cluster of 1500 to 2000
servers, withminimal delay in issuing prefetch commands.

7 Conclusion

Kariz is a cachemanagement system for analytic frameworks
that makes possible cache algorithms informed by DAGs,
historical run time information,currentcache state,andstorage
bandwidth.We have implementedmultiple algorithms using
Kariz, including a newCMR algorithm that achieves dramatic
performance improvements by exploiting all this information.

Figure 15:CMR-M scaling - planner runtime vs running DAGs.
(simulated)

Wedemonstrate that new analytics frameworks (100 LOC
for PIG/Hadoop, and 30 LOC for SPARK) and cache systems
(100 LOC for the cache we used) can easily be integrated. Our
work is the �rst to: 1) support multiple concurrent DAGs,
2) employ more than one of bandwidth, runtime prediction,
and DAGs, 3) explore a cooperative caching model, and
4) employ straggler resistant partial caching.

Acknowledgment

We thank our shepherd, Nitin Agrawal, and our anonymous
FASTreviewers for their valuable feedbackandsuggestions.We
thank Shankar Pasupathy, Art Harkin, PeterMacko, and Xing
Lin of NetApp,Matt Benjamin and AliMaredia of RedHat for
their support and contribution.Wewould like to acknowledge
the support of our commercial partners inMass Open Cloud
andOpen Infra Labs, which include RedHat, Two Sigma, Intel,
IBM, Brocade, Cisco, and Lenovo. Partial support for this
work was provided by the National Science Foundation award
CNS-1910327, CNS-1414119, and aNetApp faculty fellowship.

References

[1] Alibaba trace data. http://github.com/alibaba/
clusterdata, 2019.

[2] Alluxio. http://www.alluxio.org, 2019.

[3] Amazon EMR. http://aws.amazon.com/emr/, 2019.

[4] Amazon S3. http://aws.amazon.com/s3/, 2018.

[5] Anatomy of the S3A �lesystem client. http://redhat.
com/en/blog/anatomy-s3a-filesystem-client,
2018.

[6] Apache Arrow. http://arrow.apache.org/, 2019.

[7] Apache Ignite. http://ignite.apache.org/, 2019.

[8] CephObjectGateway. http://docs.ceph.com/docs/
master/radosgw/, 2019.

[9] Dave Wells. ¿e Future of the Data Warehouse. http:
//eckerson.com, 2017.

336 19th USENIX Conference on File and Storage Technologies USENIX Association

[10] Microso Azure HDInsight. http://azure.
microsoft.com/services/hdinsight/, 2019.

[11] Microso Datalake. http://azure.microsoft.com/
en-us/solutions/data-lake, 2019.

[12] Pig TPC-DS queries. http://github.com/
ssavvides/tpcds-pig, 2019.

[13] Pig TPC-H queries. http://github.com/ssavvides/
tpch-pig, 2019.

[14] Scheduling Spark cluster. http://spark.apache.org/
docs/latest/job-scheduling, 2019.

[15] Spark TPC-DS queries. http://github.com/
databricks/spark-sql-perf, 2019.

[16] Spark TPC-H queries. http://github.com/
ssavvides/tpch-spark, 2019.

[17] Mania Abdi, Amin Mosayyebzadeh, Mohammad H.
Hajkazemi,AtaTurk,OrranKrieger, andPeterDesnoyers.
Caching in the Multiverse. In 11th USENIX Workshop
onHot Topics in Storage and File Systems (HotStorage 19),
Renton,WA, July 2019. USENIXAssociation.

[18] Waleed Ali, Siti Mariyam Shamsuddin, andAbdul Samad
Ismail. A Survey of Web Caching and Prefetching.
International Journal of Advances in So Computing and
its Applications, 3, 03 2011.

[19] Omid Alipourfard, Hongqiang Harry Liu, Jianshu
Chen, Shivaram Venkataraman, Minlan Yu, and Ming
Zhang. CherryPick: Adaptively Unearthing the Best
Cloud Con�gurations for Big Data Analytics. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 469–482, Boston,MA,
March 2017. USENIXAssociation.

[20] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew
War�eld, Dhruba Borthakur, Srikanth Kandula, Scott
Shenker, and Ion Stoica. PACMan: CoordinatedMemory
Caching for Parallel Jobs. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), pages 267–280, San Jose, CA,
2012. USENIX.

[21] Danilo Ardagna, Enrico Barbierato, Athanasia Evan-
gelinou, Eugenio Gianniti, Marco Gribaudo, Túlio B.M.
Pinto, Anna Guimarães, Ana Paula Couto da Silva,
and Jussara M. Almeida. Performance Prediction of
Cloud-Based Big Data Applications. In Proceedings of the
2018ACM/SPEC InternationalConference onPerformance
Engineering, ICPE ’18, page 192–199, New York, NY, USA,
2018. Association for ComputingMachinery.

[22] Richard Bellman. On a routing problem. Quarterly of
AppliedMathematics, 16(1):87–90, 1958.

[23] Brad Calder, JuWang, AaronOgus, Niranjan Nilakantan,
Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat
Srivastav, JieshengWu, Huseyin Simitci, JaidevHaridas,
ChakravarthyUddaraju,HemalKhatri, AndrewEdwards,
Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit
Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul
Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha
Adusumilli, MarvinMcNett, Sriram Sankaran, Kavitha
Manivannan, and Leonidas Rigas. Windows Azure
Storage: a highly available cloud storage service with
strong consistency. In Proceedings of the Twenty-¿ird
ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 143–157, Cascais, Portugal, October 2011.
Association for ComputingMachinery.

[24] AndrewChung, Subru Krishnan, Konstantinos Karana-
sos, Carlo Curino, and Gregory R. Ganger. Unearthing
inter-job dependencies for better cluster scheduling. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 1205–1223. USENIX
Association, November 2020.

[25] Jon Crowcro and PhilippeOechslin. Di�erentiated End-
to-end Internet Services Using aWeighted Proportional
Fair Sharing TCP. SIGCOMMComput. Commun. Rev.,
28(3):53–69, July 1998.

[26] Je�rey Dean and Sanjay Ghemawat. MapReduce:
Simpli�edData Processing on Large Clusters. Commun.
ACM, 51(1):107–113, January 2008.

[27] Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. Tech-
niques for bandwidth-e�cient prefetching of linked
data structures in hybrid prefetching systems. In 2009
IEEE 15th International Symposium onHigh Performance
Computer Architecture, pages 7–17, Feb 2009.

[28] Iman Elghandour and Ashraf Aboulnaga. ReStore:
Reusing Results ofMapReduce Jobs. Proc. VLDB Endow.,
5(6):586–597, February 2012.

[29] Hajar Falahati, Mania Abdi, Amirali Baniasadi, and
ShahinHessabi. ISP: Using idle SMs in hardware-based
prefetching. In¿e 17th CSI International Symposium
on Computer Architecture Digital Systems (CADS 2013),
pages 3–8, Oct 2013.

[30] Hajar Falahati, Shahin Hessabi, Mania Abdi, and Amirali
Baniasadi. Power-e�cient prefetching onGPGPUs. ¿e
Journal of Supercomputing, 71(8):2808–2829, Aug 2015.

[31] AndrewD. Ferguson, PeterBodik, SrikanthKandula, Eric
Boutin, and Rodrigo Fonseca. Jockey: Guaranteed job
latency in data parallel clusters. In Proceedings of the 7th
ACMEuropeanConference onComputer Systems, EuroSys
’12, page 99–112, New York, NY, USA, 2012. Association
for ComputingMachinery.

USENIX Association 19th USENIX Conference on File and Storage Technologies 337

[32] SeyedehG. Ghaemi, ImanAhmadpour,Mehdi Ardebili,
and Hamed Farbeh. SMARTag: Error Correction in
Cache Tag Array by Exploiting Address Locality. In 2018
Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1658–1663, 2018.

[33] SeyedehG. Ghaemi, ImanAhmadpour,Mehdi Ardebili,
andHamed Farbeh. Sleepy-LRU: extending the lifetime
of non-volatile caches by reducing activity of age bits.¿e
Journal of Supercomputing, 75(7):3945–3974, 2019.

[34] Seyedeh G. Ghaemi, AmirM. H.Monazzah, Hamed Far-
beh,andSeyedG.Miremadi. LATED:Lifetime-AwareTag
for EnduringDesign. In 2015 11th EuropeanDependable
Computing Conference (EDCC), pages 97–107, 2015.

[35] Mel Gorman. Understanding the Linux virtual memory
manager. Prentice Hall Upper Saddle River, 2004.

[36] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. GRAPHENE: Packing
and dependency-aware scheduling for data-parallel
clusters. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), pages 81–97,
Savannah, GA, November 2016. USENIXAssociation.

[37] Pradeep Kumar Gunda, Lenin Ravindranath, Chan-
dramohan A.¿ekkath, Yuan Yu, and Li Zhuang. Nectar:
Automatic Management of Data and Computation
in Datacenters, booktitle = Proceedings of the 9th
USENIXConference onOperating SystemsDesign and
Implementation. OSDI’10, pages 75–88, Berkeley, CA,
USA, 2010. USENIXAssociation.

[38] Mohammad H. Hajkazemi, Mania Abdi, and Peter
Desnoyers. Minimizing Read Seeks for SMR Disk.
In 2018 IEEE International Symposium on Workload
Characterization (IISWC), pages 146–155, 2018.

[39] Mohammad H. Hajkazemi, Mania Abdi, and Peter
Desnoyers. uCache: a mutable cache for SMR trans-
lation layer. In 2020 28th International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 1–8, 2020.

[40] Virajith Jalaparti, Hitesh Ballani, Paolo Costa,¿omas
Karagiannis, and Ant Rowstron. Bridging the Tenant-
provider Gap in Cloud Services. In Proceedings of the
¿ird ACM Symposium on Cloud Computing, SoCC ’12,
pages 10:1–10:14, NewYork, NY, USA, 2012. ACM.

[41] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-Aware Scheduling for Data-Parallel Jobs: Plan
When You Can. SIGCOMM Comput. Commun. Rev.,
45(4):407–420, August 2015.

[42] Virajith Jalaparti, Chris Douglas, Mainak Ghosh, Ashvin
Agrawal, Avrilia Floratou, Srikanth Kandula, IshaiMen-
ache, Joseph Se� Naor, and Sriram Rao. Netco: Cache
and I/OManagement for Analytics over Disaggregated
Stores. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’18, pages 186–198, NewYork, NY, USA,
2018. ACM.

[43] Alekh Jindal, ShiQiao,HirenPatel,ZhichengYin, Jieming
Di,Malay Bag,Marc Friedman, Yifung Lin, Konstantinos
Karanasos, and SriramRao. Computation Reuse in An-
alytics Job Service atMicroso . In Proceedings of the 2018
International Conference on Management of Data, SIG-
MOD ’18, pages 191–203, NewYork, NY,USA, 2018. ACM.

[44] Emine Ugur Kaynar, Mania Abdi, Mohammad H.
Hajkazemi, Ata Turk, Raja R. Sambasivan, David Cohen,
Larry Rudolph, Peter Desnoyers, and Orran Krieger.
D3N: Amulti-layer cache for the rest of us. In 2019 IEEE
International Conference on Big Data (Big Data), pages
327–338, 2019.

[45] Ana Klimovic, Heiner Litz, and Christos Kozyrakis.
Selecta: Heterogeneous Cloud Storage Con�guration
for Data Analytics. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 759–773, Boston,
MA, July 2018. USENIXAssociation.

[46] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfe�erle, and Christos Kozyrakis. Pocket:
Elastic Ephemeral Storage for Serverless Analytics. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 427–444, Carlsbad,
CA, October 2018. USENIXAssociation.

[47] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras
Bobrovytsky, Casey Ching, Alan Choi, Justin Erickson,
Martin Grund, Daniel Hecht, Matthew Jacobs, Ishaan
Joshi, Lenni Ku�, Dileep Kumar, Alex Leblang, Nong
Li, Ippokratis Pandis, Henry Robinson, David Rorke,
Silvius Rus, John Russell, Dimitris Tsirogiannis, Skye
Wanderman-Milne, and Michael Yoder. Impala: A
Modern, Open-Source SQL Engine forHadoop. InCIDR
2015, Seventh Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 4-7, 2015,
Online Proceedings. www.cidrdb.org, 2015.

[48] Abhishek Vijaya Kumar andMuthian Sivathanu. Quiver:
An informed storage cache for deep learning. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 283–296, Santa Clara, CA, February
2020. USENIXAssociation.

[49] Umesh Kumar and Jitendar Kumar. A Comprehensive
Review of StragglerHandlingAlgorithms forMapReduce
Framework. International Journal of Grid andDistributed
Computing, 7(4):139–148, August 2014.

338 19th USENIX Conference on File and Storage Technologies USENIX Association

[50] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker,
and Ion Stoica. Tachyon: Reliable,Memory Speed Storage
for Cluster Computing Frameworks. In Proceedings of
the ACM Symposium on Cloud Computing, SOCC ’14,
pages 6:1–6:15, New York, NY, USA, 2014. ACM.

[51] SergeyMelnik, Andrey Gubarev, Jing Jing Long, Geo�rey
Romer, Shiva Shivakumar, Matt Tolton, and ¿eo Vas-
silakis. Dremel: interactive analysis of web-scale datasets.
Proceedings of theVLDBEndowment, 3(1-2):330–339, 2010.

[52] Apoorve Mohan, Shripad Nadgowda, Bhautik Pipaliya,
SonaVarma,Sahil Suneja,Canturk Isci,GeneCooperman,
Peter Desnoyers, Orran Krieger, and Ata Turk. Towards
Non-Intrusive So ware Introspection and Beyond. In
2020 IEEE International Conference on Cloud Engineering
(IC2E), pages 173–184, 2020.

[53] ApoorveMohan,AtaTurk,RaviS.Gudimetla,SahilTikale,
JasonHennesey, Emine Ugur Kaynar, Gene Cooperman,
Peter Desnoyers, and Orran Krieger. M2: Malleable
Metal as a Service. In 2018 IEEE International Conference
on Cloud Engineering (IC2E), pages 61–71, 2018.

[54] Amin Mosayyebzadeh, Apoorve Mohan, Sahil Tikale,
Mania Abdi, Nabil Schear, Trammell Hudson, Charles
Munson, Larry Rudolph, Gene Cooperman, Peter
Desnoyers, and Orran Krieger. Supporting Security
Sensitive Tenants in a Bare-Metal Cloud. In 2019USENIX
Annual Technical Conference (USENIX ATC 19), pages
587–602, Renton,WA, July 2019. USENIXAssociation.

[55] Siegfried Nijssen and Joost N. Kok. ¿eGaston Tool for
Frequent SubgraphMining. Electronic Notes in¿eoret-
ical Computer Science, 127(1):77 – 87, 2005. Proceedings
of the International Workshop on Graph-Based Tools
(GraBaTs 2004).

[56] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,
Ravi Kumar, and Andrew Tomkins. Pig Latin: A Not-
so-foreign Language for Data Processing. In Proceedings
of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 1099–1110,
NewYork, NY, USA, 2008. ACM.

[57] Tiago B. G. Perez, Xiaobo Zhou, and Dazhao Cheng.
Reference-distance Eviction and Prefetching for Cache
Management in Spark. In Proceedings of the 47th
International Conference on Parallel Processing, ICPP
2018, pages 88:1–88:10, NewYork, NY, USA, 2018. ACM.

[58] Raghu Ramakrishnan, Baskar Sridharan, John R.
Douceur, PavanKasturi, Balaji Krishnamachari-Sampath,
Karthick Krishnamoorthy, Peng Li, Mitica Manu,
Spiro Michaylov, Rogério Ramos, Neil Sharman, Zee
Xu, Youssef Barakat, Chris Douglas, Richard Draves,
Shrikant S. Naidu, Shankar Shastry, Atul Sikaria, Simon

Sun, and Ramarathnam Venkatesan. Azure Data Lake
Store: AHyperscale Distributed File Service for Big Data
Analytics. In Proceedings of the 2017 ACM International
Conference onManagement of Data, SIGMOD ’17, pages
51–63, NewYork, NY, USA, 2017. ACM.

[59] Josep Sampé, Gil Vernik,Marc Sánchez-Artigas, and Pe-
dro García-López. Serverless Data Analytics in the IBM
Cloud. InProceedings of the 19th InternationalMiddleware
Conference Industry,Middleware ’18, pages 1–8,NewYork,
NY, USA, 2018. Association for ComputingMachinery.

[60] Elizabeth Shriver, Christopher Small, and Keith A Smith.
Why does �le system prefetching work? 1999.

[61] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
RobertChansler. ¿eHadoopDistributed File System. In
Proceedings of the 2010 IEEE 26th Symposium onMass Stor-
age Systems and Technologies (MSST), MSST ’10, pages 1–
10,Washington, DC, USA, 2010. IEEE Computer Society.

[62] A. ¿usoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive - a
petabyte scale data warehouse using Hadoop. In 2010
IEEE 26th International Conference on Data Engineering
(ICDE 2010), pages 996–1005,March 2010.

[63] Robert Tibshirani. Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society: Series
B (Methodological), 58(1):267–288, 1996.

[64] Steven P. Vanderwiel and David J. Lilja. Data Prefetch
Mechanisms. ACM Comput. Surv., 32(2):174–199, June
2000.

[65] VinodKumarVavilapalli, ArunCMurthy, Chris Douglas,
Sharad Agarwal, Mahadev Konar, Robert Evans,¿omas
Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, et al.
Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the 4th annual Symposium on Cloud
Computing, page 5. ACM, 2013.

[66] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: E�-
cient Performance Prediction for Large-Scale Advanced
Analytics. In 13th USENIX Symposium onNetworked Sys-
temsDesign and Implementation (NSDI 16), pages 363–378,
Santa Clara, CA,March 2016. USENIXAssociation.

[67] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, andCarlosMaltzahn. Ceph: A Scalable, High-
performance Distributed File System. In Proceedings
of the 7th Symposium on Operating Systems Design and
Implementation, OSDI ’06, pages 307–320, Berkeley, CA,
USA, 2006. USENIXAssociation.

USENIX Association 19th USENIX Conference on File and Storage Technologies 339

[68] Luna Xu,Min Li, Li Zhang, Ali R. Butt, YandongWang,
and Zane ZhenhuaHu. MEMTUNE: DynamicMemory
Management for In-Memory Data Analytic Platforms.
In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 383–392,May 2016.

[69] Yinggen Xu, Liu Liu, and ZhijunDing. DAG-Aware Joint
Task Scheduling and CacheManagement in Spark Clus-
ters. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 378–387,May 2020.

[70] Gala Yadgar,Michael Factor, Kai Li, andAssaf Schuster.
Management ofMultilevel,MulticlientCacheHierarchies
with Application Hints. ACM Trans. Comput. Syst.,
29(2):5:1–5:51, May 2011.

[71] YinghaoYu,WeiWang,JunZhang,andKhaledBenLetaief.
LRC:Dependency-aware cachemanagement for data ana-
lytics clusters. In IEEE INFOCOM2017 - IEEEConference
on Computer Communications, pages 1–9,May 2017.

[72] Matei Zaharia,MosharafChowdhury,Michael J. Franklin,
Scott Shenker, and Ion Stoica. Spark: Cluster computing
with working sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, Hot-
Cloud’10, pages 10–10, Berkeley, CA,USA, 2010. USENIX

Association.

340 19th USENIX Conference on File and Storage Technologies USENIX Association

Learning Cache Replacement with CACHEUS

Liana V. Rodriguez†* Farzana Yusuf†∗ Steven Lyons† Eysler Paz†

Raju Rangaswami† Jason Liu† Ming Zhao‡ Giri Narasimhan†

† Florida International University ‡ Arizona State University

Abstract
Recent advances in machine learning open up new and at-
tractive approaches for solving classic problems in comput-
ing systems. For storage systems, cache replacement is one
such problem because of its enormous impact on perfor-
mance. We classify workloads as a composition of four
workload primitive types — LFU-friendly, LRU-friendly,
scan, and churn. We then design and evaluate CACHEUS,
a new class of fully adaptive, machine-learned caching al-
gorithms that utilize a combination of experts designed to
address these workload primitive types. The experts used
by CACHEUS include the state-of-the-art ARC, LIRS and
LFU, and two new ones – SR-LRU, a scan-resistant ver-
sion of LRU, and CR-LFU, a churn-resistant version of
LFU. We evaluate CACHEUS using 17,766 simulation ex-
periments on a collection of 329 workloads run against 6
different cache configurations. Paired t-test analysis demon-
strates that CACHEUS using the newly proposed lightweight
experts, SR-LRU and CR-LFU, is the most consistently per-
forming caching algorithm across a range of workloads and
cache sizes. Furthermore, CACHEUS enables augmenting
state-of-the-art algorithms (e.g., LIRS, ARC) by combining
it with a complementary cache replacement algorithm (e.g.,
LFU) to better handle a wider variety of workload primitive
types.

1 Introduction
Cache replacement algorithms have evolved over time with
each algorithm attempting to address some shortcomings of
previous algorithms. However, despite the many advances,
state-of-the-art caching algorithms continue to leave room
for improvement. First, as demonstrated abundantly in the
literature, caching algorithms that do well for certain work-
loads do not perform well for others [23, 13, 20, 12, 29, 34].
The production storage workloads of today are significantly
diverse in their characteristic features and these features can
vary over time even within a single workload. Second,
as demonstrated recently [34], caching algorithms that do
well for certain cache sizes do not necessarily perform well
for other cache sizes. Indeed, the workload-induced dy-
namic cache state, the cache-relevant workload features, and

*The first two authors contributed equally to this work.

thereby the most effective strategies, can all vary as cache
size changes.

The ML-based LeCaR algorithm demonstrated that hav-
ing access to two simple policies, LRU and LFU was suf-
ficient to outperform ARC across specific production-class
workloads. LeCaR used regret minimization [22, 21], a ma-
chine learning technique that allowed the dynamic selec-
tion of one of these policies upon a cache miss. We review
LeCaR both analytically and empirically to demonstrate that
while LeCaR took a valuable first step, it had significant lim-
itations. As a result, LeCaR underperforms state-of-the-art
algorithms such as ARC, LIRS, and DLIRS for many pro-
duction workloads.

As our first contribution, we identify the cache-relevant
features that inform workload primitive types. In particu-
lar, we identify four workload primitive types: LRU-friendly,
LFU-friendly, scan, and churn. The workload primitive
types vary across workloads, within a single workload over
time, and as cache size changes. Our second contribution,
CACHEUS, is inspired by LeCaR but overcomes an impor-
tant shortcoming by being completely adaptive, with the
elimination of all statically chosen hyper-parameters, thus
ensuring high flexibility. Our third contribution is the de-
sign of two lightweight experts, CR-LFU and SR-LRU; put
together, these address a broad range of workload primitive
types. CR-LFU infuses LFU with churn resistance and SR-
LRU infuses LRU with scan resistance. CACHEUS when
using the proposed two experts is able to perform compet-
itively or better for a significant majority of the (workload,
cache-size) combinations when compared with the state-of-
the-art.

We evaluate CACHEUS using 17,766 simulation experi-
ments on a workload collection comprising of over 329 in-
dividual single-day workloads sourced from 5 different pro-
duction storage I/O datasets. For each workload, we evaluate
against 6 different cache configurations that are sized rela-
tive to the individual workload’s footprint, the set of unique
data accessed. We perform paired t-tests analysis compar-
ing CACHEUS against individual algorithms across 30 dif-
ferent (workload, cache-size) combinations. CACHEUS us-
ing SR-LRU and CR-LFU as experts is the most consistently
performing algorithm with 87% of the workload-cache com-
binations being the best or indistinguishable from the best
performing algorithm, and distinctly different than the best
performing algorithm for the remaining 13%. For the 13%

USENIX Association 19th USENIX Conference on File and Storage Technologies 341

Dataset # Traces Footprint Requests Details

FIU [33, 16] 184 398MB 314563 End user home directories; Webpage and web-based
email servers; Online course management system

MSR [33, 24] 22 467MB 4126937
User home and Project directories; Hardware monitor-
ing; Source control; Web staging; Terminal, Web/SQL,
Media, Test web servers; Firewall/web proxy

CloudPhysics [35] 99 458MB 2470326 VMware VMs from cloud enterprise
CloudVPS [2] 18 3.7GB 3400025 VMs from cloud provider
CloudCache [2] 6 6.2GB 3867313 Online course website; CS department web server

Table 1: Descriptions for the 5 datasets used (average footprint and requests). Each trace has a 1 day duration.

cases where an algorithm other than CACHEUS is found to
be distinctly better, no single algorithm is found to be con-
sistently the best, indicating that CACHEUS is a good de-
fault choice. Finally, when using state-of-the-art algorithms
such ARC and LFU, we show that the CACHEUS frame-
work provides a simple way to enable access to an additional
expert with complementary expertise such as LFU. These
CACHEUS variants achieve at least competitive performance
when compared against the original algorithms and other
competitors.

2 Motivation

2.1 Understanding Workloads

Caching algorithms in the past have optimized for spe-
cific workload properties. As today’s workloads continue
to increase in complexity, even state-of-the-art algorithms
demonstrate inconsistent performance. To understand the
production storage workloads of today, we analyzed over
329 production storage traces sourced from 5 different pro-
duction collections (see Table 1).

2.1.1 Workload Primitive Types

Based on our analysis of production storage workloads, we
define the following set of workload primitive types.

• LRU-friendly defined by an access sequence that is
best handled by the least recently used (LRU) caching
algorithm.

• LFU-friendly defined by an access sequence that is
best handled by the least frequently used (LFU) caching
algorithm.

• Scan defined by an access sequence where a subset of
stored items are accessed exactly once.

• Churn defined by repeated accesses to a subset of
stored items with each item being accessed with equal
probability.

Figure 1 shows an example of how the workload primitive
types manifest in a production trace from the FIU collec-
tion. As one may notice, the primitive types are not all ex-
clusive — for instance, a workload that’s LRU-friendly may

also manifest the churn type. Our goal was identifying work-
load primitive types that would directly inform specific, yet
distinct, caching decisions.

We found that most of the workloads that we examined
contained at least one occurrence of each of the workload
primitive types. However, these workloads were not all the
same in their composition. For instance, the MSR collection
contains all the primitive types with one of the workloads
(proj3) mostly comprising a single long scan. A summary of
our findings are presented in Table 2.

Figure 1: Access pattern for the topgun (day 16) workload
from the FIU trace collection. Dashed lines highlight manifes-
tation of workload primitive types.

2.1.2 Composing Workloads

Modern storage workloads are typically a composition of the
above workload primitive types. Furthermore, as the cache
size changes, a single workload’s primitive type may vary.
For instance, an LRU-friendly type workload at cache size
C1 may transform into a Churn type at a cache size C2 <C1.
This can occur when items in the workload’s LRU-friendly
working set start getting removed from the cache prior to
being reused. Figure 2 illustrates this phenomenon by com-
paring the performance of LRU against the churn-friendly
CR-LFU algorithm proposed in this paper. Finally, storage
working sets are telescoping in nature with larger subsets

342 19th USENIX Conference on File and Storage Technologies USENIX Association

Dataset Churn Scan LRU LFU
FIU [33, 16] 3 3 3 3
MSR [33, 24] 3 3 3 3
CloudPhysics [35] 3 3 3 3
CloudVPS [2] 3 3 3 3
CloudCache [2] 3 7 3 3

Table 2: Workload Primitive Types identified using algorithms
that optimize for each primitive type.

Algorithm Churn Scan LRU LFU
ARC 7 3 3 7
LIRS∗ 7 3 7 7
LeCaR∗ 3 7 3 3
DLIRS 7 3 3 7

Table 3: Caching algorithms handling of workload primitive
types. Parametric algorithms are noted using an ∗.

of items accessed at a lower frequency often each entirely
subsuming one or more smaller subsets of items accessed
at a higher frequency [17, 27]. The LeCaR [34] algorithm
was the first to demonstrate an ability to adapt its behavior
based on the available cache size, independent of the ability
to adapt to the dynamics of the workload.

2.2 Caching Algorithms

Adaptive Replacement Cache (ARC): ARC [23] is an
adaptive caching algorithm that is designed to recognize
both recency and frequency of access. ARC divides the
cache into two LRU lists, T1 and T2. T1 holds items accessed
once while T2 keeps items accessed more than once since
admission. Since ARC uses an LRU list for T2, it is unable
to capture the full frequency distribution of the workload
and perform well for LFU-friendly workloads. For a scan
workload, new items go through T1 protecting frequent items
previously inserted into T2. However, for churn workloads,
ARC’s inability to distinguish between items that are equally
important leads to continuous cache replacement [29].
Low Interference Recency Set (LIRS): LIRS [13] is a
state-of-the-art caching algorithm based on reuse distance.
LIRS handles scan workloads well by routing one-time ac-
cesses via its short filtering list Q. However, LIRS’s ability to
adapt is compromised because of its use of a fixed-length Q.
In particular, if reuse distances exceed the 1% length, LIRS
is unable to recognize reuse quickly enough for items with
low overall reuse. And, similar to ARC, LIRS does not have
access to the full frequency distribution of accessed items
which limits its effectiveness for LFU-friendly workloads.
Dynamic LIRS (DLIRS): DLIRS [20] is a recently pro-
posed caching policy that incorporates adaptation in LIRS.
DLIRS dynamically adjusts the cache partitions assigned
to high and low reuse-distance items. Although this strat-
egy achieves performance comparable to ARC for some
cache size configurations with LRU-friendly workloads

Figure 2: Relative difference in hit-rate (HR) of LRU and CR-
LFU for casa, topgun, ikki, and webmail workloads from the
FIU trace collection.

while maintaining LIRS’s behavior for scans, we found its
performance inconsistent across the workloads we tested
against. Finally, it inherits the LFU-unfriendliness of LIRS.
Learning Cache Replacement (LeCaR): LeCaR [34] is a
machine learning-based caching algorithm that uses rein-
forcement learning and regret minimization to control its
dynamic use of two cache replacement policies, LRU and
LFU. LeCaR was shown to outperform ARC for small cache
sizes for real-world workloads [34]. However, LeCaR has
drawbacks relating to adaptiveness, overhead, and churn-
friendliness. In Section 3, we discuss these limitations fur-
ther.

In Table 3, we compare the current state-of-the-art algo-
rithms in terms of their ability to handle various workload
primitive types.

2.3 Need for a New Approach

Each of the state-of-the-art caching algorithms address a
subset of workload primitive types. We conducted an em-
pirical study using over 329 storage I/O traces from 5 differ-
ent production systems, across 6 different workload-specific
cache configurations — from 0.05% to 10% of the workload
footprint. To understand relative performance across such a
large collection of experiments, we ranked algorithms based
on their achieved hit-rates for individual workloads. The
best-performing algorithm received the rank of 1 as well as
any other algorithm that achieved a hit-rate within a 5% rel-
ative margin. For example, if the best-performing algorithm
achieves a hit-rate of 40%, any other algorithm that achieves
a hit-rate within the range 38% to 40% is also ranked as 1,
but anything lower than 38% is ranked 2 or higher. Next,

USENIX Association 19th USENIX Conference on File and Storage Technologies 343

Figure 3: An analysis of the ranked performance of state-of-the-art caching algorithms. The X-axis indicates cache size as a % of
workload footprint. A darker cell indicates that an algorithm’s performance across all workloads of the dataset was better. The number
within each cell denotes the percentage of workloads for which an algorithm was ranked 1. For example, ARC has the highest hit-rate in
34% of the workloads for MSR at the 0.05% cache size.

we computed the percentage of workloads within each set
for which a given algorithm was assigned a rank of 1. We
present this information in Figure 3.

Of the state-of-the-art caching algorithms, we observe that
no algorithm is a clear winner. For instance, while LIRS
achieves the best performance for CloudCache workloads at
cache sizes of 0.05% and 0.1%, ARC outperforms the rest
of the competitors for a majority of the MSR workloads, and
LeCaR is the best for FIU workloads at a cache size of 0.1%.
New caching algorithms that perform competitively across a
wide range of workloads and cache configurations would be
valuable.

3 CACHEUS

Given the distinct characteristics and dynamic manifestation
of workload primitive types within a workload over time,
caching algorithms need to be both nimble and adaptive. On-
line reinforcement learning is valuable because of its inher-
ent ability to adapt to the unknown dynamics of the system
being learned. CACHEUS uses online reinforcement learn-
ing with regret minimization to build a caching algorithm
that attempts to optimize for dynamically manifesting work-
load primitive types. Since CACHEUS’ design draws heavily
from LeCaR, we review it briefly first, conduct an investiga-
tive study of LeCaR, and finally discuss the CACHEUS algo-
rithm.

3.1 LeCaR: A Review
LeCaR demonstrated the feasibility of building a caching
system that uses reinforcement learning and regret mini-
mization. LeCaR learns the optimal eviction policy dynam-
ically, choosing from exactly two basic experts, LRU and
LFU. On each eviction, an expert is chosen randomly with
probabilities proportional to the weights wLRU and wLFU .
LeCaR dynamically learns these weights by assigning penal-
ties for wrongful evictions.

To control online learning, LeCaR uses a learning rate
parameter to set the magnitude of the change when the al-

gorithm makes a poor decision. Larger learning rates allow
quicker learning, but need larger corrections when the learn-
ing is flawed. LeCaR uses a discount rate parameter to de-
cide how quickly to stop learning.

3.2 Running Diagnostics on LeCaR
In over 17,766 distinct caching simulations that we ran
against LeCaR using 329 workloads, we found that experts
other than LRU and LFU produced outcomes that were sig-
nificantly better for a non-trivial number of workloads. In
particular we found that LRU and LFU were unable to ad-
dress the scan and churn workload primitive types. This mo-
tivates further exploration of the choice of experts for learn-
ing cache replacement within the regret minimization frame-
work.

A second challenge when using LeCaR in practice is the
manual configuration necessary for its two internal param-
eters — learning rate and discount rate. These parame-
ters were fixed after experimenting with many workloads in
LeCaR [34]. From the above empirical evaluation, we found
that eliminating the discount rate altogether did not affect
LeCaR’s performance appreciably. Furthermore, different
static values of the learning rate were found to be optimal for
different workloads (see Figure 4). In addition, we observed
across almost all workloads that not only do workload char-
acteristics change substantially over time, the velocity and
magnitude of these changes also varied significantly over
time. To accommodate this dynamism, different values for
the learning rate were found to be optimal at different points
in time.

3.3 Formalizing CACHEUS(A,B)

CACHEUS starts off by simplifying and adapting LeCaR.
First, for reasons discussed previously, CACHEUS simply
eliminates the use of discount rate. Second, for adapting the
learning rate hyper-parameter, we investigated adaptation
approaches including grid search, random search [5], gaus-
sian, bayesian and population based approaches [14, 36, 32,
6, 3, 19], and gradient-based optimization [26, 7, 15, 28, 37,

344 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 4: The optimal learning rate varies across workloads. X-axis indicates learning rates. Cache size was chosen as 0.1% of
workload footprint. We chose one workload each from CloudCache, CloudPhysics, CloudVPS, FIU, and MSR (from left to right).

25, 8]. Ultimately, we chose a gradient-based stochastic hill
climbing approach with random restart [31] for CACHEUS, a
choice that proved to be the most consistent. Using this tech-
nique, at the end of every window of N requests (N = cache
size), the gradient of the performance (average hit-rate) with
respect to the learning rate over the previous two windows is
calculated. If the gradient is positive (negative, resp.), then
the direction of change of the learning rate is sustained (re-
versed, resp.). The amount of change of learning rate in the
previous window determines the magnitude of the change in
learning rate for the next window. Therefore, if the perfor-
mance increases (decreases, resp.) by increasing the learning
rate, we will increase (decrease, resp.) the learning rate mul-
tiplying it by the amount of learning rate change from the
previous window, and vice versa. But, if the learning rate
doesn not change for consectuive windows, and the perfor-
mance degrades continuously or becomes zero, we record
this. If the performance keeps degrading for a 10 consecu-
tive window sizes [9], we reset the learning rate to the initial
value. The objective behind is to make sure we restart the
learning when the performance drops for a longer period.
The learning rate is initialized randomly between 10−3 and
1.

The goal of the CACHEUS framework is to enable a sin-
gle cache replacement policy that uses the combination of
individual decisions taken by exactly two internal experts.
Algorithm 1 depicts the generalized CACHEUS(A,B) algo-
rithm with generic cache replacement experts, A and B. HA
and HB are LRU lists of the history of items evicted by
experts A and B, respectively, each of size N/2. Upon a
cache hits, CACHEUS updates the internal data structures
which includes moving the item to the MRU position of
the cache and updating its frequency information. Upon a
cache miss, CACHEUS checks the eviction histories for the
requested item q, removes it from said histories, and up-
dates the weights wA and wB. The weights are initialized
to 0.5. Using the updated weights (Algorithm 2), CACHEUS
chooses the expert (A or B) to use and obtains the eviction
candidate accordingly, A(C) or B(C). Finally, CACHEUS up-
dates its history, avoiding this update entirely if both experts
suggest the same eviction candidate.

At the end of every window of N requests (N = cache
size), CACHEUS updates its learning rate (Algorithm 3).
First, the gradient of the performance (average hit-rate) with
respect to the learning rate over the previous two windows is
calculated. If the gradient is positive (negative, resp.), then

the direction of change of the learning rate is sustained (re-
versed, resp.). The amount of gradient change determines
the magnitude of the change in the learning rate. If the per-
formance increases (decreases, resp.) by changing the learn-
ing rate, we will increase (decrease, resp.) the learning rate
by an amount proportional to the learning rate change rela-
tive to the previous window. The learning rate is initialized
randomly between 10−3 and 1. Finally, if the performance
keeps degrading for a 10 consecutive window sizes [9], we
reset the learning rate.

Like LeCaR, CACHEUS uses exactly two experts. The
usage of more than two experts was considered for early
CACHEUS versions. Interestingly, the performance with
more than two experts was significantly worse than when us-
ing only LRU and LFU. Having multiple experts is generally
not beneficial unless the selected experts are orthogonal in
nature, and operate based on completely different and com-
plementary strategies. The intuition here is that multiple ex-
perts will overlap in their eviction decisions thereby affect-
ing learning outcomes and deteriorating the performance.
We demonstrate in this paper that with two well-chosen ex-
perts CACHEUS is able to best the state-of-the-art with sta-
tistical significance.

4 Scan Resistance
Our initial experiments with CACHEUS using LRU and LFU
as experts demonstrated inconsistent results when tested
with a significantly wider range of workloads than the orig-
inal LeCaR study did [34]. Of particular concern was the
inability of CACHEUS(LRU, LFU) to handle the scan work-
load primitive type. Of the 5 different datasets comprising a
total of over 329 different workloads that we examined, 4 of
the datasets comprised scan workloads (see Table 2).

To understand the impact of scan on classic caching algo-
rithms, we set up synthetic workloads that interleaved reuse
with scan. Figure 5 shows performance versus cache size
for two synthetic workloads wherein a single scan of size 60
items is interleaved between accesses to reused items. Let
us assume that the scan phase is greater than twice the size
of the cache (say 25). In this case, classic algorithms such
as LRU evict resident items to absorb the new items antici-
pating their future reuse, giving up on hits for resident items
that get reused beyond the scan phase.

State-of-the-art caching algorithms such as ARC, LIRS

USENIX Association 19th USENIX Conference on File and Storage Technologies 345

Algorithm 1: CACHEUS(A, B)
Data: Cache C; Eviction histories HA, HB;
Weights wA, wB; Current time t;
Learning rate update interval i;
λt — learning rate at time t;
HRt — average hit-rate at time t
Input: Requested page q
if q ∈C then

C.UPDATEDATASTRUCTURES(q)
else

UPDATEWEIGHT(q,λ ,wA,wB)
if q ∈ HA then

HA.DELETE(q)
if q ∈ HB then

HB.DELETE(q)
if C is full then

if A(C) == B(C) then
C.EVICT(A(C))

else
action = (A, B) w/prob (wA,wB)
if (action == A) then

if HA is full then
HA.DELETE(LRU(HA))

HA.ADDMRU(A(C))
C.EVICT(A(C))

if (action == B) then
if HB is full then

HB.DELETE(LRU(HB))
HB.ADDMRU(B(C))
C.EVICT(B(C))

C.ADD(q)
if (t%i) = 0 then

UPDATELEARNINGRATE(λt−i, λt−2i, HRt ,
HRt−i)

and DLIRS each implement their own mechanisms for scan
resistance. ARC limits the size of its T 1 list used to iden-
tify and cache newly accessed items to preserve reused items
in T 2. Unfortunately, ARC’s approach to scan-resistance
makes it ineffective when handling the churn workload pat-
tern. In particular, when a scan phase is followed by a churn
phase, ARC continues to evict from T 1 and behaves similar
to LRU, as evidenced in one of our experiments (see Fig-
ures 10 and 11). Similarly, LIRS uses its stack Q to accom-
modate items that belong to the scan sequence. However, the
size of Q is fixed to 1% of the cache , which cannot adapt to
dynamic working sets. Finally, DLIRS reworks LIRS’s so-
lution by making Q adaptive. Despite its built-in adaptation
mechanism, we note that DLIRS does not perform as well as
LIRS in practice (see Figure 3).

4.1 SR-LRU

One policy that handles scan well is the classic Most Re-
cently Used (MRU) policy. While LRU consistently evicts

Algorithm 2: UPDATEWEIGHT(q,λ ,wA,wB)

if q ∈ HA then
wA := wA ∗ e−λ // decrease wA

else if q ∈ HB then
wB := wB ∗ e−λ // decrease wB

wA := wA/(wA +wB) // normalize
wB := 1−wA

Algorithm 3: UPDATELEARNINGRATE(λt−i,
λt−2i , HRt , HRt−i)

δHRt := HRt −HRt−i
δLRt := λt−i−λt−2i
if δLRt 6= 0 then

sign :=+1 if δHRt
δLRt

> 0, else −1

λt := max(λt−i + sign×|λt−i×δLRt | ,10−3)
unlearnCount := 0

else
if HRt = 0 or δHRt ≤ 0 then

unlearnCount := unlearnCount +1
if unlearnCount ≥ 10 then

unlearnCount := 0
λt := choose randomly between 10−3 & 1

0 100
Time

0

50

100

B
lo

ck
 A

dd
re

ss

0 100
Time

0

50

100

0 100 200
Cache size

20

40

H
it

R
at

e
(%

)

LRU
SR-LRU

0 100 200
Cache size

40

50

60

LRU
SR-LRU

Figure 5: Motivating SR-LRU with the scan workload prim-
itive type. Two synthetic workloads are considered with 175 total
requests and a single inserted scan: LFU-friendly pattern (left col-
umn) and LRU-Friendly pattern (right column). The size of the scan
is 60 items in both cases.

resident working-set items during scan, MRU evicts the pre-
viously inserted page placed at the top of the stack. We de-
signed Scan-Resistant LRU (SR-LRU), an LRU variant that
favors LRU friendly workloads while also being scan aware.

SR-LRU manages the cache in partitions similar to ARC

346 19th USENIX Conference on File and Storage Technologies USENIX Association

R

SR

MRU

LRU

. . .

MRUNew Item . . .

LRU

MRU

. . .

LRU Deleted

Cache History

Miss in Cache
Miss in History

MFU

MRU

LRU

. . .

MRU

LRU

MRU

. . .

LRU
Deleted

Cache History
3+1

9
3

...

1...

1LFU x

...

Freq.
1

5

. . .

 Freq.

. . .

x

. . .

3
Hit

MFU

MRU

LRU

. . .

MRUNew Item

LRU

MRU

. . .

LRU
Deleted

Cache History
2

9
3

...

1...

1LFU x

...

Freq.
1

5

. . .

 Freq.

Miss in Cache
Hit in History

R

SR

MRU

LRU

. . .

MRU Hit

. . .

LRU

MRU

LRU Deleted

Cache History

. . .

xDemoted

. . . R

SR

MRU

LRU
MRU

Hit

. . .

LRU

MRU

. . .

LRU

Cache History

R

SR

MRU

LRU

. . .
MRU

LRU

MRU
. . .

LRU

Cache History

Hit in Cache (R) Hit in Cache (SR)

x

...

Hit
x

Demoted

MRU

LRU

. . .

MRU

LRU

MRU

. . .

LRU

Cache History
9+1

9
3

...

1...

1

Freq.
1

5

 Freq.

. . .
x

...

Hit

MRU

LRU

. . .

MRU

LRU

MRU

. . .

LRU

Cache History
1+1

9
3

...

1...

1

Freq.
1

5

 Freq.

. . .

x

...

Hit

Sc
an

-R
es

is
ta

nt

LR
U

C
hu

rn
-R

es
is

ta
nt

LF
U

Figure 6: Understanding CR-LFU and SR-LRU. Shown are actions taken to handle request x under: cache miss, cache miss with x in
history, cache hit with x in SR, and cache hit with x in R.

and LIRS. It divides the cache into two parts: one containing
only items with multiple accesses (R) and the other for single
access items as well as older items that have had multiple
accesses (SR). The SR partition allows SR-LRU to be scan
resistant; a partition for new items to be housed so that they
do not affect the important items in R. SR-LRU only evicts
from the SR partition — it evicts the LRU item of SR on
a cache miss when the cache is full. Older items in R get
demoted to SR to keep only important items that are being
reused in R. In addition, SR-LRU maintains a history list H
as large as the size of the cache that contains the items most
recently evicted.

The basic workings of SR-LRU are as shown in Algo-
rithm 4. We illustrate how a request for page x gets handled
in Figure 6. On a cache miss where x is not in a history list,
x is inserted to the MRU position of SR. Should the cache
be full, the LRU item of SR is evicted to H, and should H
be full the algorithm removes the LRU item of H to make
space. On a cache miss where x is in H, x is moved to the
MRU position of R. On a cache hit where x is in SR, x is
moved to the MRU position of R. On a cache hit where x is
in R, x is moved to the MRU position of R.

While SR-LRU could set a constant size for SR (similar
to LIRS) and thereby be scan resistant, doing so would com-
promise its performance with LRU-friendly workloads for
which SR is unfavorably sized [20]. Our approach to adapt-
ing SR-LRU is to adjust its partition sizes when we have
found that SR-LRU either demoted or evicted incorrectly. If
a demoted item gets referenced while in SR, SR-LRU infers
that the size of R is too small and should be increased. To
handle incorrect evictions, when an item is encountered for
the first time, it gets marked as new after inserting it in cache.
Should this item be evicted but then requested before it is re-
moved from SR-LRU’s history H, SR-LRU infers that the
size of SR is too small to allow new items to be reused prior
to being evicted. Items that enter the cache for the second

Algorithm 4: SR-LRU
Data: Scan-resistant list SR; Reuse list R
Cdemoted — count of demoted items in cache
Hnew — count of new items in history
Input: requested page q
if q ∈C then

if q was demoted from R then
δ = max(1,Hnew/Cdemoted)
sizeSR = max(1,sizeSR−δ)

R.MOVEMRU(q)
else

if q ∈ H then
if q was new from SR then

δ = max(1,Cdemoted/Hnew)
sizeSR = min(|C|−1,sizeSR +δ)

H.DELETE(q)
if C is full then

if H is full then
H.DELETE(LRU(H))

H.MOVEMRU(LRU(SR))
SR.ADDMRU(q)

UPDATESIZES(SR,R)

time, after being placed in the history list previously, are not
considered to be new items anymore.

To adapt itself, SR-LRU continuously computes a target
size for SR. The algorithm reactively increases the size of SR
upon hits in H by moving the LRU items of R into SR in or-
der for SR to reach its target size. If the size of SR increases
by too much, the demoted items being reused will inform the
algorithm allowing it to reverse the erroneous increase.

The SR-LRU Difference Prior approaches to scan resis-
tance are limited because they are either not adaptive (e.g.,

USENIX Association 19th USENIX Conference on File and Storage Technologies 347

0 500 1000
Time

0

100

200
B

lo
ck

 A
dd

re
ss

0 500 1000
Time

0

100

200

0 200
Cache size

0

25

50

75

H
it

R
at

e
(%

)

LRU
LFU
CR-LFU

0 200
Cache size

0

25

50

75

LRU
LFU
CR-LFU

Figure 7: Motivating CR-LFU with the churn workload primi-
tive type. Two synthetic workloads are considered: a churn pattern
(left column) and a combination of churn and LRU-friendly pattern
(right column). The working set is 200 items.

LIRS) or do not adapt well enough (e.g., DLIRS), or are
unable to handle a scan followed by churn (e.g., ARC).
The most important distinction in SR-LRU is balancing the
need for being scan resistant with quickly recognizing when
a workload is no longer scanning. In particular, SR-LRU
tracks new items in history to distinguish between new items
that belong to a scan from the new items that contribute to
churn. As a result, SR-LRU continues to be effective im-
mediately when a workload switches from scan to churn, as
evidenced in our experiments (see Figures 10 and 11).

5 Churn Resistance

For the churn workload primitive type, if the number of
items being accessed is larger than the size of the cache,
an LRU-style algorithm would lead to churning of the
cache content whereby items get repeatedly inserted into
and evicted from the cache. On the other hand, the clas-
sic LFU assigns equal importance to all items with the same
frequency. In a churn workload, all items have the same
access frequency and these items may be accessed sequen-
tially or otherwise. Other frequency-based algorithms like
LRFU [18], that assign weights based on recency of access,
result in LRU-based eviction for items with the same fre-
quency; this unfortunately, does not prevent churning either.

Fortunately, a simple modification of the classic LFU
turns out to be sufficient to handle the churn workload prim-
itive type while continuing to retain the benefits of LFU.
Churn-resistant LFU (CR-LFU) modifies the eviction mech-
anism in pure LFU by choosing the MRU (Most Recently
Used) item to break the ties when several items have the least

access frequency. By choosing the MRU item, CR-LFU ef-
fectively “locks” a subset of items with the lowest frequency
into the cache, generating hits for the caching algorithm.
Figure 6 illustrates the operation of algorithm CACHEUS us-
ing the SR-LRU and CR-LFU while handling a page request
x in different situations.

We compare CR-LFU with LRU and LFU in Figure 7 for
two different types of synthetic workloads: pure churn and
mixed pattern of churn and LRU-friendly. Both LFU and
CR-LFU outperform LRU when the cache size is less than
the workload’s working set size. Classic LFU evicts at ran-
dom from among multiple items with the lowest frequency
whereas CR-LFU evicts the MRU item. Because of that
distinction, the average performance of CR-LFU is 8.67%
and 3.83% higher than LFU for the churn and mixed pattern
workloads respectively.

6 Evaluation

6.1 Experimental Setup
We conducted simulation-based evaluations of several state-
of-the-art algorithms from the caching literature using pub-
licly available production storage I/O workloads.
Algorithms: We compared CACHEUS against 6 previously
proposed algorithms: LRU, LFU, ARC, LIRS, LeCaR, and
DLIRS. In cases we could successfully contact the algorithm
authors to obtain an implementation, we used the authors’
original versions. In all other cases, we reimplemented the
algorithms.

We also evaluated each of these against 3 vari-
ants of CACHEUS — C1: CACHEUS(ARC, LFU), C2:
CACHEUS(LIRS, LFU) and C3: CACHEUS(SR-LRU,CR-
LFU).
Workloads and Simulations. We used production storage
I/O traces from 5 different productions systems for the simu-
lation evaluation. Table 1 summarizes the workload datasets
we used. A total of 17,766 simulations were conducted
across 6 different cache sizes on 329 individual workloads
contained within the 5 sets of workloads. Each individual
workload represents an entire day of storage I/O activity
from one storage system.
Cache Configurations. For evaluating caching algorithms,
the primary metric of significance is cache hit-rate. To com-
pare the relative performance of various caching algorithms,
we chose caches that are sized relative to the size of each
workload’s footprint, i.e., all the unique data items accessed.

6.2 Time and Space Overheads
CACHEUS maintains roughly 2N pieces of metadata where
N is the size of the cache, using N units to track cache-
resident items and N additional units to track items that are
in history. This is equivalent to state-of-the-art algorithms
such as ARC and LIRS which each maintain approximately

348 19th USENIX Conference on File and Storage Technologies USENIX Association

Cache size as a % of workload footprint

Figure 8: Paired t-test analysis to understand the difference
in performance between (A) CACHEUS vs. (B) Other. The
three panels compare four “Other” algorithms (i.e., ARC, DLIRS,
LeCaR, and LIRS) against the following variants of CACHEUS:
Top: C1, Middle: C2 Bottom: C3. Green colors indicate that
the CACHEUS variant was significantly better, red colors indicate
that the CACHEUS variant was significantly worse, and the gray
color indicates no significant difference. Brighter green and red
colors indicate higher effect sizes. Effect sizes were computed us-
ing Cohen’s d-measure.

N items of additional metadata to track a limited history.
CACHEUS merges the additional metadata of individual ex-
perts (e.g. ARC, SR-LRU, and CR-LFU) and its own history
for an effective size of N history items. Specifically, when
SR-LRU and CR-LFU are used as experts in CACHEUS, the
history metadata of each algorithm is reduced to N/2 for a
total of N history metadata. The computational overhead of
CACHEUS when it uses SR-LRU and CR-LFU as experts is
bound by the computational overhead of LFU — O(logN).
This time complexity can be improved with a more careful
implementation for LFU [30].

6.3 Statistical Analysis

We performed a broad palette of paired t-tests to evaluate
the three CACHEUS variants against the strongest competi-
tors across 17,766 experiments. A p-value threshold of 0.05
was used to judge statistical significance outcomes from the
t-tests. Effect sizes were computed using the Cohen’s d-
measure, which measures the number of standard deviations
that separate the two means. Figure 8 presents the results of
our t-test analysis for the three CACHEUS variants.

To summarize the findings, C3 is distinctly the best per-
forming algorithm in 47% of the workload-cache combina-
tions with effect sizes ranging from 0.2 to 1.08 in 28% of the
positive cases, is indistinguishable from the best performing
state-of-the-art algorithm in about 40%, and is worse than

the best performing algorithm for the remaining 13% with
negative effect sizes of up to 0.31. For the 13% of the cases
where an algorithm other than C3 is found to be distinctly
better, no single algorithm is found to be consistently the
best, indicating that C3 is an excellent choice overall. C2 is
better than the best performing state-of-the-art in about 26%
of the combinations with effect size in the range of 0.2 to
0.56 in 55% of the positive cases, indistinguishable from the
best in 48% of the combinations, and worse in the remain-
ing 27% of the cases with negative effect size of up to 0.17.
C1 is better than the best performing state-of-the-art in about
20% of the combinations with effect size from 0.2 to 0.44 in
22% of the positive cases, indistinguishable from the best in
41% of the combinations, and worse in the remaining 39%
of the cases with negative effect size up to 0.62.

We also analyze the best and worst case improvements
in hit-rate for the best-performing CACHEUS algorithm, C3.
Figure 9 presents the absolute difference in hit-rate for
C3 relative to its competitors — ARC, LIRS, DLIRS and
LeCaR, shown as a set of violin plots. Violin plots have the
advantage of showing summary statistics, including the me-
dian, the quartiles and outliers along with a density shape for
each Y-value [11]. The worst case degradation of 15.12%
is observed with the MSR workload with cache size at 5%
when compared against DLIRS. The best case improvement
of 38.32% is observed with CloudPhysics workload at a
cache size of 10% when compared against ARC.

6.4 Understanding CACHEUS

We focus our investigation and comparative analysis of
CACHEUS against 3 of the best performing candidates: (i)
state-of-the-art adaptive algorithm (ARC), (ii) state-of-
the-art scan-resistant algorithm (LIRS); we do not con-
sider DLIRS, its adaptive variant, which performs worse
than LIRS on average, and (iii) state-of-the-art machined-
learned algorithm (LeCaR), a predecessor of CACHEUS.
To understand the performance advantage of CACHEUS, we
measured hit-rates over time averaged across a sliding win-
dow equal to the size of the cache. In particular, we exam-
ine the performance for the webmail day 16 workload from
the FIU trace collection. As shown in Figure 11, this work-
load includes a combination of multiple workload primitive
types. For example, we observe a long scan for approx-
imately 2 hours (between 6:30 and 8:30) followed by re-
peated accesses over a sub-set of the items (i.e., churn) for
more than half the total workload duration.

6.4.1 CACHEUS C3 vs ARC

Figure 10 shows the performance over time for the four algo-
rithms tested on webmail (day 16) workload. The total hit-
rates for ARC, LIRS, LeCaR and C3 are 30.08%, 40.71%
and 42.08% and 43.95% respectively. The leftmost plot
shows the comparison against ARC. Initially a set of items
that include a single large scan are accessed until the burst

USENIX Association 19th USENIX Conference on File and Storage Technologies 349

Fi
gu

re
9:

A
bs

ol
ut

e
ca

ch
e

hi
t-

ra
te

di
ff

er
en

ce
di

st
ri

bu
tio

ns
us

in
g

C
A

C
H

E
U

S
al

go
ri

th
m

C
3

ac
ro

ss
w

or
kl

oa
ds

an
d

ca
ch

e
si

ze
s.

Th
e

fig
ur

e
di

sp
la

ys
fo

ur
ro

w
s

of
vi

ol
in

pl
ot

s
w

ith
ea

ch
ro

w
co

m
pa

ri
ng

th
e

pe
rf

or
m

an
ce

of
C

A
C

H
E

U
S

C
3

w
ith

th
e

ba
se

lin
es

of
ea

ch
ro

w
be

in
g

th
e

pe
rf

or
m

an
ce

of
A

R
C

,L
IR

S,
D

LI
R

S,
an

d
Le

C
aR

fr
om

to
p

to
bo

tto
m

.
Po

si
tiv

e
Y-

va
lu

es
in

di
ca

te
th

at
C

A
C

H
E

U
S

al
go

ri
th

m
C

3
pe

rf
or

m
ed

be
tte

r
in

co
m

pa
ri

so
n.

Th
e

Y-
ra

ng
e

is
tr

un
ca

te
d

to
th

e
ra

ng
e

(-
12

,1
2)

fo
r

be
tte

r
re

ad
ab

ili
ty

,b
ut

w
ith

m
in

im
al

lo
ss

of
in

fo
rm

at
io

n.
Th

e
vi

ol
in

pl
ot

s
sh

ow
th

e
m

ed
ia

n
as

a
w

hi
te

do
t,

th
e

ra
ng

e
fr

om
th

e
fir

st
to

th
ir

d
qu

ar
til

e
as

a
th

ic
k

ba
r

al
on

g
th

e
vi

ol
in

’s
ce

nt
er

lin
e,

an
d

a
th

in
lin

e
sh

ow
in

g
an

ad
di

tio
na

l1
.5

tim
es

th
e

in
te

rq
ua

rt
ile

ra
ng

e.
It

al
so

sh
ow

s
th

e
de

ns
ity

sh
ap

e
at

ea
ch

Y-
va

lu
e

[1
1]

,m
ak

in
g

th
es

e
pl

ot
s

ve
ry

in
fo

rm
at

iv
e.

350 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 10: Detailed comparison of CACHEUS against ARC (left), LIRS (middle) and LeCaR (right) for the webmail (day 16)
workload. The lower plots show cache hit-rate computed using a sliding window equal to the size of the cache. The upper plot shows
the internal parameter for each algorithm (p in ARC is normalized with respect to the size of the cache). Cache size is set to 10% of the
workload footprint (54MB). The hit-rate improvements for CACHEUS with respect to ARC, LIRS, and LeCaR are 46.11%, 7.95% and 4.4%
respectively.

Figure 11: Access pattern for the webmail (day 16) workload
from the FIU trace collection.

of unique accesses creates zero hits. C3 is able to maintain
the previous working set in the cache, enabling it to generate
hits post scan. ARC protects T 2 as dictated by its internal
parameter p close to 0 in an attempt to minimize cache pol-
lution. Right after the scan finishes, a sequence of 8 churn
phases starts to populate the cache. To respond effectively,
ARC starts to increase the size of T 1 to accommodate the
new incoming items. However, the increments in p grow T 1
slowly in steps of 1. In particular, during this entire trace
ARC maintains its shadow list B2 empty by avoiding evic-
tions from T 2, even during churn. This behavior negatively
impacts ARC’s performance for the last 5 churn periods.

6.4.2 CACHEUS C3 vs LIRS

The center plot in Figure 10 compares LIRS and C3 using
the same workload. LIRS uses a fixed size of Q equal to
1% of the cache size (138 items in this experiment). During
the scan period, LIRS uses Q as a filter without affecting the

working set previously populated in cache. For the churn
phases, LIRS is able to keep in cache the important items
by relying on its low-interference items in S. In particular,
for churn phases, LIRS will always miss the first hits on the
initial portion of the churn because these items will stay in
cache for a short period of time. On the other side, C3 starts
with a small size in SR to protect against the initial scan.
During churn periods, C3 is able to dynamically accommo-
date new items in SR by increasing its size and therefore
relaxing the scan protection. Finally, LIRS’s ability to adapt
to LRU-friendly workloads is limited by the size of Q.

6.4.3 CACHEUS C3 vs LeCaR

Finally, the rightmost plot in Figure 10 compares LeCaR and
C3. The upper plot shows the weights for LRU and SR-LRU
in LeCaR and C3 respectively, both initialized to 0.5. Dur-
ing the scan phase, LRU and SR-LRU get penalized due to
the drop in performance until new hits in cache make them
increase again. Even though choosing LFU is the right de-
cision for LeCaR during churn phases, the delay in doing
so prevents LeCaR of accumulating more hits than C3. In
particular, C3 is able to capitalize during one churn period
during the 11 hour while maintaining good performance for
the last 7 hours of the workload. Most interestingly, towards
the end when LeCaR mostly uses LFU, C3 exclusively re-
lies on SR-LRU during churn periods. This is due to the
fact that while SR-LRU was designed to handle scan phases,
it also implements a way to avoid confusing churn periods
with scan. This is done by marking items entering SR for the
first time as new and keeping track of such items in H. If
a new item is accessed again while in H, SR-LRU quickly
corrects itself to disable scan protection.

USENIX Association 19th USENIX Conference on File and Storage Technologies 351

7 Related Work
Past work on utilizing multiple experts within a cache re-
placement algorithm include ACME [1] and the follow up
work on designing a master policy [10] which learned the
weights of 12 distinct experts and used these to make evic-
tion decisions. Since then, algorithms such as ARC [23],
LIRS [13], DLIRS [20], and LeCaR [34] were developed
and are considered the state-of-the-art.

CACHEUS builds on the successes of LeCaR. It improves
upon LeCaR in a few ways. First, while LeCaR argued for
using the classic LRU and LFU, CACHEUS demonstrates
the importance of using more sophisticated experts. Sec-
ond, CACHEUS simplifies LeCaR by identifying and elim-
inating redundant aspects of its machine-learning mecha-
nism. Third, it creates a fully-adaptive version that is also
lightweight. Finally, new lightweight experts, SR-LRU and
CR-LFU improve upon LeCaR’s experts to address two new
workload primitive types, scan and churn. With these im-
provements, CACHEUS performs better than LeCaR as well
as other state-of-the-art algorithms such as ARC, LIRS, and
DLIRS.

SR-LRU is inspired by both ARC and LIRS. One im-
portant distinction between ARC and SR-LRU is that ARC
evicts from either T 1 or T 2, while SR-LRU only evicts from
a single spot: SR. Another distinction is SR-LRU’s use of
tags instead of separate histories (B1 and B2 in ARC) in or-
der to enable reasonable adaptiveness. As to LIRS and its
adaptive version, DLIRS, SR-LRU differs from these in the
separation of history from internal partition/stack data struc-
tures, and its use of tags to determine relevance of items in
history instead of explicitly pruning obsolete history items.

Recent works on adaptive caching include Least Hit Den-
sity (LHD) [4] which focuses on predicting an object’s hits-
per-space-consumed to determine evictions in a variable-
sized object environment. LHD focuses on variable-sized
caches of key-value stores or CDNs and was therefore not
evaluated against the state of the art storage caches such as
ARC and LIRS [4]. Like the state-of-the-art storage caching
algorithms, CACHEUS is designed for a fixed-sized object
caching environment and uses a novel reinforcement learn-
ing technique that engages exactly two complementary ex-
perts for significantly improving caching decisions.

8 Conclusions
Consistently high-performing caching continues to repre-
sent a fascinating, yet elusive, goal for storage researchers.
CACHEUS serves this goal by creating a new class of
lightweight and adaptive, machine-learned caching algo-
rithms. The CACHEUS framework allows the use of ex-
actly two, ideally complementary, experts to guide its ac-
tions. CACHEUS using the proposed new experts, SR-LRU
and CR-LFU, is the most consistent algorithm for a range of
workload-cache size combinations. Furthermore, CACHEUS

enables easily combining a state-of-the-art caching algo-
rithm such as ARC and LIRS with a complementary expert
such as LFU to better handle a wider variety of workload
primitive types. We believe that ML-based frameworks for
utilizing caching experts holds great promise for improv-
ing the consistency and effectiveness of caching systems
when handling production workloads. CACHEUS sources
can be downloaded at https://github.com/sylab/
cacheus.

Acknowledgments
We would like to thank the reviewers of this paper and our
shepherd Ken Salem for insightful feedback that helped im-
prove the content and presentation of this paper substantially.
This work was supported in part by a NetApp Faculty Fel-
lowship, and NSF grants CCF-1718335, CNS-1563883, and
CNS-1956229.

References
[1] I. Ari, A. Amer, R. B. Gramacy, E. L. Miller, S. A.

Brandt, and D. D. Long. ACME: Adaptive caching us-
ing multiple experts. In WDAS, pages 143–158, 2002.

[2] D. Arteaga and M. Zhao. Client-side flash caching for
cloud systems. In Proceedings of International Con-
ference on Systems and Storage (SYSTOR), 2014.

[3] R. Battiti. Accelerated backpropagation learning: Two
optimization methods. Complex systems, 3(4):331–
342, 1989.

[4] N. Beckmann, H. Chen, and A. Cidon. LHD: Im-
proving cache hit rate by maximizing hit density. In
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 389–403, 2018.

[5] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13(Feb):281–305, 2012.

[6] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl.
Algorithms for hyper-parameter optimization. In Ad-
vances in neural information processing systems, pages
2546–2554, 2011.

[7] L.-W. Chan and F. Fallside. An adaptive training algo-
rithm for back propagation networks. Computer speech
& language, 2(3-4):205–218, 1987.

[8] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgra-
dient methods for online learning and stochastic opti-
mization. Journal of Machine Learning Research, 12
(Jul):2121–2159, 2011.

352 19th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/sylab/cacheus
https://github.com/sylab/cacheus

[9] G. Einziger, O. Eytan, R. Friedman, and B. Manes.
Adaptive software cache management. In Proceedings
of the International Middleware Conference. ACM,
2018.

[10] R. B. Gramacy, M. K. Warmuth, S. A. Brandt, and
I. Ari. Adaptive caching by refetching. In Advances in
Neural Information Processing Systems, pages 1489–
1496, 2003.

[11] J. L. Hintze and R. D. Nelson. Violin plots: A box plot-
density trace synergism. The American Statistician, 52
(2):181–184, 1998.

[12] S. Huang, Q. Wei, D. Feng, J. Chen, and C. Chen. Im-
proving flash-based disk cache with lazy adaptive re-
placement. ACM Transactions on Storage, 12(2):8:1–
8:24, Feb. 2016.

[13] S. Jiang and X. Zhang. LIRS: An efficient low inter-
reference recency set replacement policy to improve
buffer cache performance. In Proceedings of the ACM
Sigmetrics Conference (SIGMETRICS), 2002.

[14] A. Khachaturyan, S. Semenovskaya, and B. Vainstein.
Statistical-thermodynamic approach to determination
of structure amplitude phases. Sov. Phys. Crystallog-
raphy, 24(5):519–524, 1979.

[15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Opti-
mization by simulated annealing. science, 220(4598):
671–680, 1983.

[16] R. Koller and R. Rangaswami. I/O Deduplication: Uti-
lizing content similarity to improve I/O performance.
In Proceedings of the USENIX Conference on File and
Storage Technologies, FAST, 2010.

[17] R. Koller, A. Verma, and R. Rangaswami. Generalized
ERSS tree model: Revisiting working sets. In Proceed-
ings of IFIP Performance, November 2010.

[18] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim. LRFU: A spectrum of poli-
cies that subsumes the least recently used and least fre-
quently used policies. IEEE Transactions on Comput-
ers, 50(12):1352–1361, Dec. 2001.

[19] A. Li, O. Spyra, S. Perel, V. Dalibard, M. Jaderberg,
C. Gu, D. Budden, T. Harley, and P. Gupta. A gener-
alized framework for population based training. arXiv
preprint arXiv:1902.01894, 2019.

[20] C. Li. DLIRS: Improving low inter-reference recency
set cache replacement policy with dynamics. In Pro-
ceedings of the 11th ACM International Systems and
Storage Conference (SYSTOR), 2018.

[21] N. Littlestone and M. K. Warmuth. The weighted ma-
jority algorithm. Information and computation, 108(2):
212–261, 1994.

[22] G. Loomes and R. Sugden. Regret theory: An alter-
native theory of rational choice under uncertainty. The
economic journal, 92(368):805–824, 1982.

[23] N. Megiddo and D. S. Modha. ARC: A self-tuning,
low overhead replacement cache. In Proceedings of the
USENIX Conference on File and Storage Technologies
(FAST), 2003.

[24] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety,
and A. Rowstron. Everest: Scaling Down Peak Loads
Through I/O Off-Loading. Proceedings of the USENIX
Conference on Operating Systems Design and Imple-
mentation (OSDI), December 2008.

[25] V. Plagianakos, G. Magoulas, and M. Vrahatis. Learn-
ing rate adaptation in stochastic gradient descent. In
Advances in convex analysis and global optimization,
pages 433–444. Springer, 2001.

[26] H. Robbins and S. Monro. A stochastic approximation
method. The Annals of Mathematical Statistics, pages
400–407, 1951.

[27] E. Rothberg, J. P. Singh, and A. Gupta. Working sets,
cache sizes and node granularity issues for large-scale
multiprocessors. In Proceedings of the International
Symposium of Computer Architecture (ISCA), 1993.

[28] S. J. Russell and P. Norvig. Artificial intelligence: a
modern approach. Malaysia; Pearson Education Lim-
ited,, 2016.

[29] R. Santana, S. Lyons, R. Koller, R. Rangaswami, and
J. Liu. To ARC or Not to ARC. In Proceedings of the
USENIX Workshop on Hot Topics in Storage Systems
(HotStorage), 2015.

[30] K. Shah, A. Mitra, and D. Matani. An O(1) al-
gorithm for implementing the LFU cache eviction
scheme. http://dhruvbird.com/lfu.pdf,
August 2010.

[31] W. L. Smith. Regenerative stochastic processes. Pro-
ceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences, 232(1188):6–31,
1955.

[32] J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
In Advances in neural information processing systems,
pages 2951–2959, 2012.

[33] Storage Networking Industry Association. The SNIA’s
I/O Traces, Tools, and Analysis (IOTTA) Repository.
http://iotta.snia.org/.

[34] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons,
J. Liu, R. Rangaswami, M. Zhao, and G. Narasimhan.
Driving Cache Replacement with ML-based LeCaR. In

USENIX Association 19th USENIX Conference on File and Storage Technologies 353

http://dhruvbird.com/lfu.pdf
http://iotta.snia.org/

Proceedings of the USENIX Workshop on Hot Topics in
Storage Systems (HotStorage), June 2018.

[35] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ah-
mad. Efficient MRC construction with SHARDS. In
Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2015.

[36] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and
N. de Feitas. Bayesian optimization in a billion di-
mensions via random embeddings. Journal of Artificial
Intelligence Research, 55:361–387, 2016.

[37] C. C. Yu and B. D. Liu. A backpropagation algorithm
with adaptive learning rate and momentum coefficient.
Proceedings of the International Joint Conference on
Neural Networks, 2:1218 – 1223, 2002.

354 19th USENIX Conference on File and Storage Technologies USENIX Association

FusionRAID: Achieving Consistent Low Latency for Commodity SSD Arrays

Tianyang Jiang†, Guangyan Zhang†∗, Zican Huang†, Xiaosong Ma‡,
Junyu Wei†, Zhiyue Li†, Weimin Zheng†

†Tsinghua University, ‡Qatar Computing Research Institute, HBKU

Abstract
The use of all-flash arrays has been increasing. Compared

to their hard-disk counterparts, each drive offers higher perfor-
mance but also undergoes more severe periodic performance
degradation (due to internal operations such as garbage collec-
tion). With a detailed study of widely-used applications/traces
and 6 SSD models, we confirm that individual SSD’s per-
formance jitters are further magnified in RAID arrays. Our
results also reveal that with SSD latency low and decreasing,
the software overhead of RAID write creates long, complex
write paths involving more drives, raising both average-case
latency and risk of exposing worst-case performance.

Based on these findings, we propose FusionRAID, a new
RAID architecture that achieves consistent, low latency on
commodity SSD arrays. By spreading requests to all SSDs
in a shared, large storage pool, bursty application workloads
can be served by plenty of “normal-behaving” drives. By per-
forming temporary, replicated writes, it retains RAID fault-
tolerance yet greatly accelerates small, random writes. Blocks
of such transient data replicas are created in stripe-ready loca-
tions based on RAID declustering, enabling effortless conver-
sion to long-term RAID storage. Finally, using lightweight
SSD latency spike detection and request redirection, Fusion-
RAID avoids drives under transient but severe performance
degradation. Our evaluation with traces and applications
shows that FusionRAID brings a 22%–98% reduction in me-
dian latency, and a 2.7×–62× reduction in tail latency, with a
moderate and temporary space overhead.

1 Introduction

The use of all-flash arrays (AFAs) has been increasing and
projected to have a 400% market growth in the next five
years [11]. For example, ANZ bank in Australia recently
adopted an AFA solution with 400TB SSD arrays [31]. AFAs
aggregate the IOPS and bandwidth of individual drives and
compensate for SSDs’ higher rate of uncorrectable errors [53]

∗Corresponding author: gyzh@tsinghua.edu.cn

Median latency (ms) Avg. latency (ms) P99 latency (ms) Variance factor
HDD RAID (clean) 68.67 134.37 835.35 12.16
HDD RAID (aged) 69.18 133.61 826.77 11.95
SSD RAID (clean) 0.275 3.57 25.62 93.16
SSD RAID (aged) 0.307 14.11 221.03 719.96

Table 1: Exchange latency, HDD vs. SSD RAID

using parity-based fault-tolerance. So far, AFAs can support
large numbers of SSDs (up to 5760) behind a single con-
troller [20, 22, 49, 51, 52].

However, SSDs are less array-friendly than hard disks,
which RAID [50] was initially designed for decades ago.
Compared with single-disk accesses, RAID write significantly
amplifies average write latency, thereby also delaying read re-
quests. Also, SSD RAIDs have a much higher tail-to-average
latency ratio than HDD ones [23, 38, 66].

We illustrate this by testing two software RAID5 arrays,
built on Seagate HDDs and Intel commodity consumer SSDs.
Table 1 lists the median, average, and 99 percentile (P99) la-
tencies measured running the write-intensive Exchange trace
from Microsoft Production Server Traces [55]. We also report
the variance factor [68], the ratio of P99 to median latency.
For each RAID, we test its clean and aged states, using the fio
benchmark [4]. Here we adopt an existing aging method [35],
writing the whole disk sequentially and then issuing random
writes with total volume exceeding its capacity, to guarantee
that each random write generates invalid pages.

Our results confirm that, though SSD RAID offers much
smaller median latency (over 225× lower than HDD RAID),
its worst-case performance deviates more from the norm,
with a much higher variance level. The average latency, as
a result, is much more amplified from the median with SSD
than with HDD RAID. Second, the HDD RAID appears
quite resilient to aging, with hardly any visible performance
degradation. The SSD RAID, on the other hand, deterio-
rates significantly when aged, delivering a median latency
of 11.6% higher, and P99 tail 8.6× higher. Such severe per-
formance variability makes it difficult to ensure QoS to cus-
tomers [18, 23, 24, 59, 69], potentially causing significant rev-
enue losses [47]. This problem is not specific to Linux soft-

USENIX Association 19th USENIX Conference on File and Storage Technologies 355

Median latency (ms) Avg. latency (ms) P99 latency (ms) P999 latency (ms)
SSD 0 0.049 0.68 0.42 24.40
SSD 1 0.049 1.26 0.46 702.24
SSD 2 0.050 0.63 0.39 30.16
SSD 3 0.049 1.64 0.53 895.02
SSD 4 0.050 1.71 0.64 827.91

Table 2: Exchange latency, individual aged SSDs within RAID

ware RAID overhead: our measurement also shows a hard-
ware controller (LSI MegaRAID 9260-8i) producing very sim-
ilar average latency (3.4ms) to Linux software RAID (3.6ms)
on the same SSDs.

We further examine the latency distribution of individual
SSD drives within the 4+1 RAID5 array, with results listed
in Table 2 (aged state only). Comparing results from both
tables, one sees that when we group SSDs into RAID, for the
gain in space and bandwidth aggregation, we may be trading
off individual request’s processing speed. Note that with the
Exchange workload (details in Table 4), considering the MD
default 64KB stripe unit size, the majority of requests would
each land on a single drive. However, the added complexity
of parity updates not only generates more work but involves
more drives, rendering a P99 latency nearly 400× higher
on RAID than on individual SSDs for the same workload.
The last column in Table 2 highlights a challenge with SSD
RAIDs: three of the drives appear to experience garbage col-
lection (GC) during our 15-minute trace execution and have a
P999 latency over 23× higher than the other two. With highly
coupled operations across multiple drives, isolated tail latency
from a single drive affects more requests with RAID, making
the entire array more vulnerable to performance anomalies.

In this work, we first conduct a comprehensive study to
investigate the sources of SSD RAID latency. More specifi-
cally, we (1) examine 5 real-application workloads on modern
SSDs, plus 3 workloads from widely used storage trace repos-
itories, and systematically characterize the behavior of their
mixes in fine time granularity, (2) perform a detailed analysis
of the RAID write path and identify the software overhead,
which has a dependency on the I/O performance of member
disks, and becomes a major component in request latency, in
both average and worst-case scenarios, and (3) conduct de-
tailed profiling on 4 consumer- and 2 datacenter-grade SSDs
to characterize the device-side degradation due to flash inter-
nal activities, finding both types plagued by severe latency
spikes with clearly identifiable amplitude and long duration.

We then propose a new RAID architecture, FusionRAID,
designed to simultaneously reduce the average- and worst-
case latencies of SSD RAID, especially for latency-critical
applications. FusionRAID runs on commodity SSD arrays
without requiring any special hardware support or FTL modi-
fication, instead relying on three key techniques:

• flat resource sharing across an SSD pool to utilize available
I/O concurrency in serving bursty application I/Os,

• shortened write operations that use temporary, replicated

2015 2016 2017 2018 2019 2020
0

5

10

535 540s 545s 760p 665p
S3710S3520S4600

S4510

S4610 P5510

C
ap

ac
ity

 (T
B)

Year

 Consumer
 Data center

(a) Capacity

2015 2016 2017 2018 2019 2020
0

30

60

90
535

540s 545s 760p
665pS3710

S3520 S4600 S4510 S4610

P5510

La
te

nc
y

(
s)

Year

 Consumer
 Data center

(b) Latency

Figure 1: Trends in technical specification of Intel SSDs (no
consumer SSDs issued in 2020)

writes as a prelude to long-term RAID storage, yet care-
fully placed “in-stripe” so that one replica can be directly
converted without data migration, and

• a lightweight latency spike detection and request redirection
mechanism that allows requests (both read and write) to
sidestep SSDs under severe performance degradation.

We argue that our solution, which temporarily trades space
for performance, aligns well with current hardware trends.
Figure 1(a) and 1(b) portray changes in capacity and latency,
using historical data we gathered on Intel SSD models [29]. In
the past years, SSDs have become much larger (especially dat-
acenter models) and more affordable, with smaller improve-
ment in latency. FusionRAID uses more space to quickly
absorb small, random writes (with little long-term extra space
overhead). In return, it makes SSD RAIDs several times faster
on average and orders of magnitude faster in tail cases, as
shown in our real-system evaluation. In addition, FusionRAID
proposes a new way to utilize emerging large AFAs (90 SSDs
or more), such as the NetApp AFF [49], EMC VMAX [20],
and Fujitsu ETERNUS [22] series.

Compared with other systems that address FTL-induced
latency during writes, FusionRAID considers SSDs as black
boxes, without assuming SSD internal information/control.
Its novelty lies in several aspects. First, to our knowledge, this
is the first work that applies RAID declustering [3, 25, 46, 71]
to SSD arrays. It leverages Latin-square based deterministic
addressing [71], but with a significant extension to perform ex-
plicit block mapping for its two-phase writes and out-of-place
updates. Second, FusionRAID adopts a new “in-position con-
version” mechanism from its “replicated” to “RAID” area,
removing the extra copying required by existing hybrid sys-
tems [21, 65]. Our intensive analysis reveals that SSD spikes
possess clearly identifiable amplitude and long duration, mak-
ing reactive methods feasible. FusionRAID’s I/O redirection,
based on constant spike-detection, eliminates the need for
periodic probe I/Os, used by previous methods [23, 66, 69].

2 SSD RAID Latency Source Study

2.1 Workload I/O Characteristics
I/O requests from applications are often issued in a bursty
manner, so the instantaneous bandwidth of a single workload

356 19th USENIX Conference on File and Storage Technologies USENIX Association

varies significantly. When multiple workloads co-execute on
a storage system, the instantaneous aggregated bandwidth is
often dominated by a small number of workloads, as they
read/write a large amount of data while others access a little,
in a short period of time.

To assess the load behavior of representative applications,
we collect five block-level traces from multiple popular data-
intensive workloads running individually on SSDs. We also
include three publicly available traces for diversity. The eight
workloads are characterized in Table 4. Then, we examine the
mixes of those eight workloads in fine time granularity.

We capture all five traces from our testbed (more details
in Section 5). Three of them are from running representa-
tive standard YCSB [16] workloads using RocksDB [10], a
popular KV store: YCSB-A, YCSB-B, and YCSB-Load (speci-
fications in Table 5). The RocksDB database size is 40GB,
with 4KB KV pairs. Another latency-sensitive application
trace is collected from the TPC-C benchmark, on a 77GB
MySQL database. In addition, we trace TensorFlow (TF),
which reads training datasets and checkpoints a CNN model
periodically in search of better accuracy. Finally, we include
three traces from the SNIA repository [58]: VirtualDesktop
(VD) [40], the only recent trace from server environments,
plus Exchange and Proxy, the heaviest two among a to-
tal of 49 traces within the Microsoft and SPC trace collec-
tions [30, 55–57].

Next, we carefully examine the microscopic features of
mixed workloads by analysing the instantaneous bandwidth
at millisecond granularity using the aforementioned 8 traces.
In each 1ms timeslot, we partition a workload mix into a giant
and a dwarf set, each containing the same number of work-
loads, with any workload in the former heavier than all in
the latter. We define the ratio between the total instantaneous
bandwidths of the giant set and the entire mix as majority
ratio, Rma j. We claim that a workload mix possesses instanta-
neous complementarity in a timeslot with Rma j > 0.75, where
the dwarf set can lend spare resources to the giant one.

Based on their average throughput, we coarsely divide the
8 traces into two groups, “heavy” and “light”. We inspect all
the three types of 2-workload mixes: light-light, light-heavy,
and heavy-heavy. Figure 2(a) shows the CDF of Rma j across
all timeslots for such mixes. Instantaneous complementar-
ity appears quite frequently in the light-heavy (Exchange
+YCSB-A) and light-light (VD +TF) workload mixes, making
83.6% and 73.9% of all timeslots, respectively. Even with the
heavy-heavy mix (YCSB-Load +TPC-C), 54.1% of timeslots
have instantaneous complementarity.

With the 8 workloads, we enumerate all 2-workload mixes
and find that 25 out of the 28 have instantaneous complemen-
tarity in over half of the timeslots, with an average ratio across
all 28 mixes sitting at 67.8% (Figure 2(b)). Across all 70 4-
workload mixes, this average ratio of timeslots possessing
instantaneous complementarity rises to 91.4%.
Implications Our analysis shows that when workloads run

0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00

C
D
F

Majority Ratio

 YCSB-Load & TPC-C
 VD & TF
 Exchange & YCSB-A

(a) CDF of Rma j

0 5 10 15 20 25 30
0

50

100

In
st

an
ta

ne
ou

s
C

om
pl

em
en

ta
rit

y
Pr

ob
ab

ilit
ie

s
(%

)

Mixed Workloads

(b) Ratio of timeslots w. instanta-
neous complementarity

Figure 2: 2-workload mix analysis, the left showing 3 selected
mixes, the right all 28 mixes

together, the chances of their instantaneous complementarity
are quite high. This suggests that modern commodity storage
servers, easily managing dozens of devices or more, can serve
concurrent workloads better in an “all-for-all” model, rather
than being held back for the fear of inter-workload perfor-
mance interference. Involving all disks in serving the busier
workloads at the moment alleviates their queue wait time, a
major source of application-induced tail latency.

2.2 Write Overhead in SSD RAID
Parity-based RAID is unfriendly to write-intensive workloads,
especially for those dominated by random small writes. The
inherent read-modify-write logic makes partial-stripe writes
go through a lengthy sequence of ordered operations of reads,
calculation, and writes. Optimizations targeting bandwidth,
such as the mechanism used in the Linux MD software RAID
driver that postpones submission of writes in anticipation
that subsequent requests fall into the same stripe, may hurt
latency-sensitive applications.

Figure 3 illustrates this with a comparison between (4+1)
RAID-5 arrays using three types of devices: Intel 545s SATA
SSDs, Seagate 7200RPM SATA HDDs, and RAM disks. All
are software RAID arrays through MD. We run the Microsoft
Enterprise Exchange workload and show the breakdown of
write latency across operations: read, xor, and write, with
the rest categorized into software overhead. The left plot
describes all requests, while the right one focuses on the 1%
requests with the highest latency. Numbers at the top of the
bars give the average latency values for each group.

HDD SSD RAM
All requests

0.0
0.2
0.4
0.6
0.8
1.0 133.11ms 14.29ms 0.14ms

HDD SSD RAM
Slowest 1% requests

0.0
0.2
0.4
0.6
0.8
1.0 825.87ms 226.06ms 1.69ms

software overhead xor read write

Figure 3: Write latency breakdown

With this consumer-grade SSD, software overhead already
takes over as the major component of write latency, while it

USENIX Association 19th USENIX Conference on File and Storage Technologies 357

Model Capacity
(GB)

Read/Write
latency (µs)

Read/Write
bandwidth (MB/s)

Release
year

Price
($/GB)

A Intel 545s 240 50/60 550/500 2017 0.18
B Intel 535 256 80/80 540/490 2015 0.15
C Toshiba q200 240 73/36∗ 550/510 2017 0.20
D Sandisk plus 240 44/193∗ 530/440 2017 0.17
E Intel D3-S4510 240 36/37 560/280 2018 0.33
F Intel DC S4500 240 36/36 500/190 2017 0.29

Table 3: Evaluated SSDs (all latency vendor specified except those
marked with ∗)

is almost invisible with the HDD. On average, the SSD RAID
tested spends 2.9× time on software overhead than on writing.
This software overhead, however, involves synchronization
interleaving with I/Os and is not independent of the read/write
cost: with read/write cost nearly trimmed, software overhead
dominates the RAM disk RAID latency, but its absolute cost
is nearly two orders of magnitude smaller than on the SSD
RAID. Software overhead also makes the slowest 1% requests
suffer 10× the average latency, due to factors such as thread
context switching and request queuing (at the block layer and
the host-side dispatch queue).

As a side note, though software overhead remains the lead-
ing category, for the slowest 1% requests shown in Figure 3,
SSD writes also contribute significantly to the SSD RAID tail
latency, costing 20.7× the average write overhead. Section 2.3
gives a detailed discussion on this issue.
Implications Unlike an HDD array, an SSD RAID has I/O
latency dominated by software overhead. Unlike a RAM disk
array, it sees such overhead prolonged by actual I/Os and
their coordination across disks. This suggests that a shorter
write path, with fewer dependencies, may greatly reduce SSD
RAID latency, both under average and worst-case scenarios.

2.3 Pathological Latency Spikes of SSDs
SSDs are known to have performance anomaly due to back-
ground I/O activities obscure to users [17, 23]. Major sources
of performance variability include (1) background mainte-
nance activities inside SSDs, in particular, garbage collec-
tion [38, 66, 69], and (2) on-SSD DRAM write buffer flush-
ing [1]. While the existence of performance jitters is well-
known [17, 23], in this paper, we quantify the distribution of
their magnitude as well as duration, on multiple consumer-
and datacenter-grade SSDs.

Table 3 lists basic specifications of the six commercial off-
the-shelf SSDs used in our experiments, the first four being
consumer-grade and the last two datacenters (DC) drives. Due
to space limit, below we summarize our chief findings.
Consumer SSDs First, when running sequential writes on
clean drives, all consumer models tested possess clearly peri-
odic latency spikes with a duration between 3ms and 12ms,
reaching 5-20 times of their average latency. With GC ex-
cluded under this strictly sequential workload, we attribute the
regular latency spikes to on-disk DRAM buffer flushes [12].
We found these flushes block read requests as well.

(a) Clean SSD-A, seq., limited space (b) Aged SSD-E, random

Figure 4: Sample spike behavior in write tests on two SSDs
(write request size at 64KB)

To repeatedly incur GC, we repeat the sequential write test
but write within a 2GB logical space. We find GC produces
spikes both much taller (height around 21×) and long-lasting
(duration around 18×) than those incurred by buffer flushes,
as illustrated in Figure 4(a). Our zoom-in analysis of I/O
behaviour shows that requests are blocked during GC inside
SSDs and completed immediately in a batch once GC is over.
Meanwhile, there are obvious intervals (10× spike duration)
between spikes due to enough spare blocks after a GC. Finally,
aged SSDs see more severe and frequent spikes. The reason
is likely that when the spare blocks inside SSDs run out, GC
incurs more data migration and block erasures [33].
DC SSDs Datacenter SSDs behave differently. First, periodic
latency spikes are not seen under sequential write workloads,
unlike with consumer SSD. This is likely because DC SSDs
usually have multiple cores and an optimized FTL for better
coordination between background and foreground I/Os. Note
such optimization may be achieved at the cost of lowering
write throughput [54]: Table 3 does show the write bandwidth
of the two DC SSDs at around half of that offered by cheaper
consumer models.

Under heavy write workloads, however, DC SSDs cannot
hide the impact of GC. Figure 4(b) shows spikes observed
with random 64KB writes on SSD-E, which incurs GC faster.
Under such a constant write workload, once GC is triggered,
the I/O latency goes far beyond 100ms, incuring performance
degradation lasting around 60s. Furthermore, spikes cannot
be divided strictly, instead a new spike often arrives before
the previous one ends, differing from consumer SSDs.
Implications Our profiling confirms that both consumer and
datacenter SSDs suffer from severe latency spikes. Coupling
such duration with an amplitude that significantly deviates
from the norm, these spikes can and should be detected at
runtime, to redirect incoming requests to other devices in the
SSD pool. Moreover, spikes from consumer and DC SSDs
behave differently, which should be handled carefully.

3 Approach Overview

We propose a new SSD RAID architecture, FusionRAID. It
reduces both average-case and tail latencies, with solutions
targeting the three problems observed in Section 2.
Design Rationale To ease innate request bursts in workloads,

358 19th USENIX Conference on File and Storage Technologies USENIX Association

FusionRAID spreads requests to all disks in a storage pool
(such as a large commodity SSD enclosure) hosting multiple
RAID volumes. Though most of their individual I/O requests
can be answered by a small subset of disks, applications of-
ten have severe load bursts that directly lead to tail latency.
FusionRAID trims such workload-induced tail latency by
smoothing the bursts to all disks in an SSD enclosure using
RAID declustering [3, 25, 46, 71]. In multi-tenant settings,
this automatically lends resource elasticity to individual work-
loads’ varying intensity.

To reduce the software overhead and inter-disk dependence
in RAID writes, FusionRAID employs replicated writes as
a prelude to RAID writes, with data lazily converted later to
the more space-efficient RAID organization for long-term
storage. Before such conversion, block replicas ensure the
same level of fault-tolerance as the specified RAID level. E.g.,
FusionRAID writes two copies of a block for a RAID5 vol-
ume, and three for RAID6. Doing so shortens the critical
path in writes by postponing and in some cases even avoid-
ing the long and interference-prone parity updating process.
Consequently, the simpler, more independent operations of
such replicated writes deliver lower (and far more consistent)
latency. To further reduce the conversion overhead, Fusion-
RAID places replicated blocks in a “stripe-ready” manner, in
positions where sets of blocks already compose stripes (minus
parity data) according to the RAID declustering algorithm
adopted, to minimize data copying.

Finally, to sidestep SSDs undergoing temporary perfor-
mance degradation, FusionRAID constantly watches each
SSD’s performance behavior to detect temporarily unrespon-
sive SSDs. To this end, it uses a lightweight spike detection
mechanism that issues no extra I/Os and requires no SSD
internal knowledge. Uniquely enabled by RAID declustering
on large SSD pools, FusionRAID easily redirects writes to
unaffected drives, which likely remain in the majority at any
given time. For reads, it could also select the less affected
replica, or use existing approaches proposed by systems like
ToleRAID [23] to compute a block hosted by an unresponsive
SSD using parity data.

P

PP

P

SSD0 SSD1 SSD2 SSD3 SSDn-1

RAID area
Replicated area

Conversion

Mapping table

(FBMT)

Large
write

I/O requests

SSD spike

detection

I/O request processing

FusionRAID

SSD

pool

Read

4+1 RAID5 volume 5+2 RAID6 volume

RocksDB TensorFlow

(4.4)
(4.2)

(4.3)

Small
write

Read

Declustering-based stripe allocation

Allocation
request

(4.1)

Figure 5: FusionRAID architecture

FusionRAID architecture Figure 5 illustrates the Fusion-
RAID architecture. Multiple virtual RAID arrays (of different
RAID configurations) share the same underlying pool con-
taining dozens of commodity SSDs or more. The aggregate
logical space of this SSD pool is partitioned into the RAID
and replicated areas, intended for long-term, space-efficient
storage and fast absorption of small, random writes, respec-
tively. Note that there is no physical partitioning between
these two virtual areas: actually, they are intentionally inter-
mixed for fast conversion from the replicated to RAID storage
(detailed discussion in Section 4.2). Note that though our dis-
cussion/evaluation uses RAID5 in this paper, FusionRAID
applies to other RAID organizations, e.g., by increasing the
replication degree in the replicated area to 3 for RAID6.

Internally, FusionRAID employs a mapping table (FBMT
in Figure 5) for each virtual RAID volume, to maintain the
mapping of a per-volume logical block number to a Fusion-
RAID internal logical block number (§4.4). The latter can
subsequently be mapped to a logical block on a certain SSD
using a deterministic RAID declustering strategy based on
MOLS [71] (§4.1). For replicated writes, FusionRAID builds
a list of available block pairs from a pair of stripes, enabling
low-cost replicated-to-RAID conversion (§4.2).

In addition, FusionRAID performs real-time SSD latency
spike detection by monitoring SSD latencies and includes the
results in its decision making. In Figure 5, the last SSD is
marked unresponsive and will be avoided in both reads and
writes whenever possible (§4.3).

4 FusionRAID Design

4.1 Storage Organization
FusionRAID organizes the space across dozens or more SSDs,
to serve bursty I/Os from concurrent workloads and provide
ample alternative choices among drives to avoid using those
under transient performance degradation. It does so by utiliz-
ing RAID declustering [3, 25, 46], distributing RAID stripes
in a balanced way to larger arrays. The novel challenges here,
unaddressed by existing RAID declustering techniques, are to
design efficient and flexible support for partial-stripe writes
to enable fast absorption of small, random writes, as well as
to detour around temporarily slow drives.

To this end, FusionRAID employs a storage organization
with explicit block mapping, seamlessly manages two logi-
cal areas (for replicated and striped writes), and requires low
metadata space overhead. Even the transient block replicas
are stored in a “stripe-aware” manner, ready for the eventual
RAID storage. This way, the two logical areas are fused to-
gether, further facilitating efficient conversion from replicated
to striped storage, as well as request redirection.

FusionRAID introduces Fusion logical address space, an
internal logical block layer between the user-perceived logi-
cal and the SSD logical block address spaces, as illustrated

USENIX Association 19th USENIX Conference on File and Storage Technologies 359

…

User logical address space

New stripe

MOLS

Declustering-based

stripe allocation

User perceived

4+1 RAID5 volume

…

Fusion logical address space

SSD pool

3 1115 1826

Figure 6: FusionRAID stripe allocation

in Figure 6. The mapping from user-perceived to this in-
ternal space is maintained by a block mapping table (to be
detailed in Section 4.4), one per user RAID volume, which
supports dynamic mapping for out-of-place writes. The map-
ping from a Fusion logical block to a logical SSD block is
done by RAID declustering, involving a static mapping func-
tion instead of mapping tables. Here different declustering
strategies/functions could be plugged in, such as RAID50 and
pseudo-random RAID [62].

In our implementation, FusionRAID adopts the determinis-
tic mapping proposed by RAID+ [71]. As shown in Figure 6,
each FusionRAID volume will follow a 3D template based on
Mutually Orthogonal Latin Squares (MOLS), which resem-
bles a large Rubik’s Cube filled with disk IDs. The mapping
function uses simple calculation to map a certain stripe within
a user RAID volume (such as a 4+1 RAID5 configured in
cloud storage, shown in the figure) to a certain subset of disks
in the pool, 〈3,15,26,11,18〉 in this example. The advan-
tage of MOLS-based declustering lies in its deterministic and
guaranteed uniform distribution of each volume’s data to all
n disks within a pool, as well as low metadata overhead.

4.2 Two-phase Write Operations
Now spreading each RAID volume to the entire SSD pool
to better prepare for bursty I/Os, FusionRAID further sim-
plifies the critical path for writes, to deliver lower and more
consistent latency. This is done by its two-phase writes, us-
ing replication as a prelude to RAID storage. While large
writes are directly written in RAID stripes, smaller requests
are directed to the replicated area, where instead of RAID
writes with parity computation and update, we simply write
two copies of data. Doing so avoids the dependency brought
by the read-compute-write process, and involves fewer SSDs
(hence a lower chance of running into a spike). Replicated
data can be converted in the background to the more space-
efficient RAID stripes. This can be carried out lazily, delayed
when space is abundant, when data are hot and updated often,
or when the disk pool is busy handling requests.

Two-phase write itself is not new and has been adopted by
multiple systems, such as AutoRAID [65], DiskReduce [21],
and LDM [67]. FusionRAID differs from them with two key
innovations targeting all-flash environments, to reduce both

write amplification and conversion-induced background I/Os.
First, FusionRAID performs its two-phase writes selec-

tively, saving larger write requests the detour as for them the
benefit does not justify the cost: their relative software over-
head in RAID writes is lower, while the extra write volume
generated by their replication is higher.

For larger requests, FusionRAID includes additional op-
timizations to lower the software overhead in RAID writes.
For partial-stripe writes, it allocates a new stripe and pads the
blocks untouched by the request with zero, which allows it to
write both data and parity (plus appropriate metadata updates)
without performing reads. Hence with requests writing x out
of (n−1) data blocks in a RAID stripe, going with our RAID
writes as described above would require I/O of roughly n
blocks, while replication requires 2x-block writes. Therefore
we set the “break-even point”, b n

2c blocks, as a size threshold
to classify write requests: requests larger than this threshold
do not benefit from replicated writes and would follow the
aforementioned RAID write workflow.

Second, rather than following the common practice of mi-
grating data from the replicated to the RAID area (writing the
full stripe, including both data and parity blocks), we care-
fully create the replicated blocks “in position”, so that they
already form two valid stripes according to FusionRAID’s
MOLS-based template. Parity blocks are also allocated and
reserved in advance, thus upon conversion, one group of the
replicated blocks can be directly recorded as RAID stripe data
blocks after the pre-allocated parity block is properly filled.
The other group can simply be discarded.

As described in Section 4.1, FusionRAID allocates stripes
using RAID declustering for both RAID and replicated writes.
While the former consumes one stripe at a time, the latter
consumes a pair of blocks at a time, from a pair of stripes, to
store two copies of the same block. For fault tolerance, these
two blocks need to sit on two different SSDs.

To this end, FusionRAID performs best-effort pairing
among available stripes, using the power-of-two-choices
scheme [45]. It randomly picks 4 spare stripes, selects a pair
with the fewest common disk IDs, and starts block pairing by
listing common disk IDs (if any) among the two stripes. It then
cycles through the list diagonally, producing non-conflicting
pairs. E.g., if two stripes both involve disks A, B, and C, we
create block pairs on A-B, B-C, and C-A. The rest of the
blocks, on non-overlapping disks, are trivial to pair. This flexi-
ble scheme enables FusionRAID to easily recycle free stripes
reclaimed from replicated-to-RAID conversion.

I 2 17 95 P I 17 2 95 P

ReclaimedConversion

I 2 17 95 P

Figure 7: In-position replicated-to-RAID conversion

Figure 7 illustrates the conversion process, showing two
stripes (whose blocks form 4 pairs, one of which has since
been invalidated by subsequent updates while the rest carry

360 19th USENIX Conference on File and Storage Technologies USENIX Association

the RAID volume logical blocks 2, 17, and 95). Here the left
stripe is converted to RAID storage simply by calculating
and filling the parity block (with the invalid block included),
without data movement. This easily extends to more general
cases: e.g., for RAID-6 we reclaim two out of the three stripes
forming 3-block tuples, with two parity blocks calculated for
the remaining stripe. To control the replicated area’s physical
space consumption, the administrator can easily configure the
overall size of the logical replicated area.

Finally, background conversion from the replicated to
RAID area starts from the least recently accessed stripe pair.
The conversion aggressiveness can be governed by policies set
by user preferences or workload characteristics. Conversion
may be triggered by many different configurable thresholds,
such as the number of spare stripes, the ratio of space con-
sumption between replicated and RAID areas, the current
workload level, etc., and their combinations.

4.3 Spike Detection and Request Redirection

Even with perfectly spread-out request loads and short write
paths, applications suffer sudden surges in request latency
when the underlying SSD devices undergo activities such as
GC. FusionRAID sets its final line of defense against such
adversity by performing constant SSD responsiveness moni-
toring and request diversion when latency spikes are detected.

Sliding window for requests tracking (x=6,y=5)Straggler counter

Timeslot 89, 4 requests arrive, 2 return (from 85, 86)

3 67 3 60

85 86 87 88 89

Timeslot 90, 2 requests arrive

4 68 3 20
85 86 87 88 89

7 36 6 23

86 87 88 89 90

Timeslot 91, 3 requests arrive, 3 return (from 86, 87, straggler)

5 63 2 38
87 88 89 90 91

Figure 8: FusionRAID SSD spike detection. The number
under each yellow box is the timeslot ID and the one within
is the count of in-progress IOs issued in that timeslot.

Motivated by our spike behavior study (Section 2.3), we ar-
gue that without SSD internal information, though the timing
of spikes is hard to predict, their duration and amplitude make
reactive avoidance feasible. FusionRAID tracks the number
of stragglers (with processing time larger than a preset thresh-
old t) among requests issued to each individual SSD, and can
quickly react when a performance anomaly happens.
Light-weight spike detection The challenge, however, lies
in the efficient tracking of all active requests in a large SSD
pool. After all, spikes are more likely to happen under inten-
sive workloads. Space and time overhead of keeping track of
thousands of requests at such peak times is not negligible.

To this end, we propose a lightweight spike detection
scheme that records the request dispatching time in coarse
granularity. It divides the time-line into equal-sized timeslots.

For each SSD in the pool, FusionRAID maintains the number
of pending requests dispatched within the latest y timeslots
(forming a sliding window with a time length of t). A sepa-
rate straggler counter records the number of requests whose
pending time exceeds t. Each request issued increments the
request counter for the current timeslot by 1, with an issuing
timestamp tagged with the request. Similarly, a request’s com-
pletion decrements the request counter of its corresponding
timeslot. Upon the expiration of the current timeslot, the win-
dow slides, and the counter of the oldest timeslot has its value
aggregated to the straggler counter. An SSD is identified as
unresponsive (under spike) if the straggler counter reaches a
preset threshold x̂. For an unresponsive SSD, with new traffic
guided away and spike-causing internal activities receding,
eventually, its straggler counter will fall below x̌, putting it
back to full service. For consumer SSDs, we set x̂ equal to x̌
because requests return in batch once spikes end. However,
spikes on DC SSDs often overlap with the previous ones so
we set a gap between two thresholds, avoiding oscillations.

Figure 8 illustrates this per-SSD spike detection mecha-
nism, with a sliding window sized at 5. At the last step (times-
lot 91), the oldest timeslot (86) has its counter merged with the
previous straggler counter, minus 2 requests returning (from
“straggler” and timeslot 86). The result (3+7−2=8) exceeds
the threshold x = 6, identifying the SSD as unresponsive.
Selective request redirection When an I/O request arrives,
FusionRAID judges whether the target SSD is unresponsive
by reading its straggler count. When a write is directed onto
an unresponsive SSD, FusionRAID searches along the spare
block pair or stripe list till it finds one not involving any
unresponsive SSD, and performs the update there. The search
tends to be short as spikes are relatively rare events. Skipped
block pairs or stripes are added to the list tail.

Such redirection also applies to reads. When data requested
reside in the RAID area, a slow SSD can be skipped over by
data reconstruction from all the remaining blocks in the stripe
as in ToleRAID [23]. In the replicated area (which stores more
active data and tends to attract more reads), FusionRAID reads
from the faster of the blocks (with lower straggler count).

Since our spike detection is reactive, the damage is already
done upon successful detection. It might be helpful to adopt
existing strategies such as “hedged requests” [17], which re-
sends victim requests to other SSDs when outstanding long
enough. In addition, FusionRAID may even proactively trig-
ger GC using the SSD trim mechanism [64] (which informs
the SSD to recycle invalid blocks), when it “guesses” that a
spike is imminent based on historical monitoring data.

4.4 Metadata Management

Now with major FusionRAID operations explained, we come
back to discuss its storage organization, in particular, metadata
maintenance necessary to enable partial stripe updates.
Fusion Block Mapping Table (FBMT) This central map-

USENIX Association 19th USENIX Conference on File and Storage Technologies 361

P P P P

Replicated write

Fusion logical address space

0

0x00

User logical address space Application write request

3 7 10

…

18

…

LBN P W FLBN

0x00 0 - NULL

0x01 0 0 7

0x02 1 -

0x03 0 0 5

……

BMT

[0,15]

0 3

[7,12]

1 11

FBMT

5

FBMT

Blk1 Blk2

10 15

11 17

……

W W

BPT

Figure 9: Block mapping and write handling

ping table in FusionRAID contains two components: a Block
Mapping Table (BMT), a direct address table storing the block
mapping from the user logical block address to the Fusion
block address, and a Block Pairing Table (BPT), a hash table
storing paired blocks used in replicated writes. Figure 9 gives
sample illustrations. To reduce metadata storage, FusionRAID
adopts a relatively large block size (64KB by default), which
is also its RAID stripe unit size.

FusionRAID may write directly to the RAID area or make
replicated writes. This distinction is recorded by the W bit in
the 40-bit BMT entries: 0 for RAID and 1 for replicated. In
the former case, the remaining 38 bits store the Fusion logical
block number (FLBN), supporting a 16PB logical space with
the default 64KB block size (i.e., 4096 4TB-SSDs within one
enclosure). In the latter, the BMT entry instead stores the
smaller block number in a block pair, as a key to the BPT.

Recall the in-position replicated-to-RAID conversion
shown in Figure 7. For the stripe to be kept (the left one), its
three valid blocks will see their BMT entries updated during
the conversion, with the W bit switched to 0 (from “replicated”
to “RAID”), and its FLBN properly recorded. For the one
to be discarded (the right one), the entire stripe is reclaimed
and returned to the spare stripe list. Finally, the four involved
block pairs are removed from the BPT.

Adopting larger blocks reduces metadata storage overhead,
but creates more partial block updates. To avoid read-modify-
write operations, which not only prolong the write process
but incur write amplification, FusionRAID utilizes a patch-
ing method to append partial updates to the BMT entry of
the updated block. The P bit here records the block’s partial
update history: if set to 1, the FLBN field becomes the head
of a linked-list, whose nodes each contains an updated page
range, along with the FLBN storing these updates (at their
corresponding pages). Again, each element carries a W bit to
tell whether the corresponding user logical block is in the
replicated area.

Figure 9 demonstrates the handling of a write on user log-
ical block address 0x02, which before the write was in the
RAID area. This small write updates pages 7-12 of the block
and incurs out-of-place updates via replicated writes. As de-
scribed in Section 4.2, a pair of blocks (11 and 17, as indicated
by the red and blue arrows) are allocated, with these pages

written to the corresponding locations within these two blocks,
without reading the unchanged data. Now, block 0x02 has
its valid data distributed in three Fusion logical blocks: the
previous location at block 3, plus the block pair 11 and 17.
Thus its BMT entry carries a linked-list, with a node for page
range 7-12 linking to the ordered block pair (11,17) in the
BPT. Such a linked-list can be periodically compacted so that
its length does not exceed the number of pages in a block.
Space overhead Out-of-place updates produce holes (invalid
blocks). Holes in stripes cannot be reused directly since the
invalid data segment is still involved in parity computation.
Again the problem can be solved with periodic compaction
similar to SSD GC mechanisms [34, 69], performed during
our replicated-to-RAID conversion. In our experiments, we
found such small partial rewrites quite infrequent across our
evaluated traces (only 1.3%) leading to a small portion of
BMT entries having such linked-lists.

FusionRAID maintains FBMT in battery-backed DRAM,
for both performance and durability. FusionRAID’s overall
metadata storage overhead is quite modest. Each BMT entry
is 5-bytes long, and our optimized BPT entry only takes 6
bytes (exploiting the proximity of logical addresses for paired
blocks). Given the ratio of linked-list entries (each 10-bytes
long) and a 10% space limit to the replicated area, these data
structures altogether take 0.0084% of storage capacity. This
means to manage a fully allocated 60TB SSD pool, only
5.2GB battery-backed memory is needed for FusionRAID to
store its mapping data structures. In addition, FusionRAID
needs to log updates in battery-backed memory, to ensure
consistency of in-progress operations.

5 Performance Evaluation

5.1 Experiment Setup
Testbed We use a SuperMicro 4U storage server, with two 12-
core Intel XEON E5-2650 V4 processors and 128GB DDR4
memory, running Ubuntu 16.04 with Linux kernel v4.15.0.
It has two AOC-S3008L-L8I SAS JBOD adapters, each con-
nected to a 30-bay SAS3 expander backplane via 2 channels.

For RAID evaluation, we select datacenter devices tested
in our SSD performance study (§2): SSD E (Intel D3-S4510).
We have 15 drives sitting on one backplane, with each test
using one 30-drive SSD pool. The I/O channels provide a
combined I/O bandwidth of 24GB/s, exceeding the aggregate
sequential bandwidth from the 30 SSDs (195MB/s per SSD
we measured, 5.71GB/s in total).
Workloads We use both trace-driven and real application
tests. For the former, we implemented a trace player in C us-
ing libaio [7] that issues direct block I/O requests according
to given timestamps. We use eight traces mentioned in Sec-
tion 2.1 with major attributes in Table 4. For the latter, we eval-
uate FusionRAID with the popular RocksDB KV store [10]
running YCSB workloads [16].

362 19th USENIX Conference on File and Storage Technologies USENIX Association

Trace IOPS Write ratio Avg. write size
YCSB-Load 409 99% 507.0KB
YCSB-A 1353 64% 500.4KB
YCSB-B 1218 62% 500.2KB
TPC-C 5764 75% 29.6KB
TensorFlow 65 69% 80.1KB
VirtualDesktop 811 42% 23.8KB
Exchange 846 70% 13.1KB
Proxy 307 32% 13.8KB

Table 4: Characteristics of experimented I/O traces

RAID systems setup We implement FusionRAID as a Linux
kernel module in v4.15.0 with about 5,400 LoC and evalu-
ate it using 29-SSD pools,1 with the stripe width of 7 (6+1
RAID-5). We compare with LogRAID [37], a log-structured
RAID-50 that appends all updates. We used our own imple-
mentation2 based on existing literature [13, 37], In addition,
we implement ToleRAID [23], designed for cutting read tail
latency, following its authors’ guidance. We also evaluate two
common organizations utilizing disk pools: 4 independent
(6+1)-disk RAID-5 arrays (4-RAID5) and a RAID-50 system
that stripes across them (RAID50). Finally, we implement
another alternative design that adds an NVRAM write buffer
above RAID50, which we label NV-RAID. All the above five
systems use 28 SSDs in 4 RAID groups and 1 as a hot spare.

Unless otherwise noted, we test with SSDs consistently
aged: first cleaned with the Linux hdparm SECURE_ERASE
command, followed by a full-device sequential write, and fi-
nally, 6 hours random 16KB writes using fio [4], to guarantee
each write generates invalid page(s).

5.2 Overall Performance
Trace-driven, concurrent workloads Considering the com-
mon usage of our testbed SSD pool size, we measure overall
performance by co-running multiple workloads. More specifi-
cally, we select 20 4-workload mixes randomly from the afore-
mentioned 8 traces, testing 4-RAID5, RAID50, LogRAID,
ToleRAID, and FusionRAID on DC SSDs.

Figure 10 gives the median and tail latencies of 8 test work-
loads. The bars show the average value among all their execu-
tions in the 20 mixes (number of executions ranges between
9 and 13), and error bars mark the min/max values. Note that
the y axis in the tail latency chart uses a log scale.

4-RAID5 shows comparatively consistent performance un-
der light workloads (TF and Proxy) due to hardware isolation.
However, the median and tail latencies on 4-RAID5 increase
obviously under workloads with larger average write size,
higher bandwidth or I/O bursts due to limited resources in one
RAID-5. Despite spreading work to all 28 SSDs, RAID50
does not reduce median latency and often worsens tail la-
tency. Light workloads show significant performance degra-
dation on RAID50 when they share resources with heavy

1MOLS requires pool size to be a power of a prime number.
2Due to time/resource limit this system is implemented in user space,

disabling it from supporting a file system and running applications.

ones. RAID50’s two-level striping adds further complexity
and inter-SSD dependency into the I/O path, making average
cases more costly. The worst cases, meanwhile, are slowed
down by one or two unresponsive SSDs.

LogRAID does not appear to help: by consolidating all
writes to the pool into a single log stream, it reduces con-
currency and can utilize 1-2 7-SSD arrays at a time (while
RAID50 and FusionRAID simultaneously use more disks).
Moreover, data writes still experience the underlying RAID
write path, thereby enduring higher latency. Compared with
4-RAID5, ToleRAID brings almost identical median latency
under all the 8 workloads, and obviously reduces tail latency
under four workloads (i.e. YCSB-A, YCSB-B, VD, Proxy). How-
ever, ToleRAID does not reduce tail latency under the other
4 workloads with higher write ratios, as write I/Os cannot
benefit from ToleRAID’s request redirection.

FusionRAID, on the other hand, significantly reduces both
median and tail latencies. Compared with 4-RAID5, Fusion-
RAID shows an average reduction of 49% in median latency
across the 8 traces and a maximum of 87%. Compared with
RAID50, LogRAID and ToleRAID, the average/maximum re-
ductions are 81%/97%, 76%/98% and 45%/85%, respectively.
FusionRAID’s P99 improvement (Figure 10(b)) is even more
impressive, averaging a 15× reduction (up to 32×) from 4-
RAID5, 35× (up to 62×) from RAID50, 34× (up to 61×)
from LogRAID, and 8.3× (up to 14×) from ToleRAID. Later
we give an in-depth breakdown of sources contributing to
such dramatic cut in tail latency.

In addition, for both median and tail, FusionRAID achieves
shorter error bars than RAID50, LogRAID, and even 4-
RAID5 (which offers hardware isolation, with a dedicated
RAID-5 array for each workload). This demonstrates that
spreading bursts, simplifying writes, and avoiding spikes
bring more reliable performance than simply trying to protect
workloads from each other. Finally, all tested RAID systems
show the same throughput since trace-driven workloads issue
I/O requests according to timestamps. This also allows us to
observe the median and tail latency of FusionRAID and other
systems under the same load intensity, for fair comparison.

Systems Workloads Update Read avg. latency (ms) Update avg. latency (ms)
ratio Slowest 10% Slowest 1% Slowest 10% Slowest 1%

RAID50
YCSB-Load 100% 32.55 232.17

FusionRAID 4.22 29.25
RAID50

YCSB-A 50% 0.92 2.4 9.2 63.13
FusionRAID 0.753 1.924 2.35 11.80

RAID50
YCSB-B 5% 0.66 1.81 5.17 34.34

FusionRAID 0.47 1.55 1.27 5.86

Table 5: RocksDB average and tail latency in running YCSB

Real-application workloads Next, we evaluate with repre-
sentative YCSB workloads, of varied write intensity levels,
running RocksDB on top of ext4 above FusionRAID and
RAID50. Table 5 lists workload information and results.

For each workload, Table 5 lists the average latency of
the slowest 10% and the slowest 1% of operations, for reads

USENIX Association 19th USENIX Conference on File and Storage Technologies 363

Load YCSB-A YCSB-B TPC-C TF VD Exch Prxy
0
1
2
3
4 13

La
te

nc
y

(m
s) 10 11 13 10 12

4-RAID5 RAID-50 LogRAID ToleRAID FusionRAID

(a) Median latency. Bold numbers above bars denote average median
latencies exceeding 4ms.

Load YCSB-A YCSB-B TPC-C TF VD Exch Prxy
0.25

2
16

128

La
te

nc
y

(m
s)

4-RAID5 RAID-50 LogRAID ToleRAID FusionRAID

(b) P99 tail latency, log scale.

Figure 10: Overall performance comparison, from 20 randomly selected 4-workload mixes. Error bars show ranges of measured
latency from all executions of each workload.

and writes separately. For the least write-intensive work-
load (YCSB-B), most reads are served from the RocksDB
memtable, closing the performance gap between FusionRAID
and RAID50. Still, across all three workloads, read tail latency
consistently benefits from FusionRAID, due to its more effi-
cient digestion of request bursts. For writes, even at an update
rate as low as 5%, FusionRAID reduces the average latencies
of the slowest 10% and 1% by 4.1× and 5.9×, respectively.
As expected, its margin of improvement grows with write
intensity, reaching 7.9× for YCSB-Load’s slowest 1%.

As for writes, Figure 11(a) plots RocksDB update latency
CDFs under the two write-intensive YCSB workloads. Fusion-
RAID reduces the write tail latency significantly, especially
with YCSB-Load. A major source of the long tail latency for
update operations in RocksDB is the contention between fore-
ground memtable flushing and background compaction [6].
FusionRAID benefits from its higher and more consistent
bandwidth, reducing the probability of contention.

0 25 50
Latency (ms)

0.9

1.0

CD
F YCSB-A, Fusion

YCSB-Load, Fusion
YCSB-A, RAID50
YCSB-Load, RAID50

(a) RocksDB latency CDF

2 4 8 16 32 64 128 256
1

8

64

La
te

nc
y

(m
s)

NVRAM size (GB)

 YCSB-A, Fusion YCSB-A, NV-RAID
 TPCC, Fusion TPCC, NV-RAID

(b) P99 latency

Figure 11: Detailed latency comparison: (a) FusionRAID vs.
RAID50 with YCSB-Load and YCSB-A, and (b) FusionRAID
vs. NV-RAID with varying NVRAM size, log scale

Comparison with NV-RAID Intuitively, one can tame the
tail latency of SSD arrays easily with an NVRAM buffer.
To address this concern, we compare FusionRAID with NV-
RAID. Since we cannot use the Intel Optane NVDIMM with-
out a processor upgrade, we emulate an NVRAM buffer using
DRAM and set a 100ns delay for each cacheline flush opera-
tion [32, 43]. To focus on the effect of such a buffer, we only
add delays for data operations and not metadata ones.

Figure 11(b) illustrates the P99 latency of NV-RAID with
different NVRAM sizes under YCSB-A and TPC-C, and that of
FusionRAID (two straight lines) for reference. For YCSB-A,
the P99 latency remains over 40ms, 30× higher than the Fu-

sionRAID result, with an NVRAM buffer size under 8GB.
Here such small buffers do not sufficiently ease write pressure,
incurring SSD GC activities that reduce effective SSD array
bandwidth and delaying buffer flushes, which in turn results
in further NVRAM buffer space shortage. As the buffer size
increases, NV-RAID’s tail latency improves, nearly catching
up with FusionRAID at 64GB and leveling off over 128GB.

For TPC-C, as the NVRAM buffer grows, the P99 latency
of NV-RAID decreases more quickly. The inter-workload
difference here is due to TPC-C’s smaller requests and higher
issuing rates, while YCSB-A contains larger (512KB) I/Os.
Therefore NV-RAID’s tail latency gets fairly close to Fusion-
RAID’s, with an 8GB write buffer. This also leads to better
median latency of NV-RAID than FusionRAID with TPC-C
(28µs vs. 96µs) with the former using a 256GB buffer. With
YCSB-A, on the other hand, even at this full NVRAM buffer
capacity NV-RAID delivers a median latency of 391µs (vs.
FusionRAID’s 320µs).

One sees that FusionRAID delivers similar or better tail
latency performance as adopting an NVRAM buffer, while
the median performance is more workload-dependent. Mean-
while, FusionRAID is designed to support multiple work-
loads simultaneously. Under such scenarios, concurrent ap-
plications need to share the precious NVRAM space, and
may suffer write bandwidth scalability problems when more
concurrent threads access the NVRAM, as found by a recent
study [70]. Finally, NVRAM is far more expensive than SSDs:
one 256GB NVDIMM costs $2,595 [2], equal to the price of
our 30-SSD pool, even without considering the cost of the
required server upgrade. Also, in the case of the Intel Optane
NVDIMM, unlike most storage devices, a larger NVRAM
device (256GB vs. 128GB) actually costs more per GB.

5.3 Impact of Individual Techniques

For the rest of the section, due to space limit, we focus on
the mix including four different types of workloads (TPC-C,
YCSB-A, TF and VD). Here, to isolate the improvement brought
by key FusionRAID techniques, we evaluate its two interme-
diate versions: 4-RAIDM, with 4 independent 7-disk volumes
like 4-RAID5 but with all write requests conducted by per-
forming mirrored log-structure writes in a round-robin way,

364 19th USENIX Conference on File and Storage Technologies USENIX Association

and Fusion-ND, same as FusionRAID but with SSD spike
detection and request redirection removed.

Figure 12 shows the median and P99 latencies of different
systems. From 4-RAID5 to RAID50, as explained earlier,
building a single, shared volume on the entire SSD pool does
not necessarily help. Replacing the costly RAID write with
replicated write (4-RAIDM), in contrast, brings about the
most significant improvement. Compared with 4-RAID5, 4-
RAIDM reduces median latency by 2.1%-89% and shrinks
P99 by 5.9-12×. However, the P99 latency of 4-RAIDM
under TPC-C reaches 202ms, caused by the limited number
of SSDs to serve intensive writes.

TPCC YCSB-A TF VD
0

1

2 4.42.49.3 4-RAID5
 RAID-50
 4-RAIDM
 Fusion-ND
 Fusion

La
te

nc
y

(m
s)

3.9

(a) Median latency (bold numbers
giving values over 2)

TPCC YCSB-A TF VD

0.5
2
8

32
128

 4-RAID5
 RAID-50
 4-RAIDM
 Fusion-ND
 Fusion

La
te

nc
y

(m
s)

(b) P99 latency, log scale

Figure 12: Incremental impact of proposed techniques

Fusion-ND enjoys the same benefits of simplified writes
but spreading work to the entire pool rather than having 4
physically isolated arrays. Now with a shorter and decoupled
write path, involving more disks improves processing power
without propagating spikes. This produces a significant reduc-
tion from the most write-intensive workload (TPC-C) in tail
latency (again plotted in log scale).

Slowest 1% avg. latency (ms) Slowest 0.1% avg. latency (ms)
Fusion-ND Fusion Fusion-ND Fusion

TPC-C 1.90 1.47 6.34 2.79
YCSB-A 3.04 2.41 15.37 9.71
TF 2.31 2.20 52.16 49.83
VD 6.96 2.97 45.49 11.50

Table 6: Average latency at tails: Fusion-ND vs. Fusion

Finally, from Fusion-ND to FusionRAID, we add SSD
spike detection and request redirection. Their difference may
not seem significant from Figure 12, as it only comes into
play when requests run into device-side spikes. As shown
in Table 6, FusionRAID reduces the average latency of the
slowest 1% requests by 1.1-2.3×, redirecting 0.73% of write
requests from the Fusion-ND baseline. We also measure the
frequency and duration of spikes on Fusion-ND with spike
detection on and request redirection off. On average one SSD
experiences 4.85 spikes/minute, each lasting for 3.79ms. Al-
though these spikes appear quite short, bursty requests suffer
performance degradation in batch once encountering them.

5.4 FusionRAID Overhead and Sensitivity

FusionRAID’s major internal I/O activity is its replicated-to-
RAID data conversion. Our tests presented earlier all have

TPC-C YCSB-A TF VD
0

1

R
at
io

 P99 Median

(a) Latency of Fusion (w/o conv.)
normalized to Fusion (w/ conv.)

TPC-C YCSB-A TF VD
0

1

2

R
at
io

 4-RAID5 Fusion (w/o conv.)
 4-RAIDM Fusion (w/ conv.)

(b) Write amplification

TPC-C YCSB-A TF VD
0

1

2

R
at
io

 4-RAID5 Fusion (w/o conv.)
 4-RAIDM Fusion (w/ conv.)

(c) Space overhead

0 10Latency (ms)0.8

1.0

CD
F ̂x=̂ t=100μs

̂x=̂ t=1ms
̂x=̂ t=μms
̂x=̂0 t=1ms

(d) Latency CDF of Fusion with
varying thresholds in spike detection

Figure 13: FusionRAID overhead and sensitivity

conversion turned on (only temporarily suspended when fore-
ground throughput on a disk exceeds 40MB/s, our observed
per-drive average). To examine its performance impact, Fig-
ure 13(a) shows performance with and without such back-
ground conversion. One sees that even with our current brute-
force conversion policy (with no foreground-aware optimiza-
tion such as avoiding application busy bursts), its performance
overhead is quite small, thanks to our in-position stripe allo-
cation during replicated writes.

Next, Figure 13(b) reports the ratio of write amplification
across all systems. Compared with 4-RAIDM, FusionRAID
reduces the ratio across most of the workloads since it per-
forms RAID writes directly for large requests. An exception
is that FusionRAID brings a higher ratio under VD. This is
because numerous replicated writes generated by dominant
small writes in VD (see Table 4), plus parity updates in conver-
sion, increase write amplification more than mirroring does.
On average, its in-position conversion only brings around a
5.6% increase in write amplification.

Space consumption, meanwhile, depends on the aggres-
siveness of the background conversion policy adopted. Fig-
ure 13(c) gives the overall space consumption (vs. user data
size), for all data written during the trace run. As expected,
4-RAID5’s extra space overhead comes from the single parity
block in its 6+1 stripe. 4-RAIDM has a constant space ratio
of 2 as it performs simple mirroring. FusionRAID, with con-
version turned off, has a slightly varying space ratio across
workloads, due to their different write patterns. With conver-
sion fully performed, one of the replicas is recycled (the other
reclaimed) and multiple writes are compacted, returning the
space consumption to the same as the 4-RAID5 level.

In addition, we examine the sensitivity of parameters in
spike detection (§4.3). We first set y (determining the count-
ing precision) at 10 and x̌ (used to speculate the end of latency
spikes) at 0 empirically. Figure 13(d) shows latency CDFs un-
der Exchange with different values of x̂ and t. Smaller x̂ and t
help FusionRAID to detect spikes and react earlier while more

USENIX Association 19th USENIX Conference on File and Storage Technologies 365

SSDs are identified as unresponsive, leaving fewer choices
for incoming I/Os. Fortunately, FusionRAID performs well
with smaller thresholds, thanks to the large 30-SSD pool.

Finally, we discuss how SSD aging affects the systems’ per-
formance. Figure 14 compares the performance of RAID50,
LogRAID, and FusionRAID on clean and aged SSDs under
the same workload combination as in §5.3, showing median
and P99 latency on average. Aside from its capability to sig-
nificantly reduce the median/tail latency in all cases, Fusion-
RAID shows different behavior across clean and aged SSDs
than the baseline systems. While RAID50 and LogRAID have
higher median latency on aged SSDs due to increased GC
activities, FusionRAID works as well there due to its spike
aversion. For tail latency, however, FusionRAID does per-
form better on clean SSDs, where it has more alternatives
to redirect requests. RAID50 and LogRAID, without such a
mechanism, show no differences across aged and clean SSDs.

RAID50 LogRAID Fusion
0

2

4
 Clean
 Aged

La
te

nc
y

(m
s)

(a) Median latency

RAID50 LogRAID Fusion
0.5

8

128 Clean
 Aged

La
te

nc
y

(m
s)

(b) P99 latency, log scale

Figure 14: Performance on clean vs. aged SSDs

6 Related Work

SSD RAID designs SSD RAID systems have been exten-
sively studied, with approaches roughly in three groups: 1) im-
proving reliability by distributing parity unevenly across the
array [5] or through wear leveling across member SSDs [61],
2) enhancing average-case performance and/or reliability by
mitigating the parity update problem [14,15,28,36,42], and 3)
taming tail-latency by alleviating GC impact [23,37,38,66,69].
Approaches in the first two groups do not address tail la-
tency, and most in the third group [38, 66, 69] rely on host-
managed/open-channel SSDs. One exception, ToleRAID [23],
focuses on cutting read tails under a full-stripe read workload.
In contrast, FusionRAID works on off-the-shelf SSDs and
aims to reduce both average-case and tail latencies, while
maintaining the same fault tolerance level.

A highly related system is SWAN [37], which eliminates
GC impact on commodity SSD arrays (Rails [54] is similar
but focuses on read protection from GC). It partitions drives
into groups, which rotate in handling foreground and inter-
nal writes, shielding user writes from GC traffic. It targets
settings where SSD RAIDs are built for capacity, but with
aggregate bandwidth bound by network, while FusionRAID
targets shared storage serving latency-critical applications.
Compared with SWAN, FusionRAID is reactive rather than
proactive, but protects and redirects both reads and writes.
RAID data layout optimization Parity declustering [46] uti-
lizes as many disks as possible to serve application requests

in data reconstruction. It has been extended and optimized
by many [3, 25, 26, 48, 63]. It is also widely adopted in indus-
try, by products such as PanFS [63], the IBM GPFS Native
RAID [19] and Spectrum Scale RAID [27], HPE 3PAR [60],
and Huawei’s RAID2.0+ [44]. FusionRAID’s design lever-
ages existing Latin-square based deterministic addressing of
RAID+ [71] but augments it with explicit block mapping to
enable two-phase writes and out-of-place updates.
RAID write optimization Purity [15], Flash-Aware
RAID [28], and PPC [14] use NVRAM to buffer the incoming
data and/or parity information and delay parity updates, so as
to conduct full-stripe writes and reduce the reads involved in
parity updates [15], or to reduce the number of parity com-
mits to SSDs [14, 28]. However, they require large amounts
of NVRAM for storing data and/or parity information. ESAP-
RAID [36] and RAID-Z [9] organize the incoming data in
elastic-width stripes to reduce parity-induced read overhead,
at the cost of increased stripe management complexity.

Two-phase writing was used by existing systems: Au-
toRAID [65], DiskReduce [21], and Log Disk Mirroring
(LDM) [67] all write data to a replicated zone, with future
background conversion to the RAID zone. However, Fusion-
RAID is unique in its in-place conversion by replicating in
a stripe-ready manner. Note that it specifically targets SSD
RAIDs, where massive data migration may cause frequent
GC and consume more SSD write cycles.
Alleviating GC Interference Harmonia [39] and Global
Garbage Collection (GGC) [38] synchronize GC across a set
of SSDs, thereby reducing overall performance variability.
Application-managed Flash [41] and LightNVM [8] elimi-
nate GC overhead by letting the host software manage the
exposed flash channels. Several other systems cut read tail
latency by issuing an extra read to parity block and rebuild
the “late” data [23, 66, 69], and write one by enforcing at
most one active GC in every RAID group and writing data
to a no-GC member [66, 69]. Unlike the above, FusionRAID
works without assuming SSD internal information/control, by
observing SSDs’ performance behavior to detect the onset of
degradation and steer away if possible.

7 Conclusion

With FusionRAID, we argue that SSD RAID systems can
be much faster and more consistent, by eagerly spreading
application load, lazily performing parity writes (instead trad-
ing space temporarily for simple replicated writes), and care-
fully watching individual SSD’s performance and waiting out
their transient latency spikes. Large SSD enclosures, once
not constrained with the rigid routines of traditional RAID
arrays, simultaneously provide high concurrency to serve co-
executing applications’ bursty I/Os, and high flexibility in
avoiding drives under transient performance degradation.

366 19th USENIX Conference on File and Storage Technologies USENIX Association

Acknowledgment
We thank all reviewers for their insightful comments and help-
ful suggestions. We are especially grateful to our shepherd,
Keith Smith, for his thorough, detailed, and patient guidance
during our camera-ready preparation. This work was sup-
ported by the National key R&D Program of China under
Grant 2018YFB0203902, and the National Natural Science
Foundation of China under Grants 61672315 and 62025203.

References

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, and Rina Panigrahy. Design tradeoffs for
SSD performance. In the 2008 USENIX Annual Techni-
cal Conference (USENIX’08), pages 57–70, 2008.

[2] Paul Alcorn. Intel Optane DIMM Pricing.
https://www.tomshardware.com/news/intel-o
ptane-dimm-pricing-performance,39007.html,
2019.

[3] Guillermo A. Alvarez, Walter A. Burkhard, Larry J.
Stockmeyer, and Flaviu Cristian. Declustered disk ar-
ray architectures with optimal and near-optimal paral-
lelism. In Proceedings of 25th International Symposium
on Computer Architecture (ISCA’98), pages 109–120,
1998.

[4] Jens Axboe. FIO: Flexible I/O Tester. https://gith
ub.com/axboe/fio, 2019.

[5] Mahesh Balakrishnan, Asim Kadav, Vijayan Prab-
hakaran, and Dahlia Malkhi. Differential RAID: Re-
thinking RAID for SSD reliability. ACM Transactions
on Storage (TOS), 6(2):4, 2010.

[6] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. SILK: Preventing latency spikes in log-structured
merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC’19), pages 753–766,
2019.

[7] Suparna Bhattacharya, Steven Pratt, Badari Pulavarty,
and Janet Morgan. Asynchronous I/O support in Linux
2.5. In Proceedings of the Linux Symposium, pages
371–386, 2003.

[8] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
LightNVM: The Linux open-channel SSD subsystem.
In 15th USENIX Conference on File and Storage Tech-
nologies (FAST’17), pages 359–374, Santa Clara, CA,
February 2017. USENIX Association.

[9] Jeff Bonwick and Bill Moore. ZFS: The Last Word in
File Systems. https://www.snia.org/sites/def

ault/orig/sdc_archives/2008_presentations/
monday/JeffBonwick-BillMoore_ZFS.pdf, 2008.

[10] Dhruba Borthakur. RocksDB: A persistent key-value
store. https://rocksdb.org/, 2014.

[11] Eric Burgener. Justifying investment in all-flash arrays.
https://www.emc.com/collateral/analyst-rep
orts/justifying-investments-in-all-flash-a
rrays.pdf, 2019.

[12] Feng Chen, David A Koufaty, and Xiaodong Zhang.
Understanding intrinsic characteristics and system im-
plications of flash memory based solid state drives. In
ACM SIGMETRICS Performance Evaluation Review,
volume 37, pages 181–192. ACM, 2009.

[13] Tzi-cker Chiueh, Weafon Tsao, Hou-Chiang Sun, Ting-
Fang Chien, An-Nan Chang, and Cheng-Ding Chen.
Software orchestrated flash array. In Proceedings of
International Conference on Systems and Storage (SYS-
TOR’14), pages 1–11. ACM, 2014.

[14] Ching-Che Chung and Hao-Hsiang Hsu. Partial parity
cache and data cache management method to improve
the performance of an SSD-based RAID. IEEE Transac-
tions on Very Large Scale Integration (VLSI’14) Systems,
22(7):1470–1480, 2014.

[15] John Colgrove, John D Davis, John Hayes, Ethan L
Miller, Cary Sandvig, Russell Sears, Ari Tamches, Neil
Vachharajani, and Feng Wang. Purity: Building fast,
highly-available enterprise flash storage from commod-
ity components. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data
(SIGMOD’15), pages 1683–1694. ACM, 2015.

[16] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing (SoCC’10), pages
143–154. ACM, 2010.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly avail-
able key-value store. In ACM SIGOPS operating sys-
tems review, volume 41, pages 205–220. ACM, 2007.

[19] Veera Deenadhayalan. GPFS Native RAID for 100,000-
Disk Petascale Systems. In 25th Large Installation
System Administration Conference (LISA’11), 2011.

USENIX Association 19th USENIX Conference on File and Storage Technologies 367

https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://github.com/axboe/fio
https://github.com/axboe/fio
https://www.snia.org/sites/default/orig/sdc_archives/2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf
https://rocksdb.org/
https://www.emc.com/collateral/analyst-reports/justifying-investments-in-all-flash-arrays.pdf
https://www.emc.com/collateral/analyst-reports/justifying-investments-in-all-flash-arrays.pdf
https://www.emc.com/collateral/analyst-reports/justifying-investments-in-all-flash-arrays.pdf
https://www.emc.com/collateral/analyst-reports/justifying-investments-in-all-flash-arrays.pdf

[20] DELL EMC. VMAX All Flash Family,
https://www.dellemc.com/en-us/collater
als/unauth/data-sheets/products/storage
-2/h16051-vmax-all-flash-250f-950f-ss.pdf.
2020.

[21] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gib-
son. DiskReduce: Replication as a prelude to erasure
coding in data-intensive scalable computing. SC’11,
2011.

[22] FUJITSU. FUJITSU Storage ETERNUS AF650 S3.
https://www.fujitsu.com/global/products/co

mputing/storage/all-flash-arrays/eternus-a
f650-s3/index.html, 2020.

[23] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A. Chien, and
Haryadi S. Gunawi. The Tail at Store: A revelation from
millions of hours of disk and SSD deployments. In 14th
USENIX Conference on File and Storage Technologies
(FAST’16), pages 263–276, Santa Clara, CA, February
2016. USENIX Association.

[24] Md E Haque, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, Kathryn S McKinley, et al. Few-to-many:
Incremental parallelism for reducing tail latency in inter-
active services. In ACM SIGPLAN Notices, volume 50,
pages 161–175. ACM, 2015.

[25] Mark Holland and Garth A. Gibson. Parity decluster-
ing for continuous operation in redundant disk arrays.
In Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’92), pages 23–35, 1992.

[26] Mark Holland, Garth A. Gibson, and Daniel P.
Siewiorek. Fast, on-line failure recovery in redundant
disk arrays. In Proceedings of The Twenty-Third In-
ternational Symposium on Fault-Tolerant Computing
(FTCS’93), pages 422–431, 1993.

[27] IBM. IBM Spectrum Scale RAID.
https://www.ibm.com/support/knowledgecen
ter/en/SSYSP8_5.3.1/raid_adm.pdf, 2017.

[28] Soojun Im and Dongkun Shin. Flash-aware RAID tech-
niques for dependable and high-performance flash mem-
ory SSD. IEEE Transactions on Computers, 60:80–92,
01 2011.

[29] Intel. Intel Solid State Drives. https:
//www.intel.com/content/www/us/en/produc
ts/memory-storage/solid-state-drives.html.
2020.

[30] I/O Umass Trace Repository. OLTP Application I/O
and Search Engine I/O. http://traces.cs.umass.
edu/index.php/Storage/Storage.

[31] Itnews. ANZ Bank goes all-flash for storage.
https://www.itnews.com.au/news/anz-bank-g
oes-all-flash-for-storage-490262. 2020.

[32] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R Dulloor, et al. Basic per-
formance measurements of the Intel Optane DC persis-
tent memory module. arXiv preprint arXiv:1903.05714,
2019.

[33] Dawoon Jung, Jeong Uk Kang, Heeseung Jo, Jin Soo
Kim, and Joonwon Lee. Superblock FTL: A superblock-
based flash translation layer with a hybrid address trans-
lation scheme. ACM Transactions on Embedded Com-
puting Systems, 9(4):1–41, 2010.

[34] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The multi-streamed solid-state drive. In
6th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage’14), 2014.

[35] Jaeho Kim, Donghee Lee, and Sam H Noh. Towards
SLO complying SSDs through OPS isolation. In 13th
USENIX Conference on File and Storage Technologies
(FAST’15), pages 183–189, 2015.

[36] Jaeho Kim, Jongmin Lee, Jongmoo Choi, Donghee Lee,
and Sam H Noh. Improving SSD reliability with RAID
via elastic striping and anywhere parity. In 2013 43rd
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN’13), pages 1–12.
IEEE, 2013.

[37] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin
Lee, Changwoo Min, and Sam H. Noh. Alleviating
garbage collection interference through spatial separa-
tion in all flash arrays. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC’19), pages 799–812,
Renton, WA, July 2019. USENIX Association.

[38] Youngjae Kim, Junghee Lee, Sarp Oral, David A Dil-
low, Feiyi Wang, and Galen M Shipman. Coordinating
garbage collection for arrays of solid-state drives. IEEE
Transactions on Computers, 63(4):888–901, 2014.

[39] Youngjae Kim, Sarp Oral, Galen M Shipman, Junghee
Lee, David A Dillow, and Feiyi Wang. Harmonia: A
globally coordinated garbage collector for arrays of
solid-state drives. In 2011 IEEE 27th Symposium on
Mass Storage Systems and Technologies (MSST’11),
pages 1–12. IEEE, 2011.

[40] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hi-
roshi Endo, Naoto Fukumoto, and Mariko Sugawara.
Understanding storage traffic characteristics on enter-
prise virtual desktop infrastructure. In Proceedings of

368 19th USENIX Conference on File and Storage Technologies USENIX Association

https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/storage-2/h16051-vmax-all-flash-250f-950f-ss.pdf
https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/storage-2/h16051-vmax-all-flash-250f-950f-ss.pdf
https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/storage-2/h16051-vmax-all-flash-250f-950f-ss.pdf
https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/storage-2/h16051-vmax-all-flash-250f-950f-ss.pdf
https://www.fujitsu.com/global/products/computing/storage/all-flash-arrays/eternus-af650-s3/index.html
https://www.fujitsu.com/global/products/computing/storage/all-flash-arrays/eternus-af650-s3/index.html
https://www.fujitsu.com/global/products/computing/storage/all-flash-arrays/eternus-af650-s3/index.html
https://www.ibm.com/support/knowledgecenter/en/SSYSP8_5.3.1/raid_adm.pdf
https://www.ibm.com/support/knowledgecenter/en/SSYSP8_5.3.1/raid_adm.pdf
https://www.ibm.com/support/knowledgecenter/en/SSYSP8_5.3.1/raid_adm.pdf
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives.html
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
https://www.itnews.com.au/news/anz-bank-goes-all-flash-for-storage-490262
https://www.itnews.com.au/news/anz-bank-goes-all-flash-for-storage-490262
https://www.itnews.com.au/news/anz-bank-goes-all-flash-for-storage-490262

the 10th ACM International Systems and Storage Con-
ference, pages 1–11, 2017.

[41] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Ji-
hong Kim, and Arvind. Application-managed flash. In
14th USENIX Conference on File and Storage Tech-
nologies (FAST’16), pages 339–353, Santa Clara, CA,
February 2016. USENIX Association.

[42] Yongkun Li, Helen HW Chan, Patrick PC Lee, and Yin-
long Xu. Elastic parity logging for SSD RAID arrays.
In 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’16), pages
49–60. IEEE, 2016.

[43] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai
Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.
DudeTM: Building durable transactions with decou-
pling for persistent memory. ACM SIGPLAN Notices,
52(4):329–343, 2017.

[44] Huawei Technologies Co., Ltd. RAID 2.0+ Technical
White Paper. https://actfornet.com/HUAWEI_S
TORAGE_DOCS/Storage_All2/Enterprise%20Unifi
ed%20Storage%20RAID%202.0+%20Technology-H
UAWEI%20OceanStor%20Technical%20White%20Pap
er.pdf, 2014.

[45] Michael Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1094–1104, 2001.

[46] Richard R. Muntz and John C. S. Lui. Performance
analysis of disk arrays under failure. In Proceedings of
the 16th International Conference on Very Large Data
Bases (VLDB’90), pages 162–173, 1990.

[47] Sampann N. Amazon found every 100ms of latency
cost them 1% in sales. https://www.linkedin.com
/pulse/amazon-found-every-100ms-latency-c
ost-them-1-sales-sampann/, 2016.

[48] David Nagle, Denis Serenyi, and Abbie Matthews. The
Panasas activescale storage cluster: Delivering scalable
high bandwidth storage. In Proceedings of the 2004
ACM/IEEE conference on Supercomputing (SC’04),
pages 1–10. IEEE Computer Society, 2004.

[49] NetApp. AFF A-Series All Flash Arrays.
https://www.netapp.com/us/products/stora
ge-systems/all-flash-array/aff-a-series.as
px#technical-specifications. 2020.

[50] David A. Patterson, Garth A. Gibson, and Randy H.
Katz. A case for redundant arrays of inexpensive disks
(RAID). In Proceedings of the 1988 ACM International
Conference on Management of Data (SIGMOD’88),
pages 109–116, 1988.

[51] PureStorage. FlashArray//X. https://www.purest
orage.com/products/nvme/flasharray-x.html.
2020.

[52] Sandisk. SanDisk InfiniFlash System. https://www.
solidstateworks.com/InfiniFlash.asp. 2020.

[53] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash reliability in production: The expected and the
unexpected. In 14th USENIX Conference on File and
Storage Technologies (FAST’16), pages 67–80, Santa
Clara, CA, 2016. USENIX Association.

[54] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins,
Carlos Maltzahn, and Scott Brandt. Flash on Rails:
Consistent flash performance through redundancy. In
2014 USENIX Annual Technical Conference (USENIX
ATC’14), pages 463–474, Philadelphia, PA, June 2014.
USENIX Association.

[55] SNIA. Microsoft Enterprise Traces. http://iotta.
snia.org/traces/130, 2007.

[56] SNIA. Microsoft Production Server Traces. http:
//iotta.snia.org/traces/158, 2007.

[57] SNIA. MSR Cambridge Traces. http://iotta.sn
ia.org/traces/388, 2007.

[58] SNIA. SNIA Block I/O Traces. http://iotta.snia
.org/tracetypes/3, 2017.

[59] P Lalith Suresh, Marco Canini, Stefan Schmid, and Anja
Feldmann. C3: Cutting tail latency in cloud data stores
via adaptive replica selection. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’15), pages 513–527. USENIX Association, 2015.

[60] Karl L. Swartz. 3PAR Fast RAID: High performance
without compromise. http://www.kls2.com/~kar
l/papers/raid-wp-10.0.pdf, 2010.

[61] Wei Wang, Tao Xie, and Abhinav Sharma. SWANS:
An interdisk wear-leveling strategy for RAID-0 struc-
tured SSD arrays. ACM Transactions on Storage (TOS),
12(3):10, 2016.

[62] Sage A Weil, Scott A Brandt, Ethan L Miller, and Car-
los Maltzahn. CRUSH: Controlled, Scalable, Decen-
tralized Placement of Replicated Data. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing
(SC’06), pages 1–12. IEEE, 2006.

[63] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gib-
son, Brian Mueller, Jason Small, Jim Zelenka, and Bin
Zhou. Scalable performance of the Panasas parallel file
system. In 6th Usenix Conference on File and Storage
Technologies (FAST’08), pages 17–33, 2008.

USENIX Association 19th USENIX Conference on File and Storage Technologies 369

https://actfornet.com/HUAWEI_STORAGE_DOCS/Storage_All2/Enterprise%20Unified%20Storage%20RAID%202.0+%20Technology-HUAWEI%20OceanStor%20Technical%20White%20Paper.pdf
https://actfornet.com/HUAWEI_STORAGE_DOCS/Storage_All2/Enterprise%20Unified%20Storage%20RAID%202.0+%20Technology-HUAWEI%20OceanStor%20Technical%20White%20Paper.pdf
https://actfornet.com/HUAWEI_STORAGE_DOCS/Storage_All2/Enterprise%20Unified%20Storage%20RAID%202.0+%20Technology-HUAWEI%20OceanStor%20Technical%20White%20Paper.pdf
https://actfornet.com/HUAWEI_STORAGE_DOCS/Storage_All2/Enterprise%20Unified%20Storage%20RAID%202.0+%20Technology-HUAWEI%20OceanStor%20Technical%20White%20Paper.pdf
https://actfornet.com/HUAWEI_STORAGE_DOCS/Storage_All2/Enterprise%20Unified%20Storage%20RAID%202.0+%20Technology-HUAWEI%20OceanStor%20Technical%20White%20Paper.pdf
https://www.linkedin.com/pulse/amazon-found-every-100ms-latency-cost-them-1-sales-sampann/
https://www.linkedin.com/pulse/amazon-found-every-100ms-latency-cost-them-1-sales-sampann/
https://www.linkedin.com/pulse/amazon-found-every-100ms-latency-cost-them-1-sales-sampann/
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx#technical-specifications
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx#technical-specifications
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx#technical-specifications
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx#technical-specifications
https://www.purestorage.com/products/nvme/flasharray-x.html
https://www.purestorage.com/products/nvme/flasharray-x.html
https://www.solidstateworks.com/InfiniFlash.asp
https://www.solidstateworks.com/InfiniFlash.asp
http://iotta.snia.org/traces/130
http://iotta.snia.org/traces/130
http://iotta.snia.org/traces/158
http://iotta.snia.org/traces/158
http://iotta.snia.org/traces/388
http://iotta.snia.org/traces/388
http://iotta.snia.org/tracetypes/3
http://iotta.snia.org/tracetypes/3
http://www.kls2.com/~karl/papers/raid-wp-10.0.pdf
http://www.kls2.com/~karl/papers/raid-wp-10.0.pdf

[64] Wikipedia. Trim (computing). https://en.wikiped
ia.org/wiki/Trim_(computing). 2020.

[65] John Wilkes, Richard Golding, Carl Staelin, and Tim Sul-
livan. The HP AutoRAID hierarchical storage system.
ACM Transactions on Computer Systems, 14(1):108–
136, 1996.

[66] Suzhen Wu, Haijun Li, Bo Mao, Xiaoxi Chen, and Kuan-
Ching Li. Overcome the GC-induced performance vari-
ability in SSD-based RAIDs with request redirection.
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 2018.

[67] Suzhen Wu, Bo Mao, Xiaolan Chen, and Hong Jiang.
LDM: Log disk mirroring with improved performance
and reliability for SSD-based disk arrays. ACM Trans-
actions on Storage (TOS), 12(4):22, 2016.

[68] Zhe Wu, Curtis Yu, and Harsha V Madhyastha. CosTLO:
Cost-effective redundancy for lower latency variance
on cloud storage services. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’15), pages 543–557, 2015.

[69] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A Chien,
and Haryadi S Gunawi. Tiny-tail flash: Near-perfect
elimination of garbage collection tail latencies in NAND
SSDs. ACM Transactions on Storage (TOS), 13(3):22,
2017.

[70] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In 18th USENIX Conference on File and Storage Tech-
nologies (FAST’20), pages 169–182, 2020.

[71] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin
Yang, Zhufan Wang, and Weimin Zheng. RAID+: De-
terministic and balanced data distribution for large disk
enclosures. In 16th USENIX Conference on File and
Storage Technologies (FAST’18), pages 279–294, Oak-
land, CA, 2018. USENIX Association.

370 19th USENIX Conference on File and Storage Technologies USENIX Association

https://en.wikipedia.org/wiki/Trim_(computing)
https://en.wikipedia.org/wiki/Trim_(computing)

Behemoth: A Flash-centric Training Accelerator for Extreme-scale DNNs

Shine Kim†‡∗ Yunho Jin†∗ Gina Sohn† Jonghyun Bae† Tae Jun Ham† Jae W. Lee†

†Seoul National University ‡Samsung Electronics

Abstract
The explosive expansion of Deep Neural Networks (DNN)
model size expedites the need for larger memory capacity.
This movement is particularly true for models in natural lan-
guage processing (NLP), a dominant application of AI along
with computer vision. For example, a recent extreme-scale
language model GPT-3 from OpenAI has over 175 billion
parameters. Furthermore, such a model mostly consists of
FC layers with huge dimensions, and thus has a relatively
high arithmetic intensity. In that sense, an extreme-scale lan-
guage model does not suit well to the conventional HBM
DRAM-based memory system that lacks capacity and offers
extremely high bandwidth. For this reason, we propose to pair
the neural network training accelerator with the flash-based
memory system instead of the HBM DRAM-based memory
system. To design the effective flash-based memory system,
we optimize the existing SSD design to improve the SSD
bandwidth as well as endurance. Finally, we evaluate our
proposed platform, and show that Behemoth achieves 3.65×
cost saving over TPU v3 and 2.05× training throughput im-
provement over the accelerator attached to a commercial SSD.

1 Introduction

Deep Neural Networks (DNNs) have become pervasive in
various application domains. Early DNN models demanded
only high computation, but recent models additionally require
increasing memory capacity with continued scaling of DNNs.
This is especially true for Natural Language Processing (NLP)
models [5, 18, 39, 40, 44, 54], targeting problems including
language translation [2, 50, 65], text generation [5, 53, 59] and
summarization [35, 41, 69], and sentiment analysis [18, 40].

This advent of extreme-scale NLP models (with more than
several billion parameters) is one of the most important re-
cent breakthroughs in DNNs. Transformer [66] introduced in
2017 demonstrated that neural networks could substantially
outperform existing NLP techniques, and the introduction

∗These authors contributed equally to this work.

1.36
2.64

6

33.2 44
68

400
700

2400

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

BE
RT
-la
rge
'18

XL
M'
19

GP
T-2
'19

Me
ga
tro
n'1
9

T5
-11
B'1
9

Tu
rin
g-N
LG
'20

Sa
mb
aN
ov
a…

GP
T-3
'20

Gs
ha
rd'
20

10000

1000

100

10

1

M
od

el
 S

iz
e

(G
B)

GS
ha
rd’
20

Sa
mb
aN
ov
a

On
e’2
0

Figure 1: Trends of model size scaling with large NLP models

of BERT [18] showed that the concept of training the Trans-
former language model with a large corpus could produce
a versatile language model that can be utilized for various
natural language processing tasks. Following BERT, many
Transformer-based NLP models [4,5,16–18,31,34,39,40,44,
54, 59, 66, 68, 72] have emerged. Specifically, GPT-3 [5], one
of the most recent language models, has established state-of-
the-art performance in various NLP tasks.

These NLP models explosively expand their sizes, taking
hundred billions of parameters. Figure 1 shows that the size
of the model has increased by more than 1000× over the last
two years. For example, GShard [39] from Google contains
roughly 2.4TB of parameters. This demand for memory ca-
pacity has been partly satisfied by simply supplying more
memory. However, relatively stagnant DRAM scaling cannot
keep pace with this increase in the DNN model size. There-
fore, the solution of merely augmenting the system with extra
DRAM is impractical.

It is impossible to process these models in a data paral-
lel manner on the conventional hardware because it would
require each device to hold the entire model [60]. There
are mainly two solutions to this capacity problem. The first
approach is to simply discard some computation results in
the forward path and recalculate them during the backward
path [8]. Unfortunately, this approach can incur a substantial

USENIX Association 19th USENIX Conference on File and Storage Technologies 371

amount of extra computations. The other approach is the
utilization of the model parallelism. This technique divides
the model into multiple partitions and distributes them across
multiple devices so that the system as a whole can accom-
modate the model. Following the GShard example from the
previous paragraph, at least 75 devices with 32GB of mem-
ory [27, 64] are needed to run this model. Unfortunately,
model parallelism comes with its inherent drawbacks. The
dimensions and types of layers in a model are not identical.
Thus careful load balancing of partitioned models is required.
Additionally, stalls due to dependency may arise, and extra
inter-node communication may be required to exploit pipeline
parallelism.

To tackle this capacity problem differently, we first analyze
the characteristics of those emerging NLP models. Our analy-
sis reveals that, unlike conventional models, these extreme-
scale NLP models consume huge memory proportional to
the parameter size, but do not fully utilize the bandwidth
of high-performance DRAM (e.g., high bandwidth mem-
ory (HBM)) because of a much higher degree of data reuse.
This high arithmetic intensity stems from the huge model
sizes, as parameters are shared by much more input elements.
Thus, we have identified the opportunity to use high-capacity,
low-performance NAND flash instead of low-capacity, high-
performance HBM to train these extreme-scale NLP models.

Thus, we propose Behemoth, a NAND flash-centric train-
ing accelerator targeting extreme-scale NLP models. Behe-
moth allows those NLP models to be trained in a data parallel
manner, where the training data set (not the model) is parti-
tioned across multiple devices. To satisfy the computation,
memory, and bandwidth requirements simultaneously, Behe-
moth integrates one Weight Node with multiple Activation
Nodes. Like the parameter server in a data-parallel distributed
system, Weight Node is responsible for feeding the Activation
Nodes with weight data for each layer and reducing the weight
gradients produced from them. Activation Nodes are the ac-
tual worker nodes processing each layer of the model. These
nodes are composed of a DNN-specific Compute Core and
enhanced large NAND flash memory, which can feed the core
in time and store the data generated during the training pro-
cess. The need for enhanced high-bandwidth flash memory is
engendered by large data size and high-throughput Compute
Cores. The NAND flash memory bandwidth can be scaled
by increasing the number of channels and chips. However, in
order to deliver the required performance of the DNN training
workload, for example, tens of GB/s or more, the bottleneck
caused by firmware must be resolved. Behemoth provides a
performance scalable flash memory system for DNN training
by hardware automation of the write datapath in a controller.
Furthermore, Behemoth drastically extends the endurance of
NAND by leveraging tradeoffs between retention time and
endurance (P/E cycles) of NAND flash.

To summarize, our contributions are listed as follows:

• We carefully analyze the memory capacity problem that

: Forward path
: Backward path

A: Activation W: Weight G: Gradient

!!

!"

!#

!$

!%

!&

!'

G
round
Truth"&

!!
"& #&
##

#$

Figure 2: DNN training process and dataflow. The solid line
represents the forward path in Layer 5 where A2 and A3 are
provided as inputs. The dotted line depicts the backward path
of the same layer, where A5 is retained with W5 and G7 is
received to compute G5.

arises when training extreme-scale DNN models and
identify new opportunities to leverage NAND flash de-
vices, replacing expensive DRAM devices.

• For efficient training of these models, we present Behe-
moth, a novel flash-centric training accelerator targeting
those models.

• To satisfy the bandwidth and endurance requirements of
DNN training, we propose Flash Memory System (FMS)
for Behemoth, which provides both high bandwidth and
high endurance.

2 Background and Motivation

2.1 DNN Training
DNN training is a process where a neural network model

utilizes a training dataset to improve its performance (e.g., ac-
curacy) by updating its parameters. It is essentially a repetitive
process of matrix operations. Both activations and weights,
represented as matrices, are multiplied and added in every
layer. Figure 2 describes an iteration, where activations fol-
low the path predefined by the model, repeating the forward
and the backward path. The training process is deterministic
as the process follows a predefined forward and ensuing back-
ward path. It is also iterative in that the paths are repeated
until the desired result is generated. One set of a forward and
backward path is called, surprisingly, iteration, and the set of
inputs being processed in the iteration is termed batch.

In the forward path, input activations are passed to a layer,
as shown in Figure 2. Upon receiving the activations A2 and
A3, they are multiplied with the weight W5 and generate output
activation A5. The output activation is retained in the layer for
use in the backward path and sent as input to the next layer in
the forward path. This process is repeated until the last layer.
The output of the last layer is compared with the ground truth
to calculate the error. This error is fed back to the last layer,
thus starting the backward path. In this path, the gradients

372 19th USENIX Conference on File and Storage Technologies USENIX Association

: FC Layer

Feed Forward

!! !"#$…

Encoder

Input

(a) (b) (d)

Encoder

intermediate

Add & Norm

Add & Norm

Attention

Feed Forward

!! !"#$…

Decoder

Input

intermediate

Add & Norm

Add & Norm

Masked
Attention

!! !"#$…

intermediate

Add & Norm

Cross
Attention

Feed Forward

!! !"#$…

Input

intermediate

Attention

Decoder

!! !"#$…

Input

intermediate
Masked

Attention

!! !"#$…

intermediate
Cross

Attention

...

...

Decoder

Feed Forward

Masked
Attention

...

Encoder

Feed Forward

!! !"#$…

intermediate
Attention

Encoder

Feed Forward

Attention

Input

Feed Forward

Decoder

Feed Forward

Masked
Attention

Cross
Attention

Decoder

Feed Forward

!! !"#$…

Input

intermediate
Masked

Attention

...

Encoder

Feed Forward

Attention

(c)
Figure 3: Simplified view of Transformer-based models. (a) Transformer block as a whole which consists of an encoder block(left)
and a decoder block(right). Each Hn represents the nth head in the attention layer which performs matrix multiplication to
calculate a vector which is concatenated in the nth position in the resulting vector. (b) BERT-like models where only the encoder
part of the transformer is used. (c) GPT-like models where only the decoder part of the transformer is used. The main difference
from (b) is that these models typically adopt masked attention, where the attention operation can only attend tokens appearing
before the current one. (d) T5-like models where both encoders and decoders are used. Unlike those illustrated in (b) and (c) they
have cross-attention layers in the decoder modules. The final output of encoders in T5 is distributed across all cross-attention
layers in their decoders.

of both activations and weights with respect to the error are
created. Input gradients are then propagated backward, gener-
ating weight gradients and updating weights along the way.
Every DNN model training follows this pattern, regardless of
which application it targets. However, the size and structure
of the models differ by their usage. There are diverse applica-
tion domains of DNNs, such as natural language processing
(NLP), reinforcement learning (RL), computer vision (CV),
and so on. This work primarily focuses on NLP.

2.2 Extreme-scale Language Models
Many of the emerging, extreme-scale NLP models share

the same internal structure. Although the details may vary,
all of these NLP models essentially consist of Transformer
blocks shown in Figure 3(a). Specifically, some NLP models
(e.g., BERT [18], RoBERTa [44], BART [40]) are constructed
by stacking the encoder blocks of the Transformer model as
shown in Figure 3(b), and some other NLP models (e.g., GPT-
2 [53], GPT-3 [5]) are constructed by stacking the decoder
blocks of the Transformer model as shown in Figure 3(c).
Finally, as in the original Transformer, some models(e.g.,
T5 [54], Transformer-XL [17]) have stacked encoder blocks
followed by extended decoder blocks as shown in Figure 3(d).
Conceptually, encoder blocks can focus on relevant parts
of the input sentence through attention layers. As a result,
encoder-only models are mostly utilized for comprehension
tasks (e.g., sentiment analysis,question-answering). Decoder
blocks contain a masked attention layer, which is identical to
the encoder’s attention layer except that words coming after
the current position are masked. Based on such characteristics,

many decoder-only models are utilized for text generation
tasks. In models that exploit both encoder and decoder blocks,
a cross-attention layer is added to the decoders, which helps
the decoder focus on the input sentence’s related positions by
utilizing the encoder block’s output. Such models are often
utilized for tasks like translation.

One notable characteristic of these Transformer-based lan-
guage models is their gigantic sizes. For example, GPT-3
has 175 billion parameters, and the parameter size has been
scaled by over 1000× over the past two years as shown in Fig-
ure 1. This implies that the model size will scale even further
in the future. The gigantic size of these emerging language
models brings many unique challenges to the existing neural
network processing system. One of the most notable ones is
the memory capacity wall, explained in the following.

2.3 Challenges for Extreme-scale Language
Model Training

As stated above, the GPT-3 model has 175 billion parame-
ters, where each parameter is represented in the FP16 format.
In such a case, it takes 350GB of storage to store the parame-
ters for this model. The storage cost is worse in training since
training requires extra storage to buffer each layer’s output
activations as well as weight gradients. Here, the size of the
weight gradients is identical to the weights themselves and
thus cost 350GB. The sum of output activation sizes for the
GPT-3 model is 43.7GB for a single input sequence with 2048
tokens, and this linearly increases with the number of input
sequences in a single batch (i.e., batch size). For example, if
one wants to train the GPT-3 with a batch size of 32, it will

USENIX Association 19th USENIX Conference on File and Storage Technologies 373

Activation Node

Tensor Buffer
DDR DRAM

Compute Core

SRAM
Accum.

MatMul.

Control Path

DRAM Ctrl.

Data Path

Host CPU

Model
analysis

Training
result

Comp. & DMA
sequence

Sequence
generating Ctrl. Logic

FMS Ctrl.
NAND NAND
NAND NAND

Weight Node

Tensor Buffer
DDR DRAM

Compute Core

SRAM

Reduce
DRAM Ctrl.

Ctrl. Logic

FMS Ctrl.

Behemoth Platform

PCIe

NAND NAND
NAND NAND

NAND NAND
NAND NAND

NAND NAND
NAND NAND

Figure 4: Behemoth architecture

require around 2.1TB storage space.

Unfortunately, conventional DNN training platforms such
as NVIDIA GPUs or Google TPUs are equipped with HBM,
which offers very limited storage capacity. For example, a
single TPU chip, as well as a single V100 GPU only has
(a maximum of) 32GB memory space. In order to train the
GPT-3 model on these platforms, a minimum of 66 devices
are required. In terms of computation, this is not a significant
problem since training an extreme-scale model like GPT-3
in a reasonable time frame requires a very large computa-
tional capability, which often exceeds that of the 66 GPUs
or TPU chips. However, the inefficiency here is that existing
platforms such as TPU chips or GPU comes with an unnec-
essarily expensive memory system that is inadequate for the
large-scale language model training.

As shown in Figure 3, large-scale, Transformer-based lan-
guage models are mostly piles of fully-connected (FC) lay-
ers. Here, the dimensions of the FC-layers are very large.
For example, a feedforward layer in the encoder/decoder
block includes matrix multiplication between a 2048×12288
matrix and a 12288×49152 matrix to process a single in-
put. In such cases where the matrix dimensions for the
fully-connected layer are large, each value in the matrix is
reused many times, and thus the layer ends up requiring a
relatively small number of memory accesses compared to
the amount of computation (i.e., the arithmetic intensity is
low). Specifically, if the input matrix size for the FC layer
is m×n and the weight matrix for the FC layer is n× k, the
amount of required multiply-accumulate (MAC) operations
is mnk, and the amount of data that needs to be communi-
cated from/to memory is mn+ nk +mk. Thus, a larger m,
n, or k increases the ratio of mnk to mn+ nk +mk. When
m = 2048 ∗ 32,n = 12288,k = 49152 as in the feedforward
layer of the encoder/decoder block processing 32 inputs (i.e.,
sequence length = 2048, batch size = 32), the operation re-
quires 73.728 TFLOP for this matrix multiplication, and the
total amount of data transfer from/to memory is 9.26GB, as-
suming FP16 datatype. For a single TPU chip, which can per-
form 105 TFLOP per second, this matrix multiplication takes
0.7 seconds. Since the TPU v3 is equipped with two HBM
memory channels whose aggregate bandwidth is 600GB/s,
this is enough time for the chip to transfer 420 GB. How-

ever, the operation only requires 9.26GB data transfer with
the memory, grossly underutilizing the memory bandwidth.
Thus, it is critical to match the arithmetic intensity of the
models and the compute-to-memory (disk) bandwidth ratio
of accelerators. Note that the released pretrained versions of
smaller-scale Transformer-based models such as BERT and
GPT-2 do not support processing of such long sequences, thus
featuring lower arithmetic intensities.

This analysis of bandwidth underutilization indicates that
HBM is not the ideal system for this workload. A similar
argument applies for NVIDIA V100 GPU, which pairs some
112 TFLOPS with an HBM memory system having 900GB/s
aggregate bandwidth.

Our Work. Observing this significant memory bandwidth un-
derutilization, we propose to utilize the flash memory system
(FMS) to design a more cost-effective large-scale language
model training platform. However, naively replacing the
HBM memory-system to a commodity SSD is not the right
solution. In order to architect an efficient FMS for language
model training, several challenges need to be addressed. First,
an SSD has extremely-low bandwidth, especially when the
access pattern is not sequential. Even if the access pattern
is sequential, the sustained write bandwidth is often substan-
tially lower than the peak bandwidth due to SSD garbage
collection operations (GC) [33, 55]. The second challenge is
endurance. Because SSDs can only sustain a limited number
of writes, utilizing SSD as a memory for the DNN training
can significantly reduce the lifetime of SSDs. This problem
becomes exacerbated when the access pattern is not sequential
because random writes tend to increase the write amplification
factor (WAF). Our work proposes solutions for these chal-
lenges and demonstrates that FMS can be effectively utilized
for DNN training.

3 Overview of Behemoth

We design Behemoth to fully accommodate extreme-scale
DNN models in a single node enabling data-parallel training.
As illustrated in Figure 4, Behemoth consists of Compute
Core, Tensor Buffer, and FMS. Compute Core is the comput-
ing substrate for training. Control Logic in Compute Core
receives a sequence of commands from a host CPU and gener-

374 19th USENIX Conference on File and Storage Technologies USENIX Association

ates both computation and data transfer commands by parsing
the sequence. The imminent weight and activation tensors are
kept in the DRAM buffer (named Tensor Buffer) serving as a
staging area. Upon receiving the read/write commands issued
by the control logic, FMS controller executes the commands,
retrieving and storing data in the NAND chips.

3.1 Training DNN Models on Behemoth
Most of the recent DNN frameworks employ a Python

model. This model is pre-processed on the host CPU for
analysis, extraction of layer information, and then genera-
tion of a sequence of commands that Behemoth can execute.
This command sequence is communicated to Behemoth for
execution.
Model Analysis. A user can define a DNN model to train
using the PyTorch [52] format. In this model analysis step,
information is collected about each layer’s order, arguments
used in the layer’s operation, and input/output tensors to use.
This step works similarly to the process of creating a static
computation graph in Caffe [3] and TensorFlow [1].
Generating Command Sequences. Based on the collected
model data, this step generates two types of command se-
quences: computation command sequence and direct memory
access (DMA) command sequence. The DMA command
sequence controls data transfers between Tensor Buffer and
NAND flash devices. A DMA command includes fields about
the direction of transfer (read/write), logical block address
(LBA) of the NAND device, and Tensor Buffer address. The
computation command sequence lists operation commands
to perform on Compute Core. A computation command in-
cludes fields about the type of the layer (e.g., Fully-connected
(FC), Convolution (Conv)), and the address in Tensor Buffer
where the layer’s input and output tensors will be stored. Both
command sequences are transferred to Behemoth to be saved
in the region for the non-volatile stream (NV-Stream in Sec-
tion 4.1).

3.2 Hardware Components of Behemoth
Behemoth platform consists of a single Weight Node and

multiple Activation Nodes to fully utilize the bandwidth be-
tween Tensor Buffer and NAND flash. Each node consists
of Compute Core, Tensor Buffer, and NAND flash. Weight
Node stores the weights of the target training model in the
NAND flash. The Activation Nodes create activation ten-
sors during forward propagation and store them locally in the
NAND flash for reuse during backward propagation.
Compute Core. Compute Core is not bound to a specific
DNN accelerator architecture. Thus, we assume a generic
DNN accelerator that abstracts popular commercial/academic
accelerators [9,10,24,27,58]. The DNN accelerator is special-
ized for DNN processing and performs matrix multiplication
and addition for weights and activations. It consists of a 2D
array of processing elements (PEs), where each PE can per-

Weight Node
Tensor Buffer

NAND Flash

Activation Node

Tensor Buffer

SRAM

PEs

NAND Flash

(a) Forward / Backward propagation

1 Read
weight

3
Load
weight

6

Weight Node

Tensor BufferCompute Core

SRAM

PEs

NAND Flash

(b) Weight updating

Receive weight grad
from Act. Node

a

5 Store act.

b Load
grad

Store grad

d
Write updated

weight to NAND
e

c Compute

4
Compute 14 & act. 3 Read

act.5
Write
act.

6 Store grad.

Broadcast
weight
2 2Comp. Core

Figure 5: Example walk-through of Behemoth (a) Forward
and backward propagation (b) Weight updating

form a single MAC operation every clock cycle. Behemoth
assumes a weight stationary dataflow architecture [9], where
weights are directly loaded from Tensor Buffer and kept in
the local registers inside the PE. Every cycle, a new input is
provided to the PEs from the SRAM buffer of Compute Core.
This input is multiplied by the corresponding weight in the
PE, and the result is accumulated. Once the computation is
done, the output values are transferred to the SRAM buffer,
and eventually to Tensor Buffer.

Control Logic. Control Logic is responsible for sequencing
computation commands and orchestrating data transfers be-
tween SRAM buffer, Tensor Buffer, and FMS. Specifically,
it decodes the commands provided by the host CPU and in-
spects if this command can be scheduled (i.e., satisfies all
dependencies). If so, Control Logic dispatches this command
to Compute Core (if it is a computation command) or DRAM
Controller or FMS Controller (if it is a DMA command) to
initiate the requested DMA. Note that this is a very simple
logic, which sequences the commands in order.

Tensor Buffer. Tensor Buffer is a DRAM region that serves
as a staging area between Compute Core and FMS. The
primary role of his buffer is to smooth the traffic between
FMS and Compute Core simply. Thus, Tensor Buffer only
stores temporal data and does not require persistence.

Flash Memory System (FMS). FMS is the main storage
in Behemoth replacing the HBM in the conventional DNN
accelerators (e.g., TPU). As in SSDs, this component includes
a set of NAND chips. However, unlike the conventional SSD,
it has a hardware-based FMS controller that replaces the flash
translation layer (FTL) running on general-purpose cores.
This component interfaces with Control Logic and transfers
data to Tensor Buffer. The details of this component are
explained in Section 4.

USENIX Association 19th USENIX Conference on File and Storage Technologies 375

3.3 Example Execution Walk-Through
Figure 5(a) and (b) illustrate the process of forward and

backward propagation in Behemoth. In what follows, we
explain this process in greater detail.
Forward Propagation. Executing forward propagation in
Behemoth consists of 6 steps, which can be overlapped. While
computation is being performed on Activation Node, weights
on Weight Node are prefetched. 1 Executing a layer starts
with reading the weights stored in the NAND flash of Weight
Node into Tensor Buffer. 2 The weight tensor is broad-
casted and transferred to Tensor Buffer of Activation Node.
3 Then, the weight tensor is loaded into on-chip SRAM, and
4 computation begins. When computation is completed on

Activation Node, 5 the activation tensor stored in SRAM
is copied to Tensor Buffer. 6 Finally, the activation tensor
in Tensor Buffer is written to NAND flash for reuse during
backward propagation, and the weight tensor is deallocated
from Tensor Buffer.
Backward Propagation. Figure 5(a) and (b) show the pro-
cess of backward propagation (labeled with empty circles). It
is divided into two parts. The first part is executed for each
layer, and the second one only once at the end of each iter-
ation. Like forward propagation, all steps are pipelined and
operated in parallel. The processes of 1 and 2 are the same
as forward propagation. Once the weight tensor is received
from Weight Node, 3 Activation Node reads the activation
tensor of the corresponding layer stored in the NAND flash
during the forward propagation into Tensor Buffer. 4 Upon
completion of loading the activation tensor, both activation
and weight tensors are loaded into SRAM, and then 5 com-
putation is started. When the operation is completed, 6 the
resulting gradient tensor is stored in Tensor Buffer.

After the calculation of all layers is completed, a the final
weight gradient tensor is transferred from Activation Node
to Tensor Buffer of Weight Node. After confirming that all
weight gradients have been received, b Weight Node loads
the weight gradients into SRAM and c updates the training
results of the iteration to the weights. d The updated weights
are stored to SRAM and e written to the NAND flash for the
next iteration.

3.4 DNN Model Coverage
Behemoth targets training workloads for extreme-scale

models whose memory bandwidth requirement does not ex-
ceed the sustainable bandwidth of FMS. Suitability for other
models can be determined by analyzing their arithmetic inten-
sity. Our model analyzer can compare the arithmetic intensity
of a model with Behemoth’s compute-to-bandwidth ratio (i.e.,
FLOPS / GB/s) to check whether the model is provided with
enough bandwidth from FMS [49].

The key enabler of FMS as a storage medium of tensors is
a higher degree of data reuse resulting from long sequence
length. State-of-the-art models that are capable of handling

Table 1: DNN training data types and multi-stream support
#: Stream name

(Act. Node /
Weight Node)

Persistency Retention
Access permission

Host Behemoth

1: NV-Stream
(Training inputs / –) Non-volatile Years Append-only

seq. write Read only

2: V-Stream
(Activations /

Interm. weights)
Volatile Minutes N/A

Read &
Append-only

seq. write

3: NV-Stream
(– / Trained weights) Non-volatile Years Read only

Read &
Append-only

seq. write

such long sequences have an extremely large size. Small-sized
models exhibit much lower arithmetic intensity, hence not be-
ing the primary target of Behemoth. For example, small NLP
models [18, 40, 53] have limited sequence length (e.g., 512).
This is much smaller than 2048 for GPT-3. Conventional vi-
sion models such as ResNet heavily utilize convolution layers.
Converting convolutions into matrix multiplications through
convolution lowering [12] results in a dimension m that is
much smaller than those of FC layers, hence failing to provide
enough bandwidth from FMS. This issue can be mitigated
to a certain extent by increasing the batch size, which in turn
increases the degree of reuse for weight parameters.

4 Architecting Specialized Flash Memory Sys-
tem (FMS) for DNN Training

As stated in Section 2, the main challenges in adopting NAND
flash memories for the language model training is the limited
bandwidth and the endurance of the NAND flash memories.
This section presents our solution to the two challenges and
explains FMS’s implementation in detail.

4.1 Improving Effective Bandwidth of FMS
Modern NAND flash memory-based storage adopts a num-

ber of flash channels and ways to increase bandwidth and
capacity. A host interface for the storage has also run a neck
and neck race with the storage’s internal bandwidth to meet
the user’s performance requirement. In terms of hardware
bandwidth of the NAND flash-based storage, the interface
speed and the number of NAND channels, as well as the
number of NAND chips attached to a channel, define the
maximum reachable speed of a NAND flash-based storage.

Technically, the bandwidth of a flash-based memory sys-
tem can be improved by utilizing a large number of NAND
channels as well as the sufficient number of NAND chips
per channel to saturate the channel bandwidth. Indeed, some
recent proposals [11, 25] demonstrate that it is possible to
build a high-bandwidth NAND system by increasing the num-
ber of channels or the channel bandwidth itself. However,
to fully utilize the high peak bandwidth of such a NAND
device, one needs to i) make writing sequential as much as
it can and ii) prevent the slow NAND firmware running on a
general-purpose processor from being a bottleneck [11, 71].

Data type Separation. Generally, it is challenging to identify

376 19th USENIX Conference on File and Storage Technologies USENIX Association

Table 2: NAND block layout for a chip and multi-stream
attributes of Activation Node

NAND Block Layout Stream attributes
Plane

PBN 0 1 . . . 7
Capacity P/E cycle/

Retention0 FTL Metadata
(LBN2PBN map, PB metadata, etc)9

10 1: NV-Stream (training input) 249 GiB 50K /
1 year92

93 2: V-Stream (activation data) 1737 GiB 2M /
1 day 671

672 Reserved blocks for bad block replacement682

a workload’s data access patterns before it is executed. How-
ever, a DNN training accelerator (or NPU) has a deterministic
data access pattern that can be statically analyzed. The DNN
training accelerator accesses three types of data, each having
a very specific characteristic as listed in Table 1.

First, Activation Node’s FMS houses two types of data:
training input data and the activation data. Here, training
input data is a set of text data used as training inputs of the
DNN model. This data is written by a host before the training
starts and then discarded once the training finishes. Activation
data are written by Compute Core of the FMS platform during
a forward path of the training and then consumed during a
backward path of the training. The data is not written or read
by the host, and the life cycle of these data is very short (in
order of seconds, or minutes at most) as they are lived only
within a single iteration.

Similar to Activation Node, FMS of Weight Node also
houses two types of data. First, it holds the final model
weights, that is only updated at the end of the training (or
after a certain number of iterations to checkpoint the interme-
diate weights), and then later read by the host CPU. Second,
it stores intermediate model weights that are updated at the
end of each iteration.

Since two data types housed in the same device (i.e., train-
ing input data vs. activation data in Activation Node; final
trained weights vs. intermediate model weights in Weight
Node) have completely different characteristics, it is benefi-
cial to separate them to two logically isolated spaces as in
multi-stream SSDs [30, 33, 55]. In particular, we employ two
streams: the non-volatile stream (NV-Stream) and the volatile
stream (V-Stream). Table 2 summarizes a block layout for a
single NAND chip and capabilities of each data stream of Ac-
tivation Node. Weight Node layout is the same, but only the
capacity and physical block number (PBN) division are differ-
ent from storing the weight result. The streams are physically
separated by block address boundary, hence able to function
as if each stream were an individual storage space, and thus
each single stream can have their own logical address space,
access permission, and allowed P/E cycle based on retention
requirement, which is determined by characteristics of the
DNN training data. This separation of different data types
enables several useful optimizations as follows.

PB
0

PB
1

PB
2

PB
3

PB
0

PB
1

LB
0

LB
1

LB
2

LB
0

Start
Iteration

#1

End
Iteration

#1Seq. write

LB
1

LB
2

Round-robin block allocation

Start
Iteration

#2

End
Iteration

#2Seq. write

. . .

Figure 6: Sequential append-only writes with RR allocation

Lightweight Flash Translation Layer. Two major function-
alities of the flash translation layer (FTL) are garbage collec-
tion (GC) and wear-leveling. However, since writes to each
data for our FMS is guaranteed to be sequential, complicated
garbage collection and wear-leveling are mostly unnecessary.
Thus, we remove the FTL’s garbage collection functional-
ity and then replace the wear-leveling block allocator with a
simple round-robin block allocator shown in Figure 6. For ex-
ample, as shown in the figure, assume that FMS has four Phys-
ical Blocks (PBs), and the host writes three Logical Blocks
(LBs) sequentially during a single DNN training iteration.
During the first training iteration, FMS uses PB 0, 1, and 2
by mapping to LB 0, 1, and 2. And then, in the second train-
ing iteration, FMS allocates PBs according to Round-Robin
(RR) policy from PB 3 to PB 0, 1 for writing to LB 0, 1, 2
of the host. This simple RR block allocation policy strictly
levels wear of all NAND blocks. The utilization of this simple
wear-leveling scheme as well as the removal of the garbage
collection greatly simplified the FTL.

Hardware Automation of Write Path. Most modern com-
mercial SSD controllers adopt a read automation feature
that accelerates the read operation exploiting specialized
hardware that substitutes (part of) the read path of the SSD
firmware [11]. On the other hand, the write data path still
relies on the firmware with high overhead or is merely par-
tially replaced by hardware logic with substantial functional
restrictions [28, 70]. This is mostly because the write data
path is much more complex than the read path. For exam-
ple, the write path needs to perform many additional oper-
ations compared to the read path. Specifically, it needs to
i) reserve NAND blocks for the GC operations, ii) perform
wear-leveling to ensure that all NAND blocks are used evenly,
iii) guarantee data consistency among the internal R/W oper-
ations generated by the GC, the wear-leveling, and the user
write commands, iv) manage metadata necessary for recov-
ery from expected or unexpected power-reset, and v) handle
exceptions for P/E failures.

However, we note that our FMS’s common write data path
does not need to perform many additional operations than
the read path. It does not require a garbage collection and
utilizes a very simple wear-leveling block allocator. Metadata

USENIX Association 19th USENIX Conference on File and Storage Technologies 377

Buffer
Ctrl.

Buffer
Ctrl.

Buffer
Ctrl.

NAND
Ctrl.NAND

Ctrl.

FTL
Ctrl.
X 4

FTL
Ctrl.
X 4

FTL
Ctrl.
X 4

FTL
Ctrl.
X 4

FTL
Ctrl.
X 4

FTL
Ctrl.
X 4

(a) Write command pipeline: Max. 56GB/s

(b) NAND program pipeline: Max. 64GB/s

NVMe/PCIe
Interface Ctrl.

Buffer
Ctrl.x4

DMA
Ctrl.

NAND
Ctrl.

...
NAND Ctrl.

x 64 Channels

NVMe/PCIe
Interface Ctrl.

FTL
Ctrl.x4

Flash
Buffer
Ctrl.x4

Cmd parsing (200 CLKs)
Buffer allocation
(120 CLKs / LP) DMA from TSB

(34 CLKs / LP) Cmd. completion (200 CLKs)

Buffer search &
invalidation

(120 CLKs / LP)

NAND Page
allocation

(120 CLKs / LP)

NAND program issue and completion
(2048 CLKs / PP)

H/W FIFO

Ctrl (Controller)
Cmd (Command)
CLK (Clock): 2.12ns (450Mhz)
LP (Logical Page): 4KB
PP (Physical Page: 4KB
TSB (Tensor Buffer)

SRAM Buffer

Data path

Figure 7: Automated write data path of FMS

management is not on a critical path and unnecessary for tem-
porary data such as activation data and intermediate weight
data. Finally, the exception handling is a rare event. Thus, it
becomes relatively easy to automate the write data path by
utilizing specialized hardware. By doing so, it is possible to
prevent the firmware from being a bottleneck.

Figure 7 shows hardware pipeline stages for the write path
of FMS and a timing of each pipeline stage. The automated
write path is composed of (a) write command pipeline that
transfers data from Tensor Buffer to an SRAM buffer in the
FMS controller and (b) NAND program pipeline that pro-
grams data in the SRAM to NANDs. As shown in Figure 7,
we carefully design each pipeline stage to meet a memory
bandwidth requirement for DNN training. In particular, a
buffer search/invalidation and a NAND page allocation stage
of the NAND program pipeline, which was handled by the
firmware of an existing SSD product [11], have been com-
pletely replaced with FMS controller logic.

Note that the hardware pipeline does not update the meta-
data necessary for persistence. For temporary data that ac-
counts for the most portion of FMS, persistency support is
not performance-critical as the iteration can be re-executed
from the last checkpoint. For the data that needs the storage
to be persistent, a user can make an explicit request (e.g.,
flush command [48] after writes) that initiates the firmware
to ensure that the data is persistent.

4.2 Improving Endurance of FMS
The endurance of a NAND flash based storage relies on the

program and erase (P/E) cycle for NAND blocks. The P/E
operation wears the NAND block, accelerating the leakage of
the electrons in the NAND cells. Additionally, such damage
from the P/E cycles is cumulative and irreversible and gives
rise to a myriad of read error bits, which cannot be corrected
by an ECC engine of a storage controller.

FMS essentially utilizes a flash as a temporary buffer for the
activation and intermediate weights. At a glance, it may seem
like such a frequently re-programmed value will substantially
affect the lifetime of the SSDs, which are often defined as the
number of P/E cycles that a NAND cell can sustain. However,
we argue that this is not the case (and present a quantitative

analysis in Section 5.3).
Typically, each P/E cycle damages a NAND cell, and such a

damage keeps reducing the retention time of the cell. Once the
retention time falls below the guaranteed retention time (e.g.,
1 year in consumer-grade SSDs [14]), the cell is considered
having failed. At that point, the cell may not be suitable for
storing the data for a long time; however, it is likely to be
still sufficient to store the data that will only last for a few
minutes. In light of device physics, the programmed NAND
flash cells gradually lose their electrons from a floating gate
over time, and in case a cell is damaged by the repetitive
P/E cycles, the cell loses charge faster [26, 57]. However,
with the low retention requirement, the cell can still maintain
sufficient level of charges until the end of the retention time.
In fact, many studies [6, 43, 45] already demonstrated that the
SSD endurance (# of P/E cycles) is larger when the retention
requirement is relaxed. Note that the benefits of reduced
retention does not require additional hardware resources (e.g.,
more complex ECC engines or an extra over-provisioning
space).

Considering that FMS (V-Stream data) requires only a few
minutes (e.g., 5 minutes) of retention time that is almost five
orders of magnitude smaller than a typical consumer-grade
SSD, it is expected that the cell can sustain a substantially
large number of P/E cycles before a cell’s minimum retention
time to fall below a few minutes.

5 Evaluation

5.1 Methodology
We evaluate our platform’s effectiveness by i) comparing

our platform’s memory cost to conventional TPU-based DNN
training system, and ii) comparing our platform with the spe-
cialized FMS to the hypothetical platform with conventional
SSDs.

Simulation Framework. To model the performance of the
Behemoth platform, we utilize MAESTRO [36] for Compute
Core and MQSim [63] for modeling our FMS. Specifically,
we utilize PyTorch [52] to obtain the layer dimensions of the
large-scale language models, and then use that information on
MAESTRO [36] to obtain the number of cycles that Compute
Core (PE arrays with weight-stationary dataflow) needs for
the computation of a specific layer in the language model.
Then, based on this information, we generated the traces
for our FMS and fed these traces to the MQSim (modified
to support our proposed changes detailed in Section 4) to
obtain the flash memory-related statistics. Both simulators are
validated with NPU hardware RTL [9, 37] and a commercial
SSD product [13], exhibiting an average of 5% errors [32,36].

Workloads. We evaluate twelve workloads representing three
types of widely adopted transformer models. Table 3 lists
these models. As listed in Table 3, we evaluate our work with
two types of models: (a) BERT/GPT-like and (b) T5-like. We

378 19th USENIX Conference on File and Storage Technologies USENIX Association

Table 3: DNN models evaluated with Behemoth. We use a
sequence length of 2048 (tokens) for each model.

Model Size Total act.
(GB)

Total weight
(GB) PFLOP

BERT/GPT3-like [5, 18]

1×1 44 350 2.15
1×2 88 698 4.42
1×4 175 1393 8.56
2×1 88 1395 8.56
2×2 175 2786 17.12
2×4 349 5569 34.21

T5-like [54]

1×1 40 305 0.62
1×2 80 609 1.25
1×4 160 1218 2.49
2×1 80 1218 2.49
2×2 160 2436 4.99
2×4 319 4871 9.97

enlarge the dimensions in FC layers of the models and/or
stack more encoders/decoders, respectively, for diverse com-
parison. W×D notation is defined as W -fold enlarged FC
layers dimension (width) and D times increased depth was
implemented by stacking more encoders/decoders or trans-
formers blocks. Our workloads present various Transformer-
based models. Transformer is a key enabling primitive
for DNN to advance the state-of-the-art in the domains of
NLP [4, 5, 16–18, 31, 34, 39, 40, 44, 54, 59, 66, 68, 72], image
detection [7, 19], point cloud [21], and recommendation sys-
tems [62]. All of these models can be classified into either
BERT/GPT-like or T5-like.

The rationale behind binding BERT/GPT-like models is
as follows. They do not use a combined transformer but
separately utilize encoders and decoders. While they have
certain different characteristics, such as in the computation
process, their structure is identical, as described in Figure 3.
Thus, the two systems’ total activation and weight are equal
when having the same number of parameters. The structure
of the T5-like models makes it difficult to exactly match the
number of parameters with the encoder-only or decoder-only
models. In turn, they show the different sizes of activation and
weight. The sequence length of 2048 tokens can be interpreted
as roughly 2048 words in a sequence. The sequence of 2048
tokens comprises a batch size of 1, and the activation size is
calculated for one batch.

5.2 Memory Cost Evaluation

Baseline NPU with HBM DRAM. In order to train very
large scale language models like GPT3, existing HBM-based
neural processing accelerators need to be configured in a
model-parallel manner. In such a configuration, each TPU is
assigned a portion of the model (i.e., a distinct set of consec-
utive layers). Once a neural processing accelerator finishes
the computation for the layers it is assigned to, it passes its
outputs to the other neural processing accelerator in charge of
the following layers. This model parallelism makes it possible
to train a very large model that does not fit in a single neural
processing accelerator’s HBM-based memory. One notable
drawback of this approach is the difficulty in load-balancing.

Table 4: Platform configurations for the cost evaluation of
Behemoth.

NPU Parameters
Number of cores 16 cores (52.5 TFLOPs per core)
Number of PEs 524,288
Peak throughput 840 TFLOPs

Host I/F conf. PCIe Gen4 × 32 lane [51]
Memory Parameters

Resembled TPU [27] Behemoth

Buffer conf. 16GB HBM
16GB DDR4 DRAM +

2TB NAND flash
Peak bandwidth 300GB/s 50GB/s

Compute Parameters
Parallel comp.

method Model parallelism Data parallelism

For example, training GPT-3 requires a minimum of 393GB
storage, which translates to a 24-stage pipeline assuming that
a hardware corresponding to each stage has a 16GB HBM
memory system. Depending on the nature of the model, par-
titioning the model into 24 slices in a load-balanced manner
may be very difficult, if not impossible. For the cost com-
parison, we configure an NPU resembling the structure of
TPU, as shown in Table 4. A single device here has 16 com-
pute cores, each having 52.5TFLOPS peak throughput. Each
of these cores is attached to a single, 16GB HBM memory
whose peak bandwidth is 300 GB/s. To achieve sufficiently
high throughput, multiple copies of these devices are utilized
in parallel.
Behemoth with FMS. Unlike the baseline, Behemoth plat-
form utilizes data parallelism, which enables the complete
model to be trained on a single device, and thus does not
suffer from load imbalance issues. We configure the single
device for the cost comparison to having 16 compute cores,
each having 52.5 TFLOPS peak throughput as in the baseline
NPU. However, instead of HBM, 16 computation cores in
Behemoth device share a single FMS with 2 TB capacity and
50 GB/s peak bandwidth. In addition to this device utilized as
an Activation Node (see Figure 5), there is a separate device
utilized as a Weight Node. However, since there will be many
Activation Nodes that share a single Weight Node, the cost of
the Weight Node is amortized. Note that we carefully config-
ured 16 cores to share a single FMS. To determine the number
of cores to share a FMS, we selected the maximum number
of cores that satisfies the following criteria: (a) the size of the
data fits inside our storage, and (b) the data transfer between
the FMS and compute cores can be completely hidden.
Cost Evaluation. Figure 8 demonstrates the difference of
memory cost between Behemoth and TPU v3 [27], a popular
training accelerator deployed by Google. We assumed that
the user utilizes the 432 Behemoths and 864 TPUs that are
just enough to train each workload in 10 days. For this cal-
culation, we assumed HBM device cost to be $20/GB [23],
DDR4 DRAM device cost to be $4/GB [47], and flash device
cost to be $0.67/GB. Note that the cost of Behemoth SSD,
using 128Gb V-NAND based SLC, was set as four times a
commercial SSD price (0.167$/GB) which uses 512Gb V-

USENIX Association 19th USENIX Conference on File and Storage Technologies 379

0

10000

20000

30000

40000

1 x 1 1 x 2 1 x 4 2 x 1 2 x 2 2 x 4

GPT3 TPU v3 GPT3 Behemoth
T5 TPU v3 T5 Behemoth

C
os

t
(x

 $
10

00
)

Figure 8: Memory cost comparison between TPU v3 [27] and
Behemoth. W × D in the figure illustrates that the dimension
of each layer is increased by W times and the number of layers
is increased by D times.

NAND TLC [15]. It can be seen from the figure that the
cost gap between the two systems increases commensurate
with model size. The maximum difference of $25.7M for
BERT/GPT3-like models and $7.5M for T5-like models.

5.3 FMS Evaluation
Configuration. We compare a DNN training platform utiliz-
ing BehemothFMS and the other utilizing the conventional
storage using commodity SSDs. The configuration details are
tabulated in Table 5.

Impact of FMS on Training Throughput. We compare the
training throughput of a DNN training platform utilizing Be-
hemothFMS and one that utilizes the commodity SSDs. As
shown in Figure 9, the DNN training platform with Behe-
mothFMS performance is close to the ideal case where there
is zero overhead from memory system accesses. On the other
hand, a DNN training platform with commodity SSDs often
achieves much lower training throughput in many workloads.
This is because the baseline SSD achieves limited throughput
bottlenecked by an SSD firmware. To be exact, since a write
data path of the baseline SSDs requires a minimum of 1.45µs
to write a 4KB page, a single commodity SSD device’s write
throughput is limited to about 2.75GB/s despite its high ag-
gregate channel bandwidth or external interface bandwidth.
It aggregates four SSD device’s throughput results in about
11.0GB/s bandwidth, which is substantially smaller than the
50GB/s bandwidth that Behemoth can provide. Note that the
speedup of BehemothFMS is a little lower on wider models
(e.g., 2×1, 2×2, 2×4). This is because wider models have
even higher data reuse (see Section 2), thus requiring even
less memory or storage bandwidth.

Endurance for Training Workloads. Figure 10 shows lifes-
pan of tensors that are generated during DNN training. As
shown in the figure, all tensors created during the DNN train-
ing have a lifespan of up to a single iteration period [22].
Therefore, the longest lifespan of tensors equals the retention
time necessary for the V-Stream of FMS: 41 sec. Based on
the previous studies [6, 43, 45] that demonstrate the number

Table 5: FMS and conventional storage configuration.
Storage Parameters

Behemoth FMS Baseline SSD

NAND
Configurations

2TB,
64 channels,

2 chips/channel,
1 die/chip

500GB,
16 channels,

2 chips/channel,
1 die/chip

Channel
Speed Rate

1200MT/s
(MT/s: Mega Transfers per Second [20])

NAND
Structure

128Gb SLC / die: 8 planes / die,
683 blocks / plane, 768 pages / block, 4KB page

NAND
Latency Read: 3µs, Program: 100µs, Block erase: 5ms

Buffer
Configurations

SRAM 16MB:
6MB for FTL metadata,

10MB for I/O buffer

DRAM 512GB:
FTL metadata
SRAM 8MB:

I/O buffer, GC Buffer
FTL

Schemes Block mapping Page mapping,
Preemtible GC [38]

OP ratio N/A 7%
Firmware
Latency N/A Write:

1.45µs / a page (4KB)

Contoller
Latency

Read:
1.93µs / an NVMe Cmd,

Write:
1.18µs / an NVMe Cmd

Read:
1.93µs / an NVMe Cmd

of P/E cycle of NAND can be increased by at least 40× [6]
(up-to 600× [43]) if 1-year retention is reduced to 3 days,
we also conservatively assume that the P/E cycle of our SSD
is improved by 40 times, despite our retention requirement
(i.e., less than a minute) is much shorter than three days. The
Samsung Z-SSD [13] has 50K P/E cycles, and improving its
P/E cycles by 40× results in the 2M P/E cycles. Two million
P/E cycles on 1.85TB storage for V-Stream of FMS translates
to the 3,700,000 TBW (TeraBytes Written). Considering that
Behemoth FMS can sustain up to 17.6GB/s write bandwidth
on average for T5-like models, Behemoth FMS is guaran-
teed to function for 6.6 years (i.e., 3.7M TBW / (17.6GB/s)
= 210M seconds = 6.6 years). As shown in Figure 11, this
is an even longer period than the 5-year warranty of typi-
cal commercial SSDs. Here, note that we assume the write
amplification factor (WAF) of one because Behemoth only
performs monotonic sequential writes and reads during the
entire DNN training iteration without GC operations [29] as
shown in Figure 12.

6 Related Work

Heterogeneous Memory System for Tensor Management.
Due to the memory capacity wall, researchers train the model
with a limited number of parameters and batch sizes that the
memory capacity allows, or parallelize the model by distribut-
ing the data needed for computation across multiple DNN
training devices. However, training on a small model shows
low accuracy, and the distributed learning of large models
through multiple devices is a waste of memory bandwidth
compared to memory capacity usage in several cases. To ad-
dress the memory capacity wall, several proposals [22,56,67]

380 19th USENIX Conference on File and Storage Technologies USENIX Association

0
0.1
0.2
0.3
0.4
0.5

1 x 1 1 x 2 1 x 4 2 x 1 2 x 2 2 x 4 1 x 1 1 x 2 1 x 4 2 x 1 2 x 2 2 x 4

BERT/GPT3-like T5-like

Behemoth core w/ Baseline SSD x 4 (RAID 0) Behemoth Ideal

Th
ro

ug
hp

ut
(s

eq
ue

nc
e

/ s
ec

.)

Figure 9: DNN training throughput of 432 Behemoths over various model sizes.

0

10

20

30

40

50

0 100 200 300 400 500
0

10

20

30

40

50

0 100 200 300 400 500(index)

Ti
m

e
(s

ec
.)

Ti
m

e
(s

ec
.)

(index)

(a) BERT/GPT3-like (b) T5-like

Figure 10: Tensor lifespan

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7

BERT/GPT3-like T5-like

Time (year)

SSD warranty (5y)
2M P/E cycles for #2 V-Stream

P/
E

cy
cl

es
 (X

10
00

)

Figure 11: Behemoth FMS endurance

introduce effective memory management techniques that mi-
grate tensors in a heterogeneous memory system. HALO [22]
analyzes the hotness and lifetime of tensors and constructs
an offloading schedule for each tensor, which focuses on how
to migrate and place tensors across the heterogeneous mem-
ory nodes. vDNN [56] offloads tensors to the host memory
during the forward pass and prefetches tensors from the host
memory to be sent to the GPU during the backward pass.
SuperNeuron [67] partially adopts the idea of vDNN by only
offloading/prefetching marked tensors and recomputing un-
marked tensors during the backward pass. These researches
utilize another DRAM memory as offloading media. However,
this is more of a one-time solution since the large language
model does not fit in the host main memory. Behemoth adopts
the idea of offloading and prefetching tensors according to
their lifetime and dependency, but completely overcomes the
memory capacity wall by using a dense NAND-based flash
memory system configured for the high bandwidth.

Storage-Centric Machine Learning System. Several pro-
posals [42, 46, 61, 70] use SSD as a secondary storage in
the compute core to run large-scale applications. BLAS-on-
flash [61] builds a library to achieve efficient flash memory
speed in computing machine learning algorithms (e.g., ISLE,
XML) that are used on large datasets. Cognitive SSD [42]
constructs an engine designed for unstructured data retrieval
involving DNN inference in flash memory devices. In con-

(a) BERT/GPT3-like (b) T5-like

0

1E+09

2E+09

0 100 200 300 400 500

Read Write

0

1E+09

2E+09

0 100 200 300 400 500

Read Write

10 20 30 40 10 20 30 4010 20 30 40Time (sec.)Time (sec.)

2x109

1x109LB
A

2x109

1x109LB
A

Figure 12: Block access pattern of DNN training workloads
running on Behemoth FMS

trast, Behemoth proposes the flash-based memory system for
the extreme-scale neural-network language models with over
hundreds of billions of parameters.

7 Conclusion
Recent DNN models are getting wider and deeper, increasing
the memory requirements for training. This trend is especially
obvious in NLP with extreme-scale models showing exponen-
tial growth in its size. However, conventional DNN training
platforms such as NVIDIA GPUs or Google TPUs provide
insufficient storage capacity, which leads to excessive cost
and memory bandwidth underutilization. To address this prob-
lem, we propose Behemoth, a flash-based memory system
for a cost-effective training platform targeting extreme-scale
DNN models. Behemoth overcomes the low-bandwidth and
endurance problem of SSDs by separating data according to
their characteristics. This enables a simplified firmware and
hardware automation of the write path, which significantly im-
proves the bandwidth. Furthermore, by exploiting the much
shorter required retention time, we also showed that the SSD
could be safely utilized for over six years. In the end, this
Behemoth flash memory system based DNN training plat-
form achieves a much smaller memory system cost than the
conventional DNN training platform utilizing HBM devices.

Acknowledgments
We thank Suparna Bhattacharya for shepherding this paper.
We also thank Young H. Oh for his help with DNN training.
This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT) (NRF-2020R1A2C3010663). Jae W. Lee is the cor-
responding author.

USENIX Association 19th USENIX Conference on File and Storage Technologies 381

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation, pages 265–283. USENIX Association,
2016.

[2] Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. Unsupervised Neural Machine Trans-
lation. arXiv e-prints, page arXiv:1710.11041, October
2017.

[3] BAIR. Caffe: Deep learning framework. https://
caffe.berkeleyvision.org.

[4] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Long-
former: The long-document transformer. arXiv e-prints,
April 2020.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot
learners. arXiv e-prints, May 2020.

[6] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch,
Adrian Cristal, Osman S. Unsal, and Ken Mai. Flash
correct-and-refresh: Retention-aware error management
for increased flash memory lifetime. In Proceedings of
the 2012 IEEE 30th International Conference on Com-
puter Design, pages 94–101, 2012.

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-End Object Detection with Trans-
formers. arXiv e-prints, page arXiv:2005.12872, May
2020.

[8] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training Deep Nets with Sublinear Mem-
ory Cost. arXiv e-prints, page arXiv:1604.06174, April
2016.

[9] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss:
A spatial architecture for energy-efficient dataflow for

convolutional neural networks. In Proceedings of the
43rd International Symposium on Computer Architec-
ture, page 367–379. IEEE Press, 2016.

[10] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun,
and Olivier Temam. DianNao family: Energy-efficient
hardware accelerators for machine learning. Commun.
ACM, 59(11):105–112, October 2016.

[11] Wooseong Cheong, Chanho Yoon, Seonghoon Woo,
Kyuwook Han, Daehyun Kim, Chulseung Lee, Youra
Choi, Shine Kim, Dongku Kang, Geunyeong Yu, Jae-
hong Kim, Jaechun Park, Ki-Whan Song, Ki-Tae Park,
Sangyeun Cho, Hwaseok Oh, Daniel DG Lee, Jin-
Hyeok Choi, and Jaeheon Jeong. A flash memory con-
troller for 15µs ultra-low-latency SSD using high-speed
3D NAND flash with 3µs read time. In Proceedings of
the IEEE International Solid-State Circuits Conference,
pages 338–340. IEEE, 2018.

[12] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cuDNN: Efficient Primitives for Deep
Learning. arXiv e-prints, page arXiv:1410.0759, Octo-
ber 2014.

[13] Samsung Z-SSD SZ985. https://www.samsung.com/
semiconductor/global.semi.static/Brochure_

Samsung_S-ZZD_SZ985_1804.pdf.

[14] Samsung SSD 980 PRO. https://www.samsung.com/
semiconductor/minisite/ssd/product/consumer/
980pro/.

[15] SSD price: Samsung SSD 970 EVO. https://www.
amazon.com/Samsung-970-EVO-1TB-MZ-V7E1T0BW/
dp/B07BN217QG/ref=sr_1_2?dchild=1&keywords=
970+evo&qid=1600645757&sr=8-2.

[16] Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V.
Le. Funnel-Transformer: Filtering out Sequential Re-
dundancy for Efficient Language Processing. arXiv
e-prints, June 2020.

[17] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a
fixed-length context. arXiv e-prints, January 2019.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
e-prints, October 2018.

[19] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and

382 19th USENIX Conference on File and Storage Technologies USENIX Association

https://caffe.berkeleyvision.org
https://caffe.berkeleyvision.org
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
https://www.amazon.com/Samsung-970-EVO-1TB-MZ-V7E1T0BW/dp/B07BN217QG/ref=sr_1_2?dchild=1&keywords=970+evo&qid=1600645757&sr=8-2
https://www.amazon.com/Samsung-970-EVO-1TB-MZ-V7E1T0BW/dp/B07BN217QG/ref=sr_1_2?dchild=1&keywords=970+evo&qid=1600645757&sr=8-2
https://www.amazon.com/Samsung-970-EVO-1TB-MZ-V7E1T0BW/dp/B07BN217QG/ref=sr_1_2?dchild=1&keywords=970+evo&qid=1600645757&sr=8-2
https://www.amazon.com/Samsung-970-EVO-1TB-MZ-V7E1T0BW/dp/B07BN217QG/ref=sr_1_2?dchild=1&keywords=970+evo&qid=1600645757&sr=8-2

Neil Houlsby. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. arXiv
e-prints, page arXiv:2010.11929, October 2020.

[20] Alan Freedman. MT/sec. The Computer Desktop En-
cyclopedia. https://www.computerlanguage.com/
results.php?definition=MT/sec.

[21] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu,
Tai-Jiang Mu, Ralph R. Martin, and Shi-Min Hu.
PCT: Point Cloud Transformer. arXiv e-prints, page
arXiv:2012.09688, December 2020.

[22] Myeonggyun Han, Jihoon. Hyun, Seongbeom. Park,
and Woongki. Baek. Hotness- and lifetime-aware data
placement and migration for high-performance deep
learning on heterogeneous memory systems. IEEE
Transactions on Computers, 69(3):377–391, 2020.

[23] Radeon VII 16GB HBM 2 memory cost around
$320. https://www.fudzilla.com/news/graphics/
48019-radeon-vii-16gb-hbm-2-memory-cost-around-320.

[24] Brian Hickmann, Jieasheng Chen, Michael Rotzin, An-
drew Yang, Maciej Urbanski, and Sasikanth Avancha.
Intel nervana neural network processor-t (NNP-T) fused
floating point many-term dot product. In Proceedings
of the 2020 IEEE 27th Symposium on Computer Arith-
metic, pages 133–136, 2020.

[25] Jae-Woo Im, Woo-Pyo Jeong, Doo-Hyun Kim, Sang-
Wan Nam, Dong-Kyo Shim, Myung-Hoon Choi, Hyun-
Jun Yoon, Dae-Han Kim, You-Se Kim, Hyun-Wook
Park, Dong-Hun Kwak, Sang-Won Park, Seok-Min
Yoon, Wook-Ghee Hahn, Jin-Ho Ryu, Sang-Won Shim,
Kyung-Tae Kang, Sung-Ho Choi, Jeong-Don Ihm,
Young-Sun Min, In-Mo Kim, Doo-Sub Lee, Ji-Ho Cho,
Oh-Suk Kwon, Ji-Sang Lee, Moo-Sung Kim, Sang-
Hyun Joo, Jae-Hoon Jang, Sang-Won Hwang, Dae-Seok
Byeon, Hyang-Ja Yang, Ki-Tae Park, Kye-Hyun Kyung,
and Jeong-Hyuk Choi. A 128Gb 3b/cell V-NAND flash
memory with 1Gb/s I/O rate. In Proceedings of the
2015 IEEE International Solid-State Circuits Confer-
ence - Digest of Technical Papers, pages 1–3, 2015.

[26] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee,
and Jihong Kim. Lifetime improvement of NAND
flash-based storage systems using dynamic program and
erase scaling. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies, pages
61–74. USENIX Association, 2014.

[27] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,

Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-
tipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceed-
ings of the 44th Annual International Symposium on
Computer Architecture, page 1–12. ACM, 2017.

[28] Myoungsoo Jung. OpenExpress: Fully hardware auto-
mated open research framework for future fast NVMe
devices. In Proceedings of the 2020 USENIX Annual
Technical Conference, pages 649–656. USENIX Asso-
ciation, July 2020.

[29] Behemoth FMS storage trace. https://github.com/
SNU-ARC/storage-trace.

[30] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The multi-streamed solid-state drive.
In 6th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 14). USENIX Association,
June 2014.

[31] Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, and
Davide Testuggine. Supervised multimodal bitrans-
formers for classifying images and text. arXiv e-prints,
September 2019.

[32] Shine Kim, Jonghyun Bae, Hakbeom Jang, Wenjing
Jin, Jeonghun Gong, Seungyeon Lee, Tae Jun Ham, and
Jae W. Lee. Practical erase suspension for modern
low-latency SSDs. In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference,
page 813–820. USENIX Association, July 2019.

[33] Taejin Kim, Duwon Hong, Sangwook Shane Hahn, My-
oungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongy-
oul Lee, and Jihong Kim. Fully automatic stream
management for multi-streamed SSDs using program
contexts. In Proceedings of the 17th USENIX Confer-
ence on File and Storage Technologies, pages 295–308.
USENIX Association, February 2019.

USENIX Association 19th USENIX Conference on File and Storage Technologies 383

https://www.computerlanguage.com/results.php?definition=MT/sec
https://www.computerlanguage.com/results.php?definition=MT/sec
https://www.fudzilla.com/news/graphics/48019-radeon-vii-16gb-hbm-2-memory-cost-around-320
https://www.fudzilla.com/news/graphics/48019-radeon-vii-16gb-hbm-2-memory-cost-around-320
https://github.com/SNU-ARC/storage-trace
https://github.com/SNU-ARC/storage-trace

[34] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
Reformer: The efficient Transformer. arXiv e-prints,
January 2020.

[35] Wojciech Kryściński, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. Neural Text
Summarization: A Critical Evaluation. arXiv e-prints,
page arXiv:1908.08960, August 2019.

[36] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer,
Angshuman Parashar, Vivek Sarkar, and Tushar Krishna.
Understanding reuse, performance, and hardware cost
of DNN dataflow: A data-centric approach. In Pro-
ceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, page 754–768. ACM,
2019.

[37] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna.
Maeri: Enabling flexible dataflow mapping over DNN
accelerators via reconfigurable interconnects. In Pro-
ceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’18, page 461–475,
New York, NY, USA, 2018. Association for Computing
Machinery.

[38] Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp
Oral, and Jongman Kim. Preemptible I/O scheduling of
garbage collection for solid state drives. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 32(2):IEEE, 247–260, 2013.

[39] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. GShard: Scaling gi-
ant models with conditional computation and automatic
sharding. arXiv e-prints, June 2020.

[40] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising
sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv e-
prints, October 2019.

[41] Piji Li, Wai Lam, Lidong Bing, and Zihao Wang. Deep
Recurrent Generative Decoder for Abstractive Text Sum-
marization. arXiv e-prints, page arXiv:1708.00625,
August 2017.

[42] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive SSD: A deep
learning engine for in-storage data retrieval. In Proceed-
ings of the 2019 USENIX Annual Technical Conference,
pages 395–410. USENIX Association, 2019.

[43] Ren-Shuo Liu, Chia-Lin Yang, and Wei Wu. Optimizing
NAND flash-based SSDs via retention relaxation. In
Proceedings of the 10th USENIX Conference on File and
Storage Technologies, page 11. USENIX Association,
2012.

[44] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. RoBERTa: A ro-
bustly optimized BERT pretraining approach. arXiv
e-prints, July 2019.

[45] Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and
Onur Mutlu. WARM: Improving NAND flash memory
lifetime with write-hotness aware retention management.
In 2015 31st Symposium on Mass Storage Systems and
Technologies, pages 1–14, 2015.

[46] Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang,
Ziyan Feng, Simon Garcia de Gonzalo, Youjie Li, Hu-
bertus Franke, Jinjun Xiong, Jian Huang, and Wen-mei
Hwu. DeepStore: In-storage acceleration for intelligent
queries. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, page
224–238. ACM, 2019.

[47] Newegg.com. https://www.newegg.com.

[48] NVM Express 1.4. https://nvmexpress.org.

[49] Young H. Oh, Seonghak Kim, Yunho Jin, Sam Son,
Jonghyun Bae, Jongsung Lee, Yeonhong Park, Dong Uk
Kim, Tae Jun Ham, and Jae W. Lee. Layerweaver:
Maximizing resource utilization of neural processing
units via layer-wise scheduling. In 2021 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), 2021.

[50] Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. Scaling Neural Machine Translation. arXiv
e-prints, page arXiv:1806.00187, June 2018.

[51] PCI Express 4. https://pcisig.com.

[52] PyTorch. https://pytorch.org.

[53] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language mod-
els are unsupervised multitask learners. OpenAI Blog,
1(8):9, 2019.

[54] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text Transformer. arXiv
e-prints, October 2019.

384 19th USENIX Conference on File and Storage Technologies USENIX Association

https://www.newegg.com
https://nvmexpress.org
https://pcisig.com
https://pytorch.org

[55] Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Ja-
gadeesh Shetty, Jooyoung Hwang, Sangyeun Cho,
Daniel DG Lee, and Jaeheon Jeong. FStream: Man-
aging flash streams in the file system. In Proceedings
of the 16th USENIX Conference on File and Storage
Technologies, pages 257–264. USENIX Association,
2018.

[56] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W. Keckler. vDNN: Vir-
tualized deep neural networks for scalable, memory-
efficient neural network design. In Proceedings of the
49th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 18:1–18:13. IEEE, 2016.

[57] C. Sandhya, Apoorva B. Oak, Nihit Chattar, Udayan
Ganguly, C. Olsen, S. M. Seutter, L. Date, R. Hung,
Juzer Vasi, and Souvik Mahapatra. Study of P/E cycling
endurance induced degradation in SANOS memories
under NAND (FN/FN) operation. IEEE Transactions
on Electron Devices, 57(7):1548–1558, July 2010.

[58] Yakun Sophia Shao, Jason Clemons, Rangharajan
Venkatesan, Brian Zimmer, Matthew Fojtik, Nan Jiang,
Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, Stephen G. Tell, Yanqing Zhang,
William J. Dally, Joel Emer, C. Thomas Gray, Brucek
Khailany, and Stephen W. Keckler. Simba: Scal-
ing deep-learning inference with multi-chip-module-
based architecture. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, page 14–27. ACM, 2019.

[59] Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. CTRL: A
conditional transformer language model for controllable
generation. arXiv e-prints, September 2019.

[60] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. arXiv e-prints,
September 2019.

[61] Suhas Jayaram Subramanya, Harsha Vardhan Simhadri,
Srajan Garg, Anil Kag, and Venkatesh Balasubramanian.
BLAS-on-flash: An efficient alternative for large scale
ML training and inference? In Proceedings of the 16th
USENIX Symposium on Networked Systems Design and
Implementation, pages 469–484. USENIX Association,
2019.

[62] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,
Wenwu Ou, and Peng Jiang. BERT4Rec: Sequen-
tial Recommendation with Bidirectional Encoder Rep-
resentations from Transformer. arXiv e-prints, page
arXiv:1904.06690, April 2019.

[63] Arash Tavakkol, Juan Gómez-Luna, Mohammad
Sadrosadati, Saugata Ghose, and Onur Mutlu. MQSim:
A framework for enabling realistic studies of modern
multi-queue SSD devices. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies,
pages 49–66. USENIX Association, 2018.

[64] NVIDIA tesla V100 architeture. https://images.
nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

[65] Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws, Llion
Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar,
Ryan Sepassi, Noam Shazeer, and Jakob Uszkoreit. Ten-
sor2Tensor for Neural Machine Translation. arXiv e-
prints, page arXiv:1803.07416, March 2018.

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
arXiv e-prints, June 2017.

[67] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang
Li, Shuaiwen Leon Song, Zenglin Xu, and Tim Kraska.
SuperNeurons: Dynamic GPU memory management
for training deep neural networks. In Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 41–53. ACM,
2018.

[68] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. XLNet:
Generalized autoregressive pretraining for language un-
derstanding. arXiv e-prints, June 2019.

[69] Haoyu Zhang, Jianjun Xu, and Ji Wang. Pretraining-
Based Natural Language Generation for Text Summa-
rization. arXiv e-prints, page arXiv:1902.09243, Febru-
ary 2019.

[70] Jie Zhang and Myoungsoo Jung. ZnG: Architecting
GPU multi-processors with new flash for scalable data
analysis. In Proceedings of the 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architec-
ture, pages 1064–1075, 2020.

[71] Jie Zhang, Miryeong Kwon, Michael Swift, and My-
oungsoo Jung. Scalable parallel flash firmware for
many-core architectures. In Proceedings of the 18th
USENIX Conference on File and Storage Technologies,
pages 121–136. USENIX Association, February 2020.

[72] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. PEGASUS: Pre-training with extracted
gap-sentences for abstractive summarization. arXiv
e-prints, December 2019.

USENIX Association 19th USENIX Conference on File and Storage Technologies 385

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

FlashNeuron: SSD-Enabled Large-Batch Training of Very Deep Neural Networks

Jonghyun Bae† Jongsung Lee†‡ Yunho Jin† Sam Son† Shine Kim†‡ Hakbeom Jang‡

Tae Jun Ham† Jae W. Lee†

†Seoul National University ‡Samsung Electronics

Abstract
Deep neural networks (DNNs) are widely used in various
AI application domains such as computer vision, natural lan-
guage processing, autonomous driving, and bioinformatics.
As DNNs continue to get wider and deeper to improve accu-
racy, the limited DRAM capacity of a training platform like
GPU often becomes the limiting factor on the size of DNNs
and batch size—called memory capacity wall. Since increas-
ing the batch size is a popular technique to improve hardware
utilization, this can yield a suboptimal training throughput.
Recent proposals address this problem by offloading some of
the intermediate data (e.g., feature maps) to the host memory.
However, they fail to provide robust performance as the train-
ing process on a GPU contends with applications running on a
CPU for memory bandwidth and capacity. Thus, we propose
FlashNeuron, the first DNN training system using an NVMe
SSD as a backing store. To fully utilize the limited SSD write
bandwidth, FlashNeuron introduces an offloading scheduler,
which selectively offloads a set of intermediate data to the
SSD in a compressed format without increasing DNN evalua-
tion time. FlashNeuron causes minimal interference to CPU
processes as the GPU and the SSD directly communicate for
data transfers. Our evaluation of FlashNeuron with four state-
of-the-art DNNs shows that FlashNeuron can increase the
batch size by a factor of 12.4× to 14.0× over the maximum
allowable batch size on NVIDIA Tesla V100 GPU with 16GB
DRAM. By employing a larger batch size, FlashNeuron also
improves the training throughput by up to 37.8% (with an
average of 30.3%) over the baseline using GPU memory only,
while minimally disturbing applications running on CPU.

1 Introduction
Deep neural networks (DNNs) are the key enabler of emerg-
ing AI-based applications and services such as computer vi-
sion [19,22,38,53,54], natural language processing [2,11,13,
51, 67], and bioinformatics [46, 73]. With a relentless pursuit
of higher accuracy, DNNs have become wider and deeper to
increase network size [65]. It is because even a 1% accuracy
loss (or gain) potentially affects the experience of millions of
users if the AI application serves a billion of people [47].

DNNs must be trained before deployment to find optimal
network parameters that minimize the error rate. Stochastic
Gradient Descent (SGD) is the dominant algorithm used for
DNN training [15]. In SGD, the entire dataset is divided into
multiple (mini-)batches, and weight gradients are calculated
and applied to the network parameters (weights) for each
batch via backward propagation. Unlike inference, the train-
ing algorithm reuses the intermediate results (e.g., feature
maps) produced by a forward propagation during the back-
ward propagation, thus requiring a lot of memory space [55].

This GPU memory capacity wall [33] often becomes the
limiting factor on DNN size and its throughput. Specifically,
such a large memory capacity requirement forces a GPU de-
vice to operate at a relatively small batch size, which often ad-
versely affects its throughput. The use of multiple GPUs can
partially bypass the memory capacity wall because a careful
use of multiple GPUs can achieve near-linear improvements
in throughput [27, 28, 59]. However, such a throughput im-
provement comes with the linear increase in the GPU cost,
which is often a major component of the overall system cost.
As a result, the use of multiple GPUs often ends up with
sub-optimal cost efficiency (i.e., throughput/system cost) as it
does not change the fact that each GPU is not operating at its
full capacity due to the limited per-GPU batch size.

This memory capacity problem in DNN training has drawn
much attention from the research community. The most pop-
ular approach is to utilize the host CPU memory as a backing
store to offload some of the tensors that are not immediately
used [8, 9, 24, 42, 55, 62]. However, this buffering-on-memory
approach fails to provide robust performance as the training
process on the GPU contends with applications running on
the CPU for memory bandwidth and capacity (e.g., data aug-
mentation tasks [5, 41, 57, 61] to boost training accuracy).
Moreover, these proposals focus mostly on increasing batch
size but less on improving training throughput. Therefore,
they often yield a low training throughput as the cost of CPU-
GPU data transfers outweighs a larger batch’s benefits.

Thus, we propose FlashNeuron, the first DNN training
system using a high-performance SSD as a backing store.
While NVMe SSDs are a promising alternative to substitute
or augment DRAM, they have at least an order of magnitude

USENIX Association 19th USENIX Conference on File and Storage Technologies 387

Input

Forward

Backward

Input-grad

MatMul

Loss

True output
Activation

Fully-connected (FC) FC FC

Figure 1: DNN training iteration and data reuse pattern.

lower bandwidth than both HBM DRAM on GPU and DDRx
DRAM on CPU. Therefore, it is critical to effectively smooth
bandwidth utilization to minimize bandwidth waste while
overlapping GPU computation with GPU-SSD data transfers.
To this end, FlashNeuron introduces an offloading scheduler,
which judiciously selects a set of tensors to offload to the SSD.
On the host side, FlashNeuron is realized by a lightweight
user-level I/O stack, which leaves a minimal resource foot-
print on CPU cycles and memory usage as the GPU and the
SSD directly communicate for tensor data transfers utilizing
GPUDirect [17] technology.

We prototype FlashNeuron on PyTorch [50], a popular
DNN framework, and evaluate it using four state-of-the-
art DNN models. Our evaluation with the state-of-the-art
NVIDIA V100 GPU with 16GB DRAM shows that Flash-
Neuron can scale the batch size by a factor of 12.4× to 14.0×
over the maximum allowable batch size using the GPU mem-
ory only. By selecting the optimal batch size, FlashNeuron
improves the training throughput by 30.3% on average over
the baseline with no offloading, with a maximum gain of
37.8%. At the same time, FlashNeuron also provides excel-
lent isolation between CPU and GPU processes. Even under
an extreme condition of CPU applications utilizing 90% host
memory bandwidth, the slowdown of the DNN training on
GPU falls within 8% of standalone execution, while the slow-
down of buffering-on-memory can be as high as 67.8% (i.e.,
less than one-third of the original throughput).

Our contributions can be summarized as follows:

• We identify a bandwidth contention problem in recent
buffering-on-memory proposals [8, 9, 24, 42, 55, 62] and
propose FlashNeuron, the first buffering-on-SSD solu-
tion to overcome this problem.

• We introduce a novel offloading scheduler to fully utilize
the scarce SSD write bandwidth.

• We implement a lightweight user-space I/O stack cus-
tomized for DNN training, which orchestrates SSD-GPU
direct data transfers with minimal CPU intervention.

• We prototype FlashNeuron on PyTorch, a popular DNN
framework, and evaluate it using four state-of-the-art
DNNs to demonstrate its effectiveness for increasing
batch size and hence training throughput, while mini-
mally disturbing applications on CPU.

M
em

y
us

ag
e

(G
B)

WeightInput + Intermediate result Temporary buffer

0

32

64

96

1x 2x 8x 1x 2x 8x 1x 2x 8x 1x 2x 8x

ResNet-1922 DenseNet-1001 BERT-XLarge HBMP

Ba
se

lin
e

G
PU

 H
BM

Figure 2: Breakdown of GPU memory usage in DNN training.

2 Background and Motivation

2.1 DNN Training
Deep Neural Networks (DNN) are widely used for many

machine learning tasks such as computer vision [19,22,38,53,
54], natural language processing [2, 11, 13, 51, 67], bioinfor-
matics [46, 73] and so on. For a DNN to effectively perform
a target task, it has to learn optimal network parameters using
a large amount of labeled data — a process called training.
DNN training is often performed using mini-batch stochastic
gradient descent (SGD) algorithm [15]. In this algorithm, a
training process is divided into multiple epochs, where a sin-
gle epoch processes the entire dataset exactly once. Then, a
single epoch is further divided into multiple iterations, where
each iteration processes a single partition of the dataset, called
(mini-)batch, to update network parameters.

As shown in Figure 1, an iteration consists of two steps: for-
ward pass — a process of computing error for the given input
batch, and backward pass — a process of back-propagating
errors and updating network weights. A forward pass starts
from the very first layer. Given input data, it simply per-
forms the computation associated with the first layer using
the layer’s current weight and then passes the outcome to
the next layer. This process is repeated until the last layer is
reached. At that point, the error (also called loss) of the model
is computed by comparing the last layer’s outcome with the
correct output. Then, the backward propagation starts from
the last layer. During this step, i) the gradient of a layer’s
inputs to the final error is computed (using the gradient of
the next layers’ inputs to the final error) and passed to the
next layer, and ii) the gradient of the layer’s weights to the
final error is computed using i) and stored. Once the back-
ward propagation finishes in the first layer, the weights of all
layers are updated accordingly based on the weight gradient
computed during the backward pass.

2.2 Memory Capacity Wall in DNN Training
This training process exhibits an interesting data reuse

pattern. Specifically, during a forward pass, inputs and inter-
mediate computation results (e.g., products of weights and
inputs in the feed-forward layer, followed by activation) of
each layer should be buffered. Then, during the backward
pass, i) the buffered intermediate computation results of a

388 19th USENIX Conference on File and Storage Technologies USENIX Association

0
20
40
60
80

LSTM

0

50

100

150

200

Conv BN Misc

Se
qu

en
ce

s
/ s

ec

(a) ResNet-1922

0

40

80

120

160

Conv BN Misc

(b) DenseNet-1001

Im
ag

es
 /

se
c

Im
ag

es
 /

se
c

(d) HBMP(c) BERT-XLarge

1x 2x Max

0

100

200

300

MM
BMM Misc

Se
qu

en
ce

s
/ s

ec 347.6

Conv

backward BN

backward Conv

backward BN

backward MM

backward BMM

backward RNN

backward

Figure 3: Per-layer throughput of key layers in various DNN models. (Conv: Convolution, BN: BatchNorm, MM: Matrix
Multiplication, BMM: Batched Matrix Multiplication). 1× represents the maximum batch size of the baseline using GPU memory
only. Max represents the batch size that saturates the training throughput with an idealized assumption of zero offloading
overhead.

layer are used to compute the layer’s gradient, and ii) the
buffered inputs are used to compute the gradient of the layer’s
weights. Arrows in Figure 1 illustrates this data reuse pattern.
This data buffering does not cause a problem when the net-
work is shallow. However, a recent trend in deep learning is
to utilize networks with a large number of layers (i.e., deep
networks). With this trend, the amount of memory capacity
required to buffer data (i.e., inputs and intermediate compu-
tation results for each layer) becomes much larger. It is not
feasible in these deep networks to train the network using
a large batch size as the required memory capacity for data
buffering exceeds the available GPU memory size.

Figure 2 shows the required memory capacity of the DNN
models across different batch sizes. Specifically, for each
model, the figure shows the minimum memory capacity re-
quired to perform training for a certain batch size successfully.
Here, 1× represents the maximum batch size that this model
can run on a state-of-the-art GPU (i.e., Tesla V100) with
16GB memory. 2× and 8× represent the 2× and 8× batch
sizes of the base (1×) batch size. To run on these large batch
sizes, we offload all the tensors to host CPU memory except
for those of the layer currently being executed. On the base
batch size (1×), the required capacity is just below 16GB,
indicating that this model almost fully utilizes the provided
GPU memory. However, this model cannot be run on a GPU
with 16GB memory when we set the batch size to be 2× or
8× as the required memory size far exceeds the available
memory size. This figure also shows that most of the memory
capacity is occupied by the inputs and the intermediate com-
putation results for each layer. Other memory objects such
as weights or temporary buffers (e.g., temporary workspace
for convolution operations) take a relatively small portion of
these models’ total memory consumption.

GPU memory capacity bottleneck described above signif-
icantly limits the per-GPU batch size of the DNN models.
Using a small batch size often results in the GPU’s lower
utilization, which leads to lower throughput [3, 16, 68, 69].
Figure 3 presents the per-layer throughput of key layers (i.e.,

layers accounting for a significant fraction of the total time) in
various DNN models. We run each layer in isolation for this
exploratory experiment without considering the overheads
of tensor offloading, host-GPU communication, etc. The fig-
ure shows that there is still significant room for additional
throughput by increasing the batch size. GPU resources are
being underutilized even at the maximum per-GPU batch
size if only GPU memory is used. In this scenario, a GPU
throughput can be improved by ameliorating the GPU mem-
ory capacity bottleneck. One potential concern is that larger
batch size can sometimes negatively affect the model accu-
racy [20,30,40]. However, for extremely deep neural network
models, the base batch size is relatively small, and thus an
increase in batch size is expected not to affect the final model
accuracy severely.

2.3 Overcoming GPU Memory Capacity Wall
A popular approach to overcome GPU memory capacity

bottleneck is to buffer data in the host CPU memory. For
example, both vDNN [55] and SuperNeurons [62] (selec-
tively) offload activation tensors to the CPU memory. These
buffering-on-memory solutions can interfere with the CPU
processes for memory bandwidth and capacity to pay a signif-
icant opportunity cost. For example, running data augmenta-
tion on CPU at every iteration of DNN training is a common
practice [32, 41, 66] to prevent overfitting to the training data
set. A typical data augmentation pipeline consists of image
loading, decoding, and a sequence of geometric transforma-
tions [5, 41, 57, 61], requiring high memory bandwidth.

Figure 4 shows the GPU training throughput of a buffering-
on-memory system while the CPU is continuously running a
multi-threaded data augmentation task composed of rotation,
transposition, and color conversion. By adjusting the number
of data augmentation threads, we control the amount of mem-
ory bandwidth consumed by the CPU task (i.e., 50%: 21GB/s,
70%: 29GB/s, 90%: 36GB/s). The throughput of DNN train-
ing with buffering-on-memory is noticeably degraded due to
memory bandwidth contention. To avoid this problem, we

USENIX Association 19th USENIX Conference on File and Storage Technologies 389

N
or

m
. t

hr
ou

gh
pu

t

0

0.5

1

50% 70% 90% 50% 70% 90% 50% 70% 90% 50% 70% 90%

ResNet-1922 DenseNet-1001 BERT-XLarge HBMP

Figure 4: Normalized throughput of buffering-on-memory
system (vDNN [55]-like) when the host CPU is running a
data augmentation with varying degrees of contention.

propose a new solution that buffers inputs and intermediate
data (tensors) to SSDs. Specifically, we leverage direct peer-
to-peer communication between the GPU and NVMe SSD
devices so that data buffering does not consume either host
CPU cycles or memory bandwidth. This buffering-on-SSD
approach complements the popular buffering-on-memory ap-
proach, hence improving overall resource utilization over
various use cases.

3 FlashNeuron Design

3.1 Overview
FlashNeuron is a library that can be integrated into popular

DNN execution frameworks. Figure 5 shows the system
overview of FlashNeuron. FlashNeuron consists of three
components: offloading scheduler, memory manager, and
peer-to-peer direct storage access. Specifically, the offloading
scheduler identifies a set of tensors (i.e., multidimensional
matrices) to offload and generates an offloading schedule
by considering multiple factors such as tensor sizes, tensor
transfer times, and forward/backward pass runtime. Once the
schedule is determined, the memory manager orchestrates
data transfers between the GPU memory and the SSDs using
peer-to-peer direct storage access to minimize performance
overheads from offloading.

3.2 Memory Manager
Tensor Allocation/Deallocation. Instead of buffering all in-
put and intermediate data in memory, FlashNeuron chooses
to buffer selected tensors in SSDs, which requires extra tensor
allocations and deallocations. Since frequent GPU memory
allocations and deallocations using runtime (e.g., CUDA) in-
cur noticeable performance overheads, FlashNeuron employs
a custom memory allocator. The custom memory allocator
first reserves the whole GPU memory space initially and man-
ages memory allocation/deallocation itself. In FlashNeuron,
tensors are allocated when i) a tensor is first created during the
forward propagation or ii) an offloaded tensor is prefetched
from the SSD to the memory during a backward pass. On
the other hand, tensors are deallocated when i) a tensor is
completely offloaded from the memory to the SSD, or ii) a
tensor is no longer used by any layer during the iteration. To
track the lifetime of a tensor, a reference counting mechanism

Memory Manager

Training model structure

Scheduling result
Offload/prefetch

using tensor index
Peer-to-peer

Direct Storage Access
User-space NVMe Driver

I/O cmd. Completion

Memory
(de-)allocation

Operation Core
Tensor

offload/prefetch

Profiling result

Result of
offload/prefetch

DNN Training Framework

Offloading
Scheduler

Figure 5: System overview of FlashNeuron.

(used in PyTorch [50] and TensorFlow [1]) is utilized. For
DNN frameworks employing a static computational graph
like Caffe, the memory manager traverses the computational
graph and tracks the tensor lifetime through pointer chasing
of tensors attached to each layer.

One crucial issue in the tensor allocation and deallocation
is fragmentation. If we allocate memory addresses for all
tensors from the beginning, severe memory fragmentation
can occur since only some tensors are offloaded to the SSDs,
effectively making holes in the GPU physical memory address
space. To avoid this issue, we allocate memory-resident (i.e.,
not offloaded) tensors from the lowest end of the memory
address space and allocate ephemeral (i.e., offloaded) tensors
from the highest end of the memory address space. Since the
ephemeral data has a very short lifetime during the forward
pass, only a tiny portion of the memory address space is
utilized for such data, and thus the amount of fragmented
memory space becomes negligible.
Managing Offloading and Prefetching. The memory man-
ager interacts with peer-to-peer direct storage access (P2P-
DSA) to perform offloading and prefetching. It initiates an
offloading request of a tensor to P2P-DSA during the forward
pass immediately after its use by the next layer. At the end of
each layer’s execution, the memory manager checks whether
the offloading request is completed (i.e., the tensor is wholly
offloaded to the SSD). Then, the tensor is deallocated from
the GPU memory at this point.

The memory manager issues prefetch requests to the SSD
during the backward pass. At the beginning of the backward
pass, it first allocates memory and initiates prefetch requests
for the set of tensors that are soon to be used. Then, when-
ever those tensors are used and freed, the memory manager
eagerly prefetches additional tensors using the available mem-
ory space while reserving enough memory for execution to
run the largest layer.
Augmented Compressed-Sparse Row (CSR) Compres-
sion and Decompression. When offloading a tensor, the

390 19th USENIX Conference on File and Storage Technologies USENIX Association

memory manager applies CSR compression if the compres-
sion ratio estimated during the profiling iteration is greater
than one. The CSR compression is only applied to output
tensors of ReLU. We observe that ReLU outputs have a high
sparsity, ranging from 43% up to 75% during the training
process. Since a tensor is a multi-dimensional matrix, we cast
the tensor into a two-dimensional matrix whose column has
128 entries. Then, we apply a slightly different CSR format
where we replace a vector storing the column index of each
element (often called JA vector) to a set of bit-vectors where
each bit vector represents a set of nonzero elements for a row.
By doing so, the size of CSR format representation decreases
by 8 bits (to represent the column index) × the number of
nonzero elements in the matrix and increases by 1 bit × the
total number of elements in the matrix. This representation
is beneficial when more than one-eighth of all the elements
are nonzero. Since this is the typical case for input and in-
termediate tensors, we apply this technique to improve the
compression ratio. We implement a specialized routine to
perform this augmented-CSR compression/decompression in
GPU. According to our evaluation, the runtime overhead of
these compression/decompression operations is negligible.
Use of a Half-precision Floating Points (FP16) for Of-
floaded Tensors. To further reduce the traffic between the
GPU and the SSD, the memory manager exploits the fact
that neural network can tolerate a certain level of precision
loss without significantly degrading the final model accuracy.
Specifically, during a forward path, the memory manager first
converts the offloaded tensor to FP16 format (from FP32) and
then stashes them in the SSD. Later, during a backward prop-
agation, the offloaded FP16 tensor is prefetched, padded to
FP32, and reused. Naturally, the use of a lower-precision ten-
sor comes with the potential degradation in the final model ac-
curacy [44, 63]. However, a previous study demonstrates that
the technique of selectively utilizing FP16 for the offloaded
tensors incurs less accuracy degradation than processing all
tensors in FP16 [25]. The key observation is that the FP32
tensor is utilized during forward propagation, and the stashed
FP16 version of the same tensor is only utilized during a
backward propagation (Delayed Precision Reduction in [25]).

3.3 Offloading Scheduler
The offloading scheduler in FlashNeuron takes a DNN

model as input and derives an optimal tensor offloading sched-
ule, which is designed with the following rationale. First,
it should offload enough tensors so that the GPU can cor-
rectly run at the target batch size without triggering an out-of-
memory error. Second, it should avoid excessive data transfers
from the GPU to the SSD (and vice versa), thus minimizing
the increase of the iteration time induced by tensor offloading.

The offloading scheduler finds an optimal schedule for a
given target batch size. It first performs a profiling iteration.
At this iteration, all the tensors that are buffered during the
forward pass (i.e., input and intermediate data for each layer)

(a) Initial state

Transfer timeNon-offloaded

Spillover: 16MB

Offloaded
4MB 4MB 2MB 2MBTensor Size: 4MB2MB6MB

Spillover: 0MB

Spillover: 0MB

Spillover: 0MB

(b) Phase 1 processing

(c) Phase 2 processing

Spillover: 8MB D E F GC

A B D E F GC

E F G

D F G

B D G

Offload A Offload B

Offload A Offload B Offload C Offload D

Offload A Offload B Offload C Offload E

Offload A Offload C Offload E Offload F

Figure 6: Tensor selection walk-through. Darker boxes indi-
cate tensors with a higher compression ratio, whereas lighter
boxes those with lower compression ratio.

are offloaded to the SSD so that the system can run with
a large target batch size without causing an out-of-memory
error. Profiling iteration collects i) the size of each buffered
tensor, ii) the time it takes to offload each buffered tensor,
iii) the expected compression ratio of a tensor using CSR
(Compressed Sparse Row) format and half-precision floating-
point conversion, iv) the execution time for the forward pass
and the backward pass (excluding tensor offloading time),
and v) the total size of the other memory-resident objects
(e.g., weights, temporary workspace). Once this profiling
iteration completes, information collected during this iteration
is passed to the offloading scheduler.
Phase 1: Linear Tensor Selection. The first phase of the
scheduler is to iteratively select a certain number of tensors
from the beginning until the total size of the unselected tensors
plus the total size of the other memory-resident objects (i.e.,
weights and temporary workspace) becomes smaller than
the total GPU memory size. Figure 6 illustrates this process,
where the forward-pass with seven buffered tensors (labeled A
through G) is to run on a hypothetical GPU with 8MB physical
memory. Figure 6(b) shows the example selection process
of Phase 1. At this point, the scheduler checks whether the
total data transfer time, which is computed by summing up
the individual tensor offloading times, is smaller than the
total execution time of all layers in the forward pass. If this
condition is satisfied, the scheduler adopts this schedule and
stops because it can fully overlap tensor offloading with layer
computation via scheduling. If not, the offloading scheduler
enters the second phase.
Phase 2: Compression-aware Tensor Selection. The sec-
ond phase of the scheduler is run only when a satisfactory

USENIX Association 19th USENIX Conference on File and Storage Technologies 391

schedule is not found in the first phase. This indicates that
the current schedule spends too much time offloading the
tensors, and such the transfer time has now become the new
bottleneck. To solve the issue, our scheduler replaces the
already selected tensors with compression-friendly tensors
expected to have high compression ratios with CSR and FP16
conversion illustrated in Figure 6(c). Specifically, the sched-
uler performs the following steps in an iterative way to refine
the existing schedule. First, the scheduler excludes the last
uncompressible tensor selected from Phase 1. It is replaced
with one or more tensors having the highest expected com-
pression ratios among the tensors that are not yet selected,
such that the size of the newly selected tensors exceeds the
excluded tensor size. Then, it recomputes the expected total
data transfer time, assuming that the compressed tensor takes
a fraction (inversely proportional to the compression ratio) of
the original offloading time. If this total transfer time does not
exceed the forward pass’s total execution time, the scheduler
stops. Otherwise, it repeats this process until the condition is
satisfied or there exist no compression-friendly tensors (i.e.,
tensors whose size does not decrease after compression).

If a satisfactory schedule is found, the corresponding batch
size is likely not to increase the iteration time and achieve
higher throughput than the baseline. On the other hand, if our
scheduler stops as it cannot find more compression-friendly
tensors, the generated schedule is expected to incur some
delay from tensor transfers. However, this schedule can still
be used to run DNN training at a larger batch size (but likely
at a lower throughput).

3.4 Peer-to-Peer Direct Storage Access
Peer-to-peer direct storage access (P2P-DSA) enables di-

rect memory access between a GPU and NVMe SSDs without
using the host DRAM buffer to minimize host intervention
during SSD read/write. P2P-DSA builds on GDRCopy [14]
and SPDK [58] to communicate tensors from/to a GPU
to/from NVMe SSDs. GDRCopy is a fast GPU memory
copy library based on NVIDIA GPUDirect [17], a technol-
ogy that exposes the GPU memory to be accessed directly
by other PCIe peripherals. Intel SPDK exposes a block-level
I/O interface directly to the user-space software. P2P-DSA
is a lightweight layer that leverages these two technologies
to enable direct offloading/prefetching tensors from GPUs to
SSDs. To maintain each tensor’s metadata offloaded to SSDs,
P2P-DSA contains a metadata table consisting of a long LBA
value and a boolean value to check the I/O completion.
Example Walk-through of a Transfer Request. Figure 7
illustrates the operations of the transfer request (offload-
ing from the GPU to the SSD) in greater details. When
P2PDSA_issue is called, 1 P2P-DSA get the index, buffer,
and direction(write) information from the transfer request.
Then, 2 the logical block address (LBA) allocator is called
to allocate a set of contiguous blocks on a single SSD device
or multiple SSD devices (when multiple SSDs are utilized

GPU

Metadata Table

NVMe SSD
0 1 2048

Index DoneLBA
0 True0
1 2048
…

…

Set contiguous LBAs

8192
Index 1Index 0

… …

GPU BAR

5 Transfer

2

Index “1” transfer request1

PCIe Bus

Issue
cmd.

4

Update6

3 Create and
push cmd.

Check “Done”7

Max. LBA

P2
P-

D
SA

Queue

cmd.

LBA Allocator

Figure 7: Overall structure of P2P-DSA with an example
walk-through (write).

to boost offloading/prefetching bandwidth). The LBA of the
first block allocated from the LBA allocator is updated at the
metadata table’s appropriate location. After this point, 3
P2P-DSA creates a command for each logical block and then
enqueues it to the command queue. Here, an NVMe com-
mand contains i) the source address (GPU memory address
is translated to PCIe bus address by GPUDirect), and ii) the
device address (computed using the LBA in metadata table).

When P2PDSA_update is called, 4 commands queued
in the software command queue are fetched and issued to
NVMe SSD as long as the NVMe device submission queue
has space. Then, 5 NVMe SSD devices will execute these
requests and perform direct data transfers between SSD de-
vices and the GPU. Sometime later, these transfer requests
will be completed, and their status will be updated in the
NVMe device completion queue. When the P2PDSA_update
is called once again, 6 P2PDSA_update will clear the com-
pletion queues and updates the metadata table by setting cor-
responding done bits. At this point, 7 if the application calls
P2PDSA_is_done for the already offloaded tensor, it will re-
turn true. The reverse-path (prefetching data from the SSD to
the GPU memory) is performed similarly except that i) LBAs
are read from the metadata table instead of being allocated,
and ii) read commands are issued instead of write commands.
In both offloading and prefetching cases, most data accesses
are sequential accesses, which are more advantageous than
random accesses in throughput and endurance.
Implications on SSD lifetime. The endurance of an SSD de-
pends on the program and erase (P/E) cycles for the NAND
blocks. Therefore, for write-intensive workloads, a primary
concern for the flash-based SSDs is the endurance degradation
by wear-out of NAND blocks. We estimate the guaranteed
(minimum) endurance of the SSD when running the P2P-DSA
workload, using drive writes per day (DWPD) (i.e., 3 DWPD

392 19th USENIX Conference on File and Storage Technologies USENIX Association

Table 1: System configurations.
CPU Intel Xeon Gold 6244 CPU 8 cores @ 3.60GHz
GPU NVIDIA Tesla V100 16GB PCIe
Memory Samsung DDR4-2666 64GB (32GB × 2)

Storage Samsung PM1725b 8TB PCIe Gen3 8-lane × 2
(Seq. write: 3.3GB/s, Seq. read: 6.3GB/s)

OS Ubuntu server 18.04.3 LTS
Python Version 3.7.3
PyTorch Version 1.2

for five years of Samsung PM1725b SSD [49], assuming a
50% write-50% read workload like P2P-DSA). If the training
workload is running 24×7, the endurance is estimated to be
about 7,374 hours, which is 307 days (i.e., 3 DWPD× 5 years
× 365 days × 8,000 GB × 2 (50% write) / 3.3 GB/s / 86,400
seconds/day). While a longer lifetime would be desirable,
we note that our estimation is conservative as P2P-DSA only
performs sequential writes to sustain the write amplification
factor (WAF) of (nearly) one to maximize endurance. SSD
manufacturers typically use 4KB random write [49] to report
the endurance number, which has a higher WAF than sequen-
tial writes at least by 3.5× [6, 21]. Furthermore, if P2P-DSA
uses the emerging low-latency SSDs, such as Intel Optane
SSD [45] and Samsung Z-SSD [70], the endurance can be
further improved by a factor of 5× to 10×. Finally, we can
further extend the SSD lifetime by leveraging tradeoffs be-
tween cell retention time and P/E cycles [7,26]. An offloaded
object has a very short lifetime and hence requires a much
lower retention time (i.e., one training iteration time, which is
in order of seconds and minutes at most, rather than years as
required by modern SSDs). This can improve the P/E cycles
by 46× or more [7]. With these optimizations, the expected
SSD lifespan can increase by multiple orders of magnitude.

4 Evaluation

4.1 Methodology
System Configurations. We evaluate FlashNeuron on a Gi-
gabyte R281-3C2 rack server with NVIDIA Tesla V100 and
two Samsung NVMe PM1725b SSDs. The details of hard-
ware and software configurations are summarized in Table 1.
Workloads. Among various DNN models, we choose four
state-of-the-art models and scale them up to represent the
future DNN models with very deep structures: ResNet-
1922 [19] and DenseNet-1001 [22, 74] are state-of-the-art
deep CNN models for image processing. BERT-XLarge [13]
and HBMP [60] are two of the top-performing models for nat-
ural language processing tasks. ResNet-1922 and DenseNet-
1001 [74] are selected based on the deepest network of ResNet
and DenseNet models. The depths of BERT-XLarge and
HBMP are increased by 2× and 4× from the maximum size
stated in the original papers. Note that these naively scaled
models do not necessarily improve accuracy. Our purpose is
to use them as proxies for future DNN models requiring a

Table 2: Suite state-of-the-art DNN models and datasets used,
major layer types and counts.
Network Dataset # of layers Structure

ResNet-1922 [19] ImageNet [12] 1922
(Conv1→BN1→
ReLU→Conv2→
BN2→ReLU)n

DenseNet-1001 [22, 74] ImageNet [12] 1001

(Conv1→BN1→
ReLU)n-1→
Conv2→BN2→
ReLU

BERT-XLarge [13] SQuAD 1.1 [52] 48 blocks

(Embd1→Embd2
→Embd3→FC1
→Attn→FC2
→LNorm)n

HBMP [60] SciTail [31]
24 hidden
layers FCm→LSTMn

much larger capacity for efficient training. The specifics are
summarized in Table 2.

4.2 Performance Evaluation
Overview. Figure 8 shows the training throughput over vary-
ing batch sizes. The baseline uses GPU memory only. Flash-
Neuron (SSD) and FlashNeuron (Memory) offload tensors
to SSD and CPU memory, respectively, with no interference
from CPU processes. Note that FlashNeuron (Memory) rep-
resents a state-of-the-art buffering-on-memory scheme. The
dotted line shows the best throughput that can be achieved
by the baseline. To demonstrate the effectiveness of Flash-
Neuron, we mark with an arrow the maximum batch size
for which the proposed offloading scheduler is able to find
an effective schedule (i.e., a schedule that does not increase
the estimated forward-pass time). The training throughput
indeed peaks at the batch size marked with the arrow. As we
further increase the batch size, the throughput gets degraded
as the cost of tensor offloading outweighs the benefits of the
increased batch size.

FlashNeuron (SSD) improves the training throughput by up
to 37.8% by selecting the optimal batch size and can increase
the batch size by up to 5.0× while achieving at least the same
throughput as the baseline (or higher). In some cases, increas-
ing batch size may give additional benefits to reduce total
training time further. For example, the effectiveness of batch
normalization is known to diminish for small batches, and
increasing the batch size can yield higher accuracy, faster con-
vergence, or both [36]. However, when the batch size is too
large, the limited bandwidth between the GPU and the SSD
becomes the bottleneck and offsets the higher utilization ben-
efits. Some configurations in Figure 8 (e.g., batch size of 8+
in ResNet-1922 and 10+ in DenseNet-1001) represent these
cases. The performance gap between FlashNeuron (SSD)
and FlashNeuron (Memory) is attributed to the difference in
sustainable write throughput. While FlashNeuron (Memory)
can utilize the nearly full PCIe write bandwidth (13.0GB/s),
FlashNeuron (SSD) is limited by the write throughput of
the SSD device (3.0GB/s×2). Thus, FlashNeuron (Memory)

USENIX Association 19th USENIX Conference on File and Storage Technologies 393

0
5

10
15
20

12 20 28 36 44 52 60 68
0

2

4

6

1 2 3 4 5
0
1
2
3
4
5

2 4 6 8 10 12
0
2
4
6
8

2 3 4 5 6 7 8 9 10

(b) DenseNet-1001(a) ResNet-1922 (c) BERT-XLarge

Im
ag

es
 /

se
c

Im
ag

es
 /

se
c

Baseline FlashNeuron (SSD) FlashNeuron (Mem)

Se
qu

en
ce

s
/ s

ec

(d) HBMP
Batch sizeBatch size Batch size Batch size

Se
qu

en
ce

s
/ s

ec

P2P P2P+CSR P2P+FP16

Figure 8: Throughput of FlashNeuron with varying batch sizes (P2P: Baseline with P2P, P2P+CSR: With P2P and CSR
compression, P2P+FP16: With P2P and FP16 conversion). The arrow shows the maximum throughput of FlashNeuron (SSD).

(b) DenseNet-1001(a) ResNet-1922 (c) BERT-XLarge (d) HBMP

Baseline FlashNeuron (SSD) FlashNeuron (Memory)

N
or

m
. t

hr
ou

gh
pu

t

0
0.5

1
1.5

2
2.5

Conv BN Misc
0

0.5
1

1.5
2

Conv BN Misc
0

0.5
1

1.5
2

2.5

MM
BMM Misc

0
0.5

1
1.5

2

LSTM

N
or

m
. t

hr
ou

gh
pu

t

N
or

m
. t

hr
ou

gh
pu

t

N
or

m
. t

hr
ou

gh
pu

t

Conv

backward BN

backward Conv

backward BN

backward MM

backward BMM

backward RNN

backward

Figure 9: Normalized per-layer throughput of key layers across training scenarios (Conv: Convolution, BN: BatchNorm, MM:
Matrix Multiplication, BMM: Batched Matrix Multiplication).

achieves up to 49.1% throughput gain (with an average of
43.9%) over the baseline. This performance gap can be closed
by FlashNeuron (SSD) employing additional SSDs to saturate
the PCIe channel bandwidth.
Source of Performance Improvement. Overall, FlashNeu-
ron benefits from its two optimizations: CSR and offloading
tensors using FP16 representation. Figure 8 shows the im-
provements from each optimization. Here, P2P represents the
configuration where tensors are offloaded using P2P-DSA,
but without any other optimization (e.g., CSR compression or
FP16). This configuration enables the use of a larger batch
size beyond the GPU memory capacity limit. However, the
limited bandwidth between the GPU and the SSD limits the
performance. P2P with CSR compression (P2P+CSR) im-
proves the baseline performance by 7.14%. Note that the
tensor compression does not improve the performances of
BERT-XLarge and HBMP because those models do not uti-
lize a ReLU layer. P2P with FP16 conversion (P2P+FP16)
improves the performance by 21.41% over the baseline. The
improvement is greater than that of P2P+CSR because the
use of the FP16 format cuts the traffic by half, while the CSR
compression is only applied for a limited set of tensors (e.g.,
output tensors of ReLU).

Figure 9 shows the per-layer throughput of FlashNeuron at
the optimal batch size normalized to the baseline using GPU
memory only. By employing a larger batch size, FlashNeu-
ron substantially increases the throughput for the key layers.
Batch normalization (BN) and LSTM layers benefit the most

Table 3: Batch sizes achieving maximum throughput and the
maximum batch size FlashNeuron can run.

Network Baseline Maximum Runnable
throughput maximum

Batch Batch Ratio Batch Ratio
ResNet-1922 4 7 1.75× 56 14.0×

DenseNet-1001 4 8 2.00× 52 13.0×
BERT-XLarge 1 3 3.00× 14 14.0×

HBMP 20 36 1.80× 248 12.4×

from the increase in batch size, whereas convolution (Conv)
layers demonstrate relatively modest improvements. It is be-
cause the Conv layer is known to be compute-intensive and
already has a high resource utilization even for the baseline.

Since the bandwidth of the PCIe channel and SSD writes is
the limiting factor for performance, future scaling of both
PCIe and SSD write bandwidth will further improve the
throughput. For example, PCIe 5.0 interconnects [48] will
provide 4× higher bandwidth than PCIe 3.0 used in this work,
enabling FlashNeuron (SSD) to utilize 4× larger batch size.
Figure 3 demonstrates that there is still substantial room for
further throughput improvement, and higher bandwidth inter-
connects in the future will close this performance gap.
Maximum Batch Size. Table 3 shows the largest batch size
for different configurations. The first column ("Baseline")
is the maximum batch size using GPU memory only (i.e.,
without using FlashNeuron). The second column ("Maximum
throughput") shows the batch size for which FlashNeuron
(SSD) yields the highest throughput, which is marked by

394 19th USENIX Conference on File and Storage Technologies USENIX Association

0
10
20
30
40
50

16 32 48 64 80 96 112128
0
2
4
6
8

10

1 2 3 4 5 6
0

4

8

12

2 4 6 8 10 12 14 16
0

5

10

15

2 6 10 14 18 22 26

(b) DenseNet-1001(a) ResNet-1922 (c) BERT-XLarge

Im
ag

es
 /

se
c

Im
ag

es
 /

se
c

Baseline FlashNeuron (SSD) FlashNeuron (Mem)

Se
qu

en
ce

s
/ s

ec

(d) HBMP
Batch sizeBatch size Batch size Batch size

Se
qu

en
ce

s
/ s

ec

Figure 10: Throughput of FlashNeuron with half-precision. The arrow shows maximum throughput of FlashNeuron (SSD).

0.E+00

5.E+09

1.E+10

0 1000 2000 3000
0.E+00

1.E+09

2.E+09

3.E+09

0 200 400 600 800

0.E+00

5.E+08

1.E+09

2.E+09

0 1000 2000
0.E+00

5.E+08

1.E+09

2.E+09

0 400 800 1200

ResNet-1922 DenseNet-1001

Lo
gi

ca
l b

lo
ck

 a
dd

re
ss

 (L
BA

)

BERT-XLarge

Time (ms)

HBMP

F B F B

Write Read

F B F B

0.5 x 106

1 x 106

1.5 x 106

0 0

0 0
1 x 106

2 x 106

3 x 106

1 x 106

2 x 106

1 x 106

2 x 106

3 x 106

0

Figure 11: LBA access pattern during a single iteration (F:
Forward propagation, B: Backward propagation).

an arrow in Figure 8. Finally, the third column ("Runnable
maximum") shows the maximum batch size that FlashNeuron
can run to completion. On average, FlashNeuron uses 2.09×
larger batch size to maximize the training throughput and
increases the maximum runnable batch size by a factor of
13.4×. When FlashNeuron is operating with the runnable
maximum batch size, FlashNeuron offloads 59.2GB of tensors
on average (up to 68.6GB for DenseNet-1001) and occupies
33.2GB (up to 48.9GB for HBMP) storage space.
Half-precision Training. Based on the observation that many
neural network models can still maintain the competitive ac-
curacy using FP16 representations, FP16 training is gaining
popularity. For example, the high-end NVIDIA GPUs come
with Tensor Cores, which are specialized functional units
for FP16 computations. Unfortunately, when the tensor is
already represented in FP16, FlashNeuron does not benefit
from converting the offloaded tensors to FP16. However,
our experiments still demonstrate that FlashNeuron can re-
sult in extra speedup as well as an increase in the per-GPU
batch size. Figure 10 shows the throughput of FlashNeu-
ron over varying batch sizes when FP16 values are used for
both weights and activations. FlashNeuron (SSD) enables the
use of a 1.8× larger batch size while preserving the training
throughput compared to the baseline. By employing larger
batch sizes, FlashNeuron (SSD) and FlashNeuron (Memory)
achieve 8.04% and 22.98% throughput improvement over the

baseline, respectively. This FP16 training requires less mem-
ory/storage capacity per batch and thus enables even larger
batch sizes. The speedup from FlashNeuron is smaller in
this scenario than full-precision as the overall iteration time
becomes shorter, thus having a much narrower window for
tensor offloading.
I/O Pattern. Ensuring the sequential read/write by P2P-DSA
is important for both performance and endurance. Figure 11
shows the SSD’s logical block address (LBA) access pattern
during a single iteration. During a forward propagation, of-
floaded tensors are allocated sequentially in the LBA space
(on the left side of the figure’s dotted line). In a backward
propagation, the most recently written tensors are read first,
and the least recently written tensors are read last, as shown
on the right side of the dotted line. Each offloaded/prefetched
tensor’s size ranges from 2MB to 310MB, and it is sufficiently
large to saturate the SSD’s read/write bandwidth thoroughly.
Cost Efficiency. As of September 2020, DDR4 DRAM on
the host CPU costs about $3.6/GB on average and NAND
flash SSD about $0.102/GB [29, 43, 56]. Assuming the same
capacity, FlashNeuron (SSD) achieves 35.3× higher cost-
efficiency. HBM2 DRAM has much higher $/GB than DDR4,
and thus scaling its capacity will be much more costly.

4.3 Case Studies
Our premise is that the common practice of leaving CPU

(mostly) idle while running DNN training on GPU is subop-
timal. Thus, we envision co-locating CPU jobs with DNN
training to improve resource utilization substantially. To not
degrade DNN training throughput running at large batch size,
it is crucial to provide performance isolation between the co-
located CPU and GPU processes. FlashNeuron is a unified
framework that flexibly supports both SSD and memory of-
floading to minimize resource contention for a wide range of
co-located CPU workloads. Superior performance isolation
of FlashNeuron can enable consolidation of CPU applications
and DNN training jobs. The two case studies in this section
are presented not to claim that they are common use cases
today, but to demonstrate that even memory-intensive CPU
workloads can be effectively co-located with DNN training
using FlashNeuron (SSD). For I/O-intensive workloads, one
can opt to use FlashNeuron (Memory) to avoid I/O contention.

USENIX Association 19th USENIX Conference on File and Storage Technologies 395

0
0.5

1
1.5

50% 70% 90% 50% 70% 90% 50% 70% 90% 50% 70% 90%

ResNet-1922 DenseNet-1001 BERT-XLarge HBMPN
or

m
. t

hr
ou

gh
pu

t

FlashNeuron (Memory)FlashNeuron (SSD)

Figure 12: Normalized throughput of FlashNeuron (SSD)
and FlashNeuron (Memory) when the host CPU is running a
memory-intensive image transformation workload [23].

No offloading FlashNeuron (SSD) FlashNeuron (Mem)

4 thds 6 thds 8 thds 10 thds 12 thds

0
2
4
6
8

In
c.

 e
xe

c.
 ti

m
e

(%
)

Im
ag

es
 /

se
c

Throughput

0%
10%
20%
30%
40%

Figure 13: Increase in execution time of data augmentation
tasks processing 256 2K (2048×1080) resolution images on
CPU and training throughput of ResNet-1922 on GPU.

4.3.1 Co-locating Bandwidth-Intensive Tasks on CPU

The first use case is data augmentation tasks [5, 41, 57, 61]
running on CPU while executing DNN training on GPU. Em-
ploying a data augmentation for DNN training is a common
practice to prevent the model from overfitting to the data set,
hence providing more robustness. Our example data aug-
mentation transforms 2K (2048×1080) resolution images
with a sequence of geometric operators such as rotation and
transposition, as well as re-coloring operators such as color
conversion. These operators are commonly used in data aug-
mentation [10,34,37]. Note that the actual DNN model works
with smaller images, but the data augmentation often works
with the original image, and then the augmented image is
resized to the model’s input image size (e.g., 224×224).
Throughput of DNN Training on GPU. Buffering-on-
memory can potentially achieve higher throughput than
buffering-on-SSD for the higher write bandwidth of the CPU
DRAM than the SSDs. However, the DNN training through-
put with buffering-on-memory can be heavily affected by
CPU processes’ characteristics due to the memory bandwidth
contention between CPU and GPU processes. Figure 12
shows the impact of CPU workload on the DNN training
throughput on GPU for both FlashNeuron (SSD) and Flash-
Neuron (Memory). By controlling the number of data aug-
mentation threads, we make the CPU process consume a
certain portion of the CPU memory bandwidth. In particular,
we use three configurations according to the portion of the
CPU DRAM bandwidth consumed by the data augmentation
task: 50% (21GB/s), 70% (29GB/s), 90% (36GB/s).

When the CPU consumes 50% of the available memory
bandwidth, the training throughput is still at least 35% higher

Latency (seconds)

C
D

F

0
0.2
0.4
0.6
0.8

1

0.7 0.75 0.8 0.85 0.9 0.95 1

Serving only Baseline
FlashNeuron (SSD) FlashNeuron (Memory)

No offloading

Figure 14: Query latency CDF of CPU inference across the
various training scenario.

than the baseline for both FlashNeuron (SSD) and FlashNeu-
ron (Memory). However, when the CPU workload is more
memory bandwidth-intensive (75%), FlashNeuron (Memory)
yields only 14.0% throughput gains. This performance loss
becomes even worse when the CPU workload utilizes nearly
all of the available memory bandwidth (90%), where the train-
ing throughput degrades by 40.2% on average compared to
baseline. On the other hand, FlashNeuron (SSD) still achieves
22.6% and 20.2% throughput gains over the baseline even
if the CPU consumes 75% and 90% of the available mem-
ory bandwidth, respectively. Even in the worst case, the
throughput loss of FlashNeuron (SSD) falls just within 8% of
standalone execution, whereas that of FlashNeuron (Memory)
can be as high as 67.8% (i.e., having lower than one-third of
the original training throughput).
Execution Time of Data Augmentation Task on CPU. Fig-
ure 13 shows both the increase in execution time of the data
augmentation task on CPU (bar graph) and DNN training
throughput of ResNet-1922 using FlashNeuron on GPU (line
graph). All bars are normalized to the baseline, which is stan-
dalone execution of the data augmentation pipeline with no
co-located GPU processes. No offloading represents the case
when GPU is running DNN training with no tensor offloading
to either host memory or SSDs. FlashNeuron (SSD) only
utilizes a minimal amount of the host memory bandwidth
(mostly for PyTorch application code) to incur a compara-
ble degree of the slowdown with No offloading. In contrast,
FlashNeuron (Memory) consumes a large amount of the host
CPU memory bandwidth (roughly equal to the maximum
bandwidth of a 16-lane PCIe interface) to incur a substantial
performance slowdown. The figures show that this memory
bandwidth contention can break performance isolation be-
tween the CPU and GPU processes to make it much more
challenging to deploy them in a consolidated environment.

4.3.2 Co-locating Latency-Critical Tasks on CPU

For the second case study, we select a DNN inference task,
which is latency-critical; according to Facebook, inference
tasks are mostly running on CPUs while requiring a large
memory space for users and contents data [18]. We run a
BERT-as-service [64] on CPU, which takes user-provided

396 19th USENIX Conference on File and Storage Technologies USENIX Association

Table 4: 50%, 95%, and 99% percentile of query latency and
delay time ratio compared to Serving only.

No offloading FlashNeuron
(Memory)

FlashNeuron
(SSD)

Latency Latency Delay Latency Delay
50% 0.736s 0.933s 30.3% 0.746s 4.11%
95% 0.740s 0.944s 30.7% 0.754s 4.35%
99% 0.743s 0.950s 30.9% 0.758s 4.45%

sentences as input and invokes BERT to return their embed-
ding, while concurrently running a BERT training on GPU.

Figure 14 shows the cumulative distribution function (CDF)
of the CPU inference. Serving only is a case when there is
no process running on GPU, whereas No offloading is when
BERT is training but using GPU memory only. As shown
in this figure and Table 4, FlashNeuron (SSD) incurs less
than 5% and 2% slowdown compared to Serving only and No
offloading. In contrast, over 30% latency increase is observed
for FlashNeuron (Memory) compared to Serving only due
to memory bandwidth contention. As for training through-
put, FlashNeuron (SSD) experiences only a 1.8% slowdown,
whereas FlashNeuron (Memory) as much as 27.5%. This
slowdown is not sensitive to the model or dataset and is largely
attributed to the bandwidth consumption to offload tensors.

5 Related Work

Augmented GPU Memory for DNN Training. Many
proposals build on NVIDIA Unified Virtual Memory
(UVM) [42], which enables transparent data sharing over both
GPU and CPU memory. However, its performance is often
limited due to its excessive page fault handling overhead [39].
To address this problem, several specialized schemes that do
not rely on demand-fetching have been proposed to acceler-
ate DNN training [8, 9, 24, 55, 62]. Similar to vDNN [55],
moDNN [9] offloads and prefetches tensors in convolution
layers in addition to accumulating gradients.

Alternatively, Chen et al. [8] propose to mark the outputs of
convolution layers and free unmarked tensors. The freed data
is recomputed during a backward pass. Merging the two ideas,
SuperNeurons [62] offloads the marked tensors to host mem-
ory and saves device memory space. Ooc_cuDNN [24] di-
vides the data in a single layer and performs for a piece of data
at a time. The unused data is prefetched from the host memory
concurrently with computation. Such mechanisms, however,
experience substantial performance degradation when the
host CPU is running memory-intensive workloads. To com-
plement this, FlashNeuron offloads tensors directly to SSDs,
and thus do not suffer performance degradation even under
the presence of memory-intensive processes on the CPU.
Data Transfer Methods between GPU and Storage De-
vices. Several proposals introduce effective data transfer meth-
ods between GPU and storage devices [4,39,71]. Dragon [39]
leverages the page-faulting mechanism of CPU and read-

ahead operation of OS. Upon page fault, page cache in host
memory is used as a bridge between GPU memory and NVM
storage. SPIN [4] and NVMMU [71] take a step further, re-
moving the usage of the host side buffer, thus allowing direct
access from GPU to SSD. However, they are more general-
purpose solutions, which perform sub-optimally for DNN
training as they do not sequentially read/write.
Reducing Memory Footprint of DNN Models. Another
way to relieve the capacity limitations of GPU memory is
to optimize the DNN model without compromising the ac-
curacy [25, 35, 72]. Echo [72] reduces the memory footprint
by stashing small input values of the attention layers and
recomputing the feature maps during the backward passes.
Gist [25] applies various footprint reduction techniques by
compressing feature maps, especially for ReLU-convolution
and ReLU-pooling layers, as well as lower-precision represen-
tations (FP8/10/16). Likewise, FlashNeuron exploits sparse
matrix representations such as CSR and FP16 representation
on offloaded tensors to reduce the traffic to SSD devices.

6 Conclusion
With a relentless pursuit of higher accuracy, DNNs are contin-
uously getting deeper and wider. One significant constraint
in scaling trainable DNNs is the limited capacity of the GPU
memory. This problem is exacerbated by emerging DNN
applications required to handle large inputs. There have been
previous attempts to overcome this GPU memory capacity
wall through the use of host memory as a buffer for intermedi-
ate data generated during the forward pass of DNN training for
reuse during the backward pass. However, these approaches
experience substantial performance degradation as the host
CPU contends for the limited host memory bandwidth. Thus,
we propose FlashNeuron, the first buffering-on-SSD approach
to offload intermediate data to high-performance NVMe SSDs
instead of the host DRAM. FlashNeuron enables large-batch
training of very deep and wide neural networks of today and
the future to achieve high training throughput. Furthermore, it
flexibly supports both SSD and memory offloading to provide
excellent performance isolation between GPU training jobs
and a wide range of co-located CPU workloads, including
memory- and I/O-intensive ones.

Acknowledgments
We extend our thanks to Randal Burns for shepherding this
paper. We also thank Jin-Soo Kim and Jaehoon Sim for
valuable discussions and their help with P2P-DSA in an early
phase of this work. This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the
Korea Government (MSIT) (NRF-2020R1A2C3010663) and
Samsung Electronics. The source code is available at https:
//github.com/SNU-ARC/flashneuron.git. Jae W. Lee is
the corresponding author.

USENIX Association 19th USENIX Conference on File and Storage Technologies 397

https://github.com/SNU-ARC/flashneuron.git
https://github.com/SNU-ARC/flashneuron.git

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation, pages 265–283. USENIX Association,
2016.

[2] Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang
Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike
Chrzanowski, Adam Coates, Greg Diamos, Ke Ding,
Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang,
Linxi Fan, Christopher Fougner, Liang Gao, Caixia
Gong, Awni Hannun, Tony Han, Lappi Vaino Johannes,
Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby
Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li,
Dongpeng Ma, Sharan Narang, Andrew Ng, Sher-
jil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian,
Zongfeng Quan, Jonathan Raiman, Vinay Rao, Sanjeev
Satheesh, David Seetapun, Shubho Sengupta, Kavya
Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang,
Chong Wang, Jidong Wang, Kaifu Wang, Yi Wang,
Zhijian Wang, Zhiqian Wang, Shuang Wu, Likai Wei,
Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan,
Jun Zhan, and Zhenyao Zhu. Deep speech 2: End-to-
end speech recognition in english and mandarin. In
Proceedings of the 33rd International Conference on
Machine Learning, pages 173–182. PMLR, 2016.

[3] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel
and distributed deep learning: An in-depth concurrency
analysis. ACM Computing Surveys, 52(4), 2019.

[4] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and
Mark Silberstein. SPIN: Seamless operating system
integration of peer-to-peer DMA between SSDs and
GPUs. In Proceedings of the 2017 USENIX Annual
Technical Conference, pages 167–179. USENIX Asso-
ciation, 2017.

[5] Alexander Buslaev, Vladimir I. Iglovikov, Eugene
Khvedchenya, Alex Parinov, Mikhail Druzhinin, and
Alexandr A. Kalinin. Albumentations: Fast and flexible
image augmentations. Information, 11(2), 2020.

[6] Zydan Bybin, Mohammed Khandaker, Monika Sane,
and Graham Hill. Over-provisioning NAND-based intel
SSDs for better endurance. Intel White Paper, 2019.

[7] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich Haratsch,
Adrian Cristal, Osman Unsal, and Ken Mai. Flash
correct-and-refresh: Retention-aware error management
for increased flash memory lifetime. In Proceedings of
the 2012 IEEE 30th International Conference on Com-
puter Design, pages 94–101. IEEE, 2012.

[8] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174v2, 2016.

[9] Xiaoming Chen, Danny Chen, and Xiaobo S. Hu.
moDNN: Memory optimal DNN training on GPUs. In
Proceedings of the 2018 Design, Automation Test in
Europe Conference Exhibition, pages 13–18, 2018.

[10] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V. Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, June 2020.

[11] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime
Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a
fixed-length context. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pages 2978–2988. Association for Computational
Linguistics, 2019.

[12] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li,
and Li Fei-fei. ImageNet: A large-scale hierarchical
image database. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. IEEE,
2009.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[14] NVIDIA GDRCopy: A low-latency GPU memory copy
library based on GPUDirect RDMA. https://github.
com/NVIDIA/gdrcopy.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. The MIT Press, 2016.

[16] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch SGD: Training ImageNet in 1 hour. arXiv
preprint arXiv:1706.02677v2, 2018.

[17] NVIDIA GPUDirect. https://developer.nvidia.
com/gpudirect.

398 19th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/NVIDIA/gdrcopy
https://github.com/NVIDIA/gdrcopy
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect

[18] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyan-
skiy, Liang Xiong, and Xiaodong Wang. Applied ma-
chine learning at Facebook: A datacenter infrastructure
perspective. In Proceedings of the 2018 IEEE Inter-
national Symposium on High Performance Computer
Architecture, pages 620–629. IEEE, 2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778. IEEE,
2016.

[20] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train
longer, generalize better: Closing the generalization gap
in large batch training of neural networks. In Proceed-
ings of the Advances in Neural Information Processing
Systems 30, pages 1731–1741. Curran Associates, Inc.,
2017.

[21] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias
Iliadis, and Roman Pletka. Write amplification analysis
in flash-based solid state drives. In Proceedings of the
International Systems and Storage Conference, pages
10:1–10:9. ACM, 2009.

[22] Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Weinberger. Densely connected convolutional
networks. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition, pages
2261–2269. IEEE, 2017.

[23] Yermalayeu Ihar, Antonenka Mikhail, Radchenko An-
drey, Dmitry Fedorov, Kirill Matsaberydze, Artur
Voronkov, and Facundo Galan. SIMD library. http:
//ermig1979.github.io/Simd/.

[24] Yuki Ito, Ryo Matsumiya, and Toshio Endo.
ooc_cuDNN: Accommodating convolutional neural net-
works over GPU memory capacity. In Proceedings of
the 2017 IEEE International Conference on Big Data,
pages 183–192. IEEE, 2017.

[25] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia
Tang, and Gennady Pekhimenko. Gist: Efficient data
encoding for deep neural network training. In Proceed-
ings of the 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture, pages 776–789,
2018.

[26] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee,
and Jihong Kim. Lifetime improvement of NAND
flash-based storage systems using dynamic program and
erase scaling. In Proceedings of the 12th USENIX

Conference on File and Storage Technologies, pages
61–74. USENIX Association, 2014.

[27] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks. In
A. Talwalkar, V. Smith, and M. Zaharia, editors, Pro-
ceedings of Machine Learning and Systems, volume 1,
pages 1–13, 2019.

[28] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture
for accelerating distributed DNN training in heteroge-
neous GPU/CPU clusters. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and
Implementation, pages 463–479. USENIX Association,
November 2020.

[29] McCallum John C. Price and performance changes of
computer technology with time. http://www.jcmit.
net/.

[30] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Generaliza-
tion gap and sharp minima. In Proceedings of the 5th
International Conference on Learning Representations,
2017.

[31] Tushar Khot, Ashish Sabharwal, and Peter Clark. Sci-
TaiL: A textual entailment dataset from science question
answering. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, pages 5189–5197,
2018.

[32] Abhishek Vijaya Kumar and Muthian Sivathanu.
Quiver: An informed storage cache for deep learning.
In Proceedings of the 18th USENIX Conference on File
and Storage Technologies, pages 283–296. USENIX
Association, February 2020.

[33] Youngeun Kwon and Minsoo Rhu. Beyond the mem-
ory wall: A case for memory-centric HPC system for
deep learning. In Proceedings of the 2018 51st Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 148–161. IEEE, 2018.

[34] Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy
Hospedales, Neil M. Robertson, and Yongxin Yang.
DADA: Differentiable automatic data augmentation.
arXiv preprint arXiv:2003.03780, 2020.

[35] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt
Keutzer, Dan Klein, and Joseph E Gonzalez. Train
large, then compress: Rethinking model size for efficient
training and inference of transformers. arXiv preprint
arXiv:2002.11794, 2020.

USENIX Association 19th USENIX Conference on File and Storage Technologies 399

http://ermig1979.github.io/Simd/
http://ermig1979.github.io/Simd/
http://www.jcmit.net/
http://www.jcmit.net/

[36] Xiangru Lian and Ji Liu. Revisit batch normalization:
New understanding and refinement via composition opti-
mization. In Proceedings of the 22nd International Con-
ference on Artificial Intelligence and Statistics, pages
3254–3263, 2019.

[37] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim,
and Sungwoong Kim. Fast autoaugment. In Proceed-
ings of the Advances in Neural Information Processing
Systems 32, pages 6665–6675. Curran Associates, Inc.,
2019.

[38] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens van der Maaten. Exploring the
limits of weakly supervised pretraining. arXiv preprint
arXiv:1805.00932, 2018.

[39] Pak Markthub, Mehmet E. Belviranli, Seyong Lee, Jef-
frey S. Vetter, and Satoshi Matsuoka. DRAGON: Break-
ing GPU memory capacity limits with direct NVM ac-
cess. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis, pages 32:1–32:13. IEEE, 2018.

[40] Sam McCandlish, Jared Kaplan, Dario Amodei, and
OpenAI Dota Team. An empirical model of large-batch
training. arXiv preprint arXiv:1812.06162, 2018.

[41] Jayashree Mohan, Amar Phanishayee, Ashish Rani-
wala, and Vijay Chidambaram. Analyzing and mit-
igating data stalls in DNN training. arXiv preprint
arXiv:2007.06775, 2020.

[42] Dan Negrut, Radu Serban, Ang Li, and Andrew Seidl.
Unified memory in CUDA 6.0: a brief overview of
related data access and transfer issues. Tech. Rep. TR-
2014–09, University of Wisconsin-Madison, 2014.

[43] Newegg.com. https://www.newegg.com/.

[44] NVIDIA. Training with mixed precision. https:
//docs.nvidia.com/deeplearning/sdk/mixed-
precision-training/index.html.

[45] Intel Optane SSD 905P series. https://www.
intel.com/content/www/us/en/products/memory-
storage/solid-state-drives/consumer-
ssds/optane-ssd-9-series/optane-ssd-905p-
series.html.

[46] Yongjin Park and Manolis Kellis. Deep learning for
regulatory genomics. Nature Biotechnology, 33(8):825,
2015.

[47] David A. Patterson. Lecture 20: Domain-specific
architectures and the google TPU, UC Berkeley CS152
Computer Architecture and Engineering. http://www-
inst.eecs.berkeley.edu/~cs152/sp19, 2019.

[48] PCI-SIG. PCI-SIG® member companies announce
support for the PCI express® 5.0 specification. https:
//pcisig.com.

[49] Samsung PM1725b NVMe SSD. http://image-
us.samsung.com/SamsungUS/PIM/Samsung_1725b_

Product.pdf.

[50] PyTorch. https://pytorch.org.

[51] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. OpenAI Blog, 2019.

[52] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250v3, 2016.

[53] Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V. Le. Regularized evolution for image classifier
architecture search. In Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence, volume 33,
page 4780–4789. Association for the Advancement of
Artificial Intelligence, 2019.

[54] Jerome Revaud, Minhyeok Heo, Rafael S. Rezende,
Chanmi You, and Seong-Gyun Jeong. Did it change?
Learning to detect point-of-interest changes for proac-
tive map updates. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 4081–4090. IEEE, 2019.

[55] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W. Keckler. vDNN: Vir-
tualized deep neural networks for scalable, memory-
efficient neural network design. In Proceedings of the
49th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 18:1–18:13. IEEE, 2016.

[56] Samsung Semiconductor. http://www.samsung.com/
semiconductor/.

[57] Connor Shorten and Taghi M Khoshgoftaar. A survey
on image data augmentation for deep learning. Journal
of Big Data, 6(1):60, 2019.

[58] Intel storage performance development kit. http://
www.spdk.io/.

[59] Peng Sun, Yonggang Wen, Ruobing Han, Wansen Feng,
and Shengen Yan. GradientFlow: Optimizing network
performance for large-scale distributed DNN training.
IEEE Transactions on Big Data, pages 1–1, 2019.

[60] Aarne Talman, Anssi Yli-Jyrä, and Jörg Tiedemann.
Sentence embeddings in NLI with iterative refine-
ment encoders. Natural Language Engineering,
25(4):467–482, 2019.

400 19th USENIX Conference on File and Storage Technologies USENIX Association

https://www.newegg.com/
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-905p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-905p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-905p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-905p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-905p-series.html
http://www-inst.eecs.berkeley.edu/~cs152/sp19
http://www-inst.eecs.berkeley.edu/~cs152/sp19
https://pcisig.com
https://pcisig.com
http://image-us.samsung.com/SamsungUS/PIM/Samsung_1725b_Product.pdf
http://image-us.samsung.com/SamsungUS/PIM/Samsung_1725b_Product.pdf
http://image-us.samsung.com/SamsungUS/PIM/Samsung_1725b_Product.pdf
https://pytorch.org
http://www.samsung.com/semiconductor/
http://www.samsung.com/semiconductor/
http://www.spdk.io/
http://www.spdk.io/

[61] TensorFlow. Data augmentation. https:
//www.tensorflow.org/tutorials/images/data_

augmentation.

[62] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang
Li, Shuaiwen Leon Song, Zenglin Xu, and Tim Kraska.
SuperNeurons: Dynamic GPU memory management
for training deep neural networks. In Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 41–53. ACM,
2018.

[63] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu
Chen, and Kailash Gopalakrishnan. Training deep neu-
ral networks with 8-bit floating point numbers. In Pro-
ceedings of the 32nd International Conference on Neu-
ral Information Processing Systems, page 7686–7695.
Curran Associates Inc., 2018.

[64] Han Xiao. Bert-as-service. https://github.com/
hanxiao/bert-as-service, 2018.

[65] Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael
Niemier, Jason Cong, Yu Hu, and Yiyu Shi. Scaling
for edge inference of deep neural networks. Nature
Electronics, 1(4):216–222, 2018.

[66] Chih-Chieh Yang and Guojing Cong. Accelerating data
loading in deep neural network training. In Proceedings
of the 2019 IEEE 26th International Conference on High
Performance Computing, Data, and Analytics, pages
235–245. IEEE Press, 2019.

[67] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. XLNet:
Generalized autoregressive pretraining for language un-
derstanding. arXiv preprint arXiv:1906.08237v2, 2020.

[68] Yang You, Jonathan Hseu, Chris Ying, James Demmel,
Kurt Keutzer, and Cho-Jui Hsieh. Large-batch training
for LSTM and beyond. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2019.

[69] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel,
and Kurt Keutzer. ImageNet training in minutes. In
Proceedings of the 47th International Conference on
Parallel Processing. ACM, 2018.

[70] Samsung Z-SSD SZ985. https://www.samsung.com/
semiconductor/global.semi.static/Brochure_

Samsung_S-ZZD_SZ985_1804.pdf.

[71] Jie Zhang, David Donofrio, John Shalf, Mahmut T. Kan-
demir, and Myoungsoo Jung. NVMMU: A non-volatile
memory management unit for heterogeneous GPU-SSD
architectures. In Proceedings of the 2015 International
Conference on Parallel Architecture and Compilation
Techniques, pages 13–24. IEEE, 2015.

[72] Bojian Zheng, Abhishek Tiwari, Nandita Vijaykumar,
and Gennady Pekhimenko. Echo: Compiler-based GPU
memory footprint reduction for LSTM RNN training.
arXiv preprint arXiv:1805.08899v5, 2019.

[73] Jingbo Zhou, Qi Guo, H. V. Jagadish, Lubos Krcal,
Siyuan Liu, Wenhao Luan, Anthony Tung, Yueji Yang,
and Yuxin Zheng. A generic inverted index framework
for similarity search on the GPU. In Proceedings of
the 2018 IEEE 34th International Conference on Data
Engineering, pages 893–904. IEEE, 2018.

[74] Ligeng Zhu, Ruizhi Deng, Michael Maire, Zhiwei Deng,
Greg Mori, and Ping Tan. Sparsely aggregated convo-
lutional networks. In Proceedings of the European
Conference on Computer Vision, pages 186–201, 2018.

USENIX Association 19th USENIX Conference on File and Storage Technologies 401

https://www.tensorflow.org/tutorials/images/data_augmentation
https://www.tensorflow.org/tutorials/images/data_augmentation
https://www.tensorflow.org/tutorials/images/data_augmentation
https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf

D2FQ: Device-Direct Fair Queueing for NVMe SSDs

Jiwon Woo, Minwoo Ahn, Gyusun Lee, Jinkyu Jeong
Sungkyunkwan University

{jiwon.woo, minwoo.ahn, gyusun.lee}@csi.skku.edu, jinkyu@skku.edu

Abstract
With modern high-performance SSDs that can handle par-

allel I/O requests from multiple tenants, fair sharing of block
I/O is an essential requirement for performance isolation. Typ-
ical block I/O schedulers take three steps (submit-arbitrate-
dispatch) to transfer an I/O request to a device, and the three
steps incur high overheads in terms of CPU utilization, scala-
bility and block I/O performance. This motivates us to offload
the I/O scheduling function to a device. If so, the three steps
can be reduced to one step (submit=dispatch), thereby saving
CPU cycles and improving the I/O performance.

To this end, we propose D2FQ, a fair-queueing I/O sched-
uler that exploits the NVMe weighted round-robin (WRR)
arbitration, a device-side I/O scheduling feature. D2FQ ab-
stracts the three classes of command queues in WRR as three
queues with different I/O processing speeds. Then, for ev-
ery I/O submission D2FQ selects and dispatches an I/O re-
quest to one of three queues immediately while satisfying
fairness. This avoids time-consuming I/O scheduling oper-
ations, thereby saving CPU cycles and improving the block
I/O performance. The prototype is implemented in the Linux
kernel and evaluated with various workloads. With synthetic
workloads, D2FQ provides fairness while saving CPU cycles
by up to 45% as compared to MQFQ, a state-of-the-art fair
queueing I/O scheduler.

1 Introduction

Modern high-performance solid-state drives (SSDs) can de-
liver one million I/O operations per second (e.g., Samsung 980
Pro [1]). Such SSDs are also equipped with multiple I/O com-
mand queues to enable parallel I/O processing on multi-core
processors. Thus, SSDs can accommodate multiple indepen-
dent I/O flows in multi-tenant computing environments such
as cloud data centers. In such an environment, fair sharing
of the SSD performance is important to provide performance
isolation between multiple applications or tenants.

A fair-share I/O scheduler [3, 8, 9, 29, 30, 34, 35] distributes
storage performance proportionally to the weight of the appli-

cations. And, it is usually implemented at the block layer of
the I/O stack. The typical block I/O scheduler takes three steps
(submit-arbitrate-dispatch) during I/O processing (Figure 1a).
When applications submit I/O requests, the I/O scheduling
layer arbitrates and stages the I/O requests in the layer. When-
ever an I/O scheduling condition is met (e.g., fairness), some
staged I/O requests are eventually dispatched to the storage de-
vice. A problem is that these three-stage operations incur high
CPU overhead, long I/O latency, and low I/O performance
on high-performance SSDs. Since modern high-performance
SSDs are shifting the bottleneck from I/O to CPU, many ap-
plications are changing their algorithms and/or data structures
to adapt to the bottleneck changes [10, 17, 21]. With consid-
ering these efforts in reducing CPU overheads, reducing the
CPU overheads associated with block I/O scheduling is also
an important issue.

Offloading the I/O scheduling function to a device is an
attractive approach to reducing the CPU overhead while pre-
serving fairness. This scheduling offloading is already widely
used in the domain of network packet scheduling [7,23,31,32]
since many network interface cards have device-side I/O
scheduling features, such as round-robin scheduling. Fortu-
nately, modern storage devices are now having a device-side
I/O scheduling feature called NVMe weighted round-robin
(WRR) queue arbitration. It provides three priority classes of
I/O command queues, each with a configurable weight, and
applies the weighted round-robin queue arbitration during I/O
processing by the SSD firmware. However, a challenge is that
the basic NVMe WRR is too simple to properly schedule I/O
requests from multiple tenants with various I/O characteris-
tics, such as a varied number of threads, different I/O request
rates, and various request sizes.

This paper proposes D2FQ, a device-direct fair queueing
scheme for NVMe SSDs. D2FQ leverages the NVMe WRR
feature but does not use it as it is. It abstracts the three queue
classes as three-class queues with different I/O processing
speeds. Then, for every I/O request submission, D2FQ selects
an I/O command queue and dispatches an I/O request to the
queue immediately (Figure 1b). The queue selection policy

USENIX Association 19th USENIX Conference on File and Storage Technologies 403

(a) Submit-arbitrate-dispatch (b) Submit=dispatch

Figure 1: Typical I/O scheduling in the block layer (a) and
the proposed I/O scheduling (b).

is carefully designed to provide fairness while reducing tail
latency as much as possible. Since the arbitration step is
removed and the submission and dispatch steps are unified
in the block layer, D2FQ can minimize the CPU overhead
during I/O scheduling and improve the I/O performance.

D2FQ also leverages a scalable yet sloppy minimum value
tracking method. Similar to other fair-share I/O schedulers,
D2FQ is virtual time-based. In these schedulers, it is impor-
tant to track the minimum virtual time in a scalable way [11].
The proposed minimum tracking method tracks the minimum
value almost always while having a small window of tracking
a non-minimum value. However, this little possibility of incor-
rect tracking allows us to achieve scalability a lot as compared
to a scalable minimum tracking object in the literature. [22]

D2FQ is implemented in the Linux kernel and evaluated
with various workloads. Using the FIO benchmark with var-
ious workload configurations, our scheme provides fairness
while reducing CPU utilization by up to 45% as compared to
MQFQ [11], the state-of-the-art fair queueing scheme. When
the storage device is not the bottleneck, D2FQ outperforms
other schedulers in terms of I/O latency, CPU utilization, and
reaches the maximum storage bandwidth faster than the other
I/O schedulers. Since D2FQ unifies the I/O submission and
dispatch steps into one, it can be integrated with the low-
latency I/O stack, which has no I/O scheduling capability [19].
After the integration with the low-latency I/O stack, it outper-
forms other schemes, reducing the I/O latency by up to 35%
and improving the I/O bandwidth by up to 54%.

This paper has the following contributions:
• We successfully demonstrate to build a fair-queueing I/O

scheduler (D2FQ) on top of a simple yet efficient device-
side scheduling feature (NVMe WRR). The only necessary
abstraction is the device-side I/O queues with different I/O
processing speeds.

• We propose a scalable yet sloppy minimum tracking method
suitable for the virtual time-based fairness of D2FQ.

• We provide a detailed evaluation of the proposed fair-
queuing I/O scheduler. The evaluation results demonstrate
that D2FQ provides fairness, low CPU utilization, and high
block I/O performance.

2 Background & Motivation

2.1 Fair Queueing for SSDs

Modern high-performance SSDs are capable of accommodat-
ing parallel I/O requests from multiple tenants. For example,
Samsung 980 Pro can perform at a million I/O operations
per second [1]. This huge increase in the bandwidth and ca-
pacity of SSDs enable to service I/O requests from multiple
independent workloads (or tenants) in a single storage device.
Naturally, fair sharing of the SSD bandwidth is important
to meet the service-level agreements of applications and to
provide performance isolation between tenants. Among many
proportional share I/O schedulers [3,8,9,29,30,34,35], virtual
time-based fair queueing is an attractive solution for SSDs
due to its work-conserving nature. They can maximize the
SSD throughput while the bandwidth achieved by each tenant
is proportional to the weight of the tenants.

An I/O flow is a stream of I/O requests issued by a resource
principal [11] (e.g., virtual machines, Linux cgroups, thread
groups), and the virtual time of a flow is the normalized ac-
cumulated I/O size serviced to the tenant. When a flow f is
serviced an I/O request of length l, the virtual time vt f of the
flow is advanced by l/w f where w f is the weight of the flow.

Virtual time-based fair queueing I/O schedulers [9, 29]
schedule I/O requests while minimizing the difference in
virtual time between any flows. If all flows have the same
virtual time, their I/O resource usages are proportional to their
weights, and hence the fairness is satisfied. Accordingly, the
goal of the schedulers is to minimize the virtual time gap
between any flows. Hence, a flow with the minimum virtual
time is only allowed to dispatch its I/O request since it is the
flow with the lowest amount of I/O serviced. I/O requests
from other flows are throttled by staging them in the I/O
scheduler. This arbitration of request dispatching is denoted
as I/O scheduling in the block layer, as shown in Figure 1a.

To maximize the performance of modern SSDs with inter-
nal parallelism, it is necessary to sustain a high number of in-
flight requests. Accordingly, modern fair queueing I/O sched-
ulers [11, 13] relax the strict fairness. Hence, flows whose
virtual time is nearby the minimum virtual time are allowed
to dispatch their I/O requests. This may allow a small amount
of short-term unfairness but improves the overall I/O through-
put by maximally utilizing the storage device.

Among fair queueing I/O schedulers, multi-queue fair
queueing (MQFQ) [11] is the state-of-the-art approach for
modern high-performance multi-queue SSDs. SSDs now have
multiple command queues to utilize the internal parallelism
of SSDs effectively. To scale with multiple command queues,
MQFQ has request queues for each core in the I/O scheduler
and employs scalable arbitration between the per-core I/O
request queues. It employs two scalable objects: Mindica-
tor [22] for scalable tracking of the minimum virtual time and
a token tree [11] for scalable communication across cores.

404 19th USENIX Conference on File and Storage Technologies USENIX Association

(a) Latency/bandwidth

0

0.2

0.4

0.6

0.8

1

N
o
n

e

M
Q

F
Q

B
y
p

a
s
s

N
o
n

e

M
Q

F
Q

B
y
p

a
s
s

N
o
n

e

M
Q

F
Q

B
y
p

a
s
s

N
o
n

e

M
Q

F
Q

B
y
p

a
s
s

N
o
n

e

M
Q

F
Q

B
y

p
a
s
s

N
o
n

e

M
Q

F
Q

B
y
p

a
s
s

iodepth

1

iodepth

2

iodepth

4

iodepth

8

iodepth

16

iodepth

32

C
P

U

u

t
i
l
i
z
a
t
i
o
n
 (

s
i
n

g
l
e
 c

o
r
e
)

(b) CPU (single core) utilization

Figure 2: (a) I/O latency and bandwidth and (b) CPU (sin-
gle core) utilization of a single-thread 4 KB random read
workload with varying I/O depth on Machine A in Table 1.

With these objects, MQFQ keeps the number of in-flight re-
quests high to maximize the performance of multi-queue
SSDs while not significantly violating the short-term fairness.
The MQFQ is prototyped in the block layer of the operating
system (OS) I/O stack.

2.2 I/O Scheduling Overheads in Software
The block layer in the OS I/O stack (e.g., blk-mq in Linux [5])
is the core of block I/O scheduling. The generic block layer
provides merging, reordering, staging, and accounting of I/O
requests. In addition, block I/O schedulers (e.g., BFQ [4],
mq-deadline [25], kyber [18]) are implemented as a module
of the block layer. The multi-queue block layer maintains
I/O request queues to stage I/O requests for I/O scheduling.
Without I/O scheduling, the submitted requests are immedi-
ately dispatched to I/O command queues of a storage device
(e.g., NVMe submission queues). With I/O scheduling, the
scheduler arbitrates dispatching of I/O requests by staging
them inside the scheduler. If the scheduling condition satisfies
after processing other requests, the staged I/O requests are
finally dispatched to the device.

With high-performance SSDs, however, the block layer
incurs overheads in terms of CPU cycles and I/O latency. Ac-
cordingly, many studies have proposed to bypass the block
I/O layer to achieve low I/O latency [19, 38]. Figure 2 shows
how the overhead of the block layer affects I/O latency, I/O
bandwidth, and CPU utilization. We compared the vanilla
Linux kernel without I/O scheduling (None), MQFQ, and the
light-weight block layer (Bypass) [19], which bypasses the
block layer and submits I/O requests directly to the device’s
command queues. MQFQ shows the highest I/O latency and
lowest I/O bandwidth in Figure 2a because the CPU is satu-
rated earlier than the other schemes. None shows moderate
performance, and Bypass shows the lowest I/O latency, high-
est I/O bandwidth, and lowest CPU utilization; it delays the
saturation point further than the other schemes because of its
lowest CPU overhead of block I/O service.

The high CPU cost of the block I/O scheduling can exacer-
bate the problem of CPU bottleneck in modern data-intensive

RR

ASQ

SQ

SQ

SQ

(a) Round robin

RR

RR

RR

WRR

High

Medium

Low

SQ

SQ

SQ

(b) Weighted round robin

Figure 3: Two NVMe queue arbitration policies: (a) round-
robin and (b) weighted round-robin.

applications with fast SSDs. With the introduction of low-
latency SSDs, the performance bottleneck is moving from
an I/O device to CPU [10, 17, 21]. This incurs the need for
lowering the CPU contention by changing data structures
and/or algorithms of applications. Hence, the CPU overheads
caused by block I/O scheduling can also be addressed to fully
harness the performance potential of high-performance SSDs
today.

The high overhead of I/O scheduling can be alleviated by
offloading I/O scheduling function to devices. Network inter-
face cards (NICs) have experienced the era of microsecond-
scale I/O latency earlier than SSDs. Many approaches have
proposed to offload packet scheduling to NIC and succeeded
in lowering the CPU utilization [7, 31, 32, 36]. Similarly, the
block I/O scheduling can be offloaded to SSDs having device-
side I/O scheduling features [14, 15, 26, 27, 33], and therefore
the cost of the block I/O scheduling can be reduced.

2.3 Weighted round-robin in NVMe Protocol

Non-volatile memory express (NVMe) [26] is the de-facto
standard interface bridging computer systems with storage de-
vices due to its simplicity, efficiency, and scalability. The pro-
tocol also has a block I/O scheduling feature called weighted
round-robin (WRR) queue arbitration [26]. The default I/O
command scheduling policy of the protocol is round-robin;
hence processing I/O commands one by one across command
queues as shown in Figure 3a. If the WRR feature is enabled,
the SSD firmware fetches I/O commands in a weighed round-
robin fashion as shown in Figure 3b. With WRR enabled,
command queues are classified into three priority classes
(low, medium, and high)1, and queues in each priority class
are assigned a queue weight (1 – 256); hence queues in the
same priority class share a queue weight. With WRR enabled,
if queue weights are 1, 2, and 3 for the low, medium, and
high queues, respectively, the SSD controller fetches three
I/O commands from the high queues, then fetches two com-
mands from the medium queues and then fetches one from the

1The NVMe WRR also supports another queue priority class called urgent
priority but our scheme does not consider the use of the class

USENIX Association 19th USENIX Conference on File and Storage Technologies 405

H M L H M L H M L

Core Core Core

Flow B 𝑣𝑡𝐵
Flow C 𝑣𝑡𝐶
Flow D 𝑣𝑡𝐷

Flow A 𝑣𝑡𝐴

Virtual Time

𝜏𝑤𝜏𝑚 𝜏𝑙𝑔𝑣𝑡

Flow C Flow DFlow A Flow B

𝑣𝑡𝐴 − 𝑔𝑣𝑡 < 𝜏𝑚 𝑣𝑡𝐶 − 𝑔𝑣𝑡 ≥ 𝜏𝑙
𝑣𝑡𝐷 − 𝑔𝑣𝑡 < 𝜏𝑙
𝑣𝑡𝐷 − 𝑔𝑣𝑡 ≥ 𝜏𝑚

NVMe SSD

Figure 4: Overview of D2FQ.

low queues. Queues in the same priority class are accessed in
a round-robin fashion.

The NVMe WRR feature can be easily implemented in-
side the SSD because of its simplicity. However, applying
this to fair queueing has many challenges to be resolved.
First, NVMe WRR has only three priority classes (i.e., low,
medium and high), whereas the number of tenants can be
higher. Second, its queue arbitration does not consider I/O
sizes. Finally, the weight ratio between any two queues could
not directly match the ratio of I/O commands serviced from
the two queues. This is because the number of I/Os actually
processed can vary depending on the utilization of the com-
mand queues. Consequently, it is necessary to bridge the gap
between the requirement of fair queueing and the simple yet
uncertain performance characteristic of NVMe WRR.

3 Device-Direct Fair Queuing

3.1 Overview
This paper proposes a fair queueing scheme called device-
direct fair queueing (D2FQ) for NVMe SSDs. D2FQ offloads
the I/O scheduling functionality to an SSD by exploiting the
NVMe WRR feature. Accordingly, the CPU overheads and
I/O latency associated software I/O scheduling can be reduced.
Figure 4 shows the overview of D2FQ.

D2FQ is a virtual time-based fair queueing scheme. It man-
ages the virtual time of each flow and the global virtual time
(gvt), the minimum virtual time among active flows. An ac-
tive flow is a flow with any pending I/O requests to be served.
As other fair queueing schemes do, D2FQ provides fairness
between only active flows.

D2FQ throttles a flow if its virtual time is far ahead of gvt.
Throttling is done not by the block layer of the I/O stack but

by exploiting the NVMe WRR feature. In addition, D2FQ
does not establish any fixed mapping between flows and I/O
command queues. Instead, our scheme abstracts the three
classes of queues as three different queues with different I/O
processing speeds (fast, moderate and slow). Then, whenever
a flow submits an I/O request, our scheduling policy imme-
diately selects a queue of the desired speed and dispatch the
request to the queue (Figure 1b). As a result, slow flows in
the virtual time domain are enforced to use the fast queues
to catch up the virtual time of other flows, and fast flows are
throttled by using the slow or moderate queues.

D2FQ maintains three threshold values: τm, τl and τw; the
former two thresholds are used during the queue selection,
and the latter is used to detect unfairness which is explained
later in Section 3.2. When a flow f issues an I/O request,
the gap between its virtual time and gvt (i.e., vt f − gvt) is
compared with the two threshold values to select the class of
command queue (SQ) for I/O dispatching as follows:

SQ =

Qhigh if vt f −gvt < τm

Qmid else if vt f −gvt < τl

Qlow otherwise
(1)

Hence, if the virtual time of a flow is not far from gvt (vtB
in Figure 4), its I/O requests are queued to high queues; hence
the flow is not throttled. If a flow is far ahead of gvt (vtC in
the figure), its I/O requests are queued to low queues; hence
the flow is throttled. Please note that our scheme assumes all
cores are having their own queue set (three queues of each
priority class).
Example walkthrough. Let us assume two flows fa and fb
and their weights wa = 3 and wb = 1. Both flows issue 4 KB
I/O requests with high I/O depth. If the weight of high queues
is 3 and the weight of low queues is 1, both flows can fairly
share the bandwidth by making flow fa use the high queues
and flow fb use the low queues. However, our scheme does
not statically map any flow to any queue but establishes the
mapping dynamically. Indeed, at the beginning, both flows
use the high queues together because their virtual time gap
is zero. Then, vta advances by 4 KB/3 while vtb advances by
4 KB/1 on each I/O completion; consequently, vtb advances
3 times faster than vta. In the end, vtb− gvt(= vta) exceeds
τl , and flow fb begins to use the low queues. After that, both
flows have the same virtual time progress rate.

We define the term H/L ratio as the ratio of the weight of
high queues over the weight of low queues. The H/L ratio
is the most important factor in satisfying the I/O fairness. It
determines the maximum speed difference the high and low
queues can produce if I/O sizes are identical and the queues
are fully utilized. Hence, it determines the maximum weight
ratio our scheme can cover with fairness.

A small H/L ratio cannot meet the fairness requirement. In
the previous example, if the H/L ratio is 2, the two flows fa
and fb cannot fairly share the I/O bandwidth.

Meanwhile, a high H/L ratio has a wide coverage of weight

406 19th USENIX Conference on File and Storage Technologies USENIX Association

(a) Tail latency

(b) Queue usage

Figure 5: Effect of the H/L ratio to tail latency and queue
usage.

ratios between any flows. In the above example, if the H/L
ratio is 6, three fifth of I/O requests from fb need to use
the high queues, and then the two flows can meet the fair
bandwidth distribution. Since the low queues are 1/6 times
slower than the high queues, which is more than necessary,
fb needs to use the high queues to compensate the penalty
caused by the use of the low queues.

The use of high H/L ratio seems appropriate. However, this
has a side-effect of increasing the tail of I/O latency. Figure 5
shows the tail latency and queue utilization of flow fa and fb
with varying the H/L ratio from 3 to 256. As shown in the
figure, the H/L ratio of 3 shows the lowest tail latency for fb.
In that configuration, fb uses the low queues only while the fa
uses high queues only. However, with high H/L ratios, flow fb
shows high tail latency while increasing its usage portion of
the high queues. The flow fb needs to be throttled but the use
of the low queues with high H/L ratio gives higher penalty
than necessary. This results in the increase of tail latency and
the increase of the high queue usage.

Although the above examples show a simple workload
having only two flows with a fixed I/O size and high I/O
submission rate. However, real-world workloads may have
a various number of flows with any number of threads, I/O
submission rates and I/O sizes. With these realistic and un-
known I/O characteristics, it is challenging to find the proper
H/L ratio to make queues with sufficient I/O processing speed
difference.

3.2 Dynamic H/L Ratio Adjustment

D2FQ finds proper weights of the three queue classes to
meet the two goals: providing fairness and taming tail la-
tency. As explained above, the H/L ratio is the most important
factor since D2FQ needs to satisfy fairness. In this regard, our
scheme finds a proper H/L ratio first and then sets the weight
of medium queue as the square root of the H/L ratio. Hence,

0

200

400

600

H/L ratio 4 dynamic

B
a
n

d
w

i
d

t
h

(
M

B
/
s
)

w/ w/𝑓1 𝑓3

static-4

Figure 6: Effect of the dynamic H/L ratio adjustment.

the speed ratio between high and medium queues is equal to
that between medium and low queues.

D2FQ collects information of the virtual time of all flows
and their I/O usage statistics, such as queues and I/O sizes.
It uses the collected information to find the appropriate H/L
ratio periodically as follows.

3.2.1 Increasing H/L Ratio

The H/L ratio needs to increase when fairness is not satisfied.
Recall that our scheme maintains three thresholds, and the
third one τw is the threshold to detect unfairness and trigger
the process of finding a proper H/L ratio. Hence, if a flow
with the largest virtual time is a far ahead of gvt by τw, D2FQ
finds a new H/L ratio that is suitable in providing fairness.

To this end, D2FQ keeps track of two flows, one with the
largest virtual time (denoted as fmax) and the other with the
smallest virtual time (denoted as fmin whose virtual time vt fmin

is equal to gvt). Then, it calculates the delta of virtual time in-
crease in the last information collection period. Hence, ∆vtmax
is the virtual time increase rate in the last period by fmax, and
∆vtmin is the virtual time increase rate last period by fmin.
Then, the next H/L ratio is calculated by using the following
formula:

H/L rationext = b
∆vtmax

∆vtmin
×H/L ratioprevc+1 (2)

The term ∆vtmax
∆vtmin

is the ratio of widening virtual time gap
between fmax and fmin, and this has happened under the previ-
ous H/L ratio. Accordingly, the next H/L ratio should be the
product of the widening ratio and the previous H/L ratio. The
next H/L ratio is ensured to have a higher value by one than
the proper H/L ratio to make the gap narrowed down next.

The use of high queues does not guarantee that I/O requests
in the high queues are processed faster than those in the low
queues. However, our dynamic weight adjustment finds out
a proper H/L ratio to meet the fairness. Figure 6 shows the
bandwidth distribution of eight flows, one with weight 1 (f1)
the other seven flows with weight 3 (f3). When the H/L ratio is
fixed to 4 (static-4), f1 uses the low queues and seven f3 flows
use the high queues. In this case, all the flows are not allocated
fair amount of I/O resource due to the contention in the high
queues. However, if our dynamic H/L ratio adjustment is
applied, the H/L ratio becomes 22 using Equation 2 and all
the flows meet the fair bandwidth distribution; the required
effective queue weight ratio is 1:21 (1:3 weight ratio with 1:7
ratio of the number of flows) and one is incremented using
the equation.

USENIX Association 19th USENIX Conference on File and Storage Technologies 407

0

2

4

0 0.5 1 1.5

0

2

4

0 0.5 1 1.5

B
a
n

d
w

i
d

t
h

(
G

B
/
s
) 𝜏𝑙 = 1𝑀𝐵 𝜏𝑙 = 100𝑀𝐵

0

2

4

0 0.5 1 1.5

𝜏𝑙 = 10𝑀𝐵

0

2

4

0 0.5 1 1.5

𝜏𝑙 = 1𝐺𝐵

Time (sec)

4KB 8KB 16KB

Figure 7: Time-series bandwidth of three flows with different
I/O sizes (4 KB, 8 KB and 16 KB) with varying the threshold
τl from 1 MB to 1 GB.

3.2.2 Decreasing H/L Ratio

As explained in Section 3.1, an unnecessarily high H/L ratio
may increase the tail latency of flows requiring throttling.
Hence, it is necessary to decrease the H/L ratio if the current
H/L ratio is too high. The condition to decrease the H/L
ratio is when the maximum virtual time gap is below τw. In
this case, D2FQ calculates the virtual slowdown of each flow
using the I/O statistics in the last statistics collection period.
The virtual slowdown is an estimated value of how the I/O
requests of this flow are slowed down by not using the high
queues. The virtual slowdown of flow f is calculated by using
the following formula where ∑ l f ,x is the total amount of I/O
submitted to the queue class x by flow f in the last period and
px
py

is the weight ratio of two queue classes x and y:

slowdown(f) =
∑ l f ,h ∗

ph

ph
+∑ l f ,m ∗

ph

pm
+∑ l f ,l ∗

ph

pl

∑ l f ,h +∑ l f ,m +∑ l f ,l
(3)

Then, D2FQ chooses the maximum virtual slowdown
among all active flows in the system and sets the next H/L
ratio as the maximum value.

3.3 Determining Thresholds

D2FQ regulates the fairness by throttling fast flows in virtual
time (i.e., flows with low weight values). The two thresholds
(τm and τl) are the criteria of when to throttle such fast flows.

Large threshold values allow a huge virtual time interval
between any flows and gvt. Hence, it determines the allowed
unfairness in virtual time.

Figure 7 shows the time-series bandwidth of three flows
with three I/O sizes: 4 KB, 8 KB and 16 KB, respectively. The
vertical line in each figure indicates the point in time starting
fair bandwidth sharing. As shown in the figure, with a small
threshold (τl = 1 MB2), the three flows equally share the I/O
bandwidth from the beginning. That point is delayed to after
1 second with a large threshold value (1 GB). However, after
that point, the flows equally share the I/O bandwidth.

2τl = 1 MB indicates that a flow with weight 8 can cross the threshold
boundary after it is serviced 1 MB I/O size. If its weight is 1, the flow can
meet the threshold only after 128 KB I/O size serviced (one eighth of 1 MB).

Figure 8: Tail latency of the three flows with varying the
threshold τl : 1 MB, 10 MB and 100 MB.

In our scheme, the virtual time progression is controlled by
making the flow crossing the threshold boundary back and
forth. Thus, a flow could not get proper throttling until the
flow hits thresholds in the virtual time domain. Hence, the
threshold values only determine when this control begins.

On the other hand, small threshold values may unintention-
ally increase the tail latency of flows, especially those who
stay back in the virtual time domain. Such flows are intended
to use the high queues only. However, a small increase in vir-
tual time can make such flows use the medium or low queues
due to crossing the thresholds. This may exacerbate the tail
latency of all flows because other flows can unintentionally
use the high queues and be throttled to offset the benefits of
using the high queues.

Figure 8 compares the tail latency of the three flows with
varying threshold values: 1 MB, 10 MB, and 100 MB. As
shown in the figure, with the 10 or 100 MB threshold values,
the three flows show no significant increase in the tail latency.
However, with the 1 MB threshold value, the three flows show
up to 3.7 times long tail latency.

Consequently, there is a trade-off between short-term fair-
ness and tail latency in setting the threshold value. Depending
on whether a user focuses on tail latency or short-term fair-
ness, the user can adjust the appropriate threshold value.

The characteristics of workloads, especially I/O size and
weight of flows, impact on the selection of the threshold val-
ues because the I/O size and weight determine the stride of
virtual time increase. Our scheme uses a proper τl that is em-
pirically found to work with our tested workloads. We leave
the fine-tuning of the threshold values to the users or system
administrators.

τm also affects tail latency. However, its latency impact is
not significant as compared to that of τl since the medium
queues are faster than the low queues. We empirically found
that it is suitable to set τm = τl/2.

3.4 Global Virtual Time Tracking

The value gvt is frequently accessed during I/O submission
and completion. Accordingly, it is important to track gvt in a
scalable way.

Tracking gvt is equal to tracking the minimum among a
set of values where each value changes simultaneously. One
coarse-grained approach is to inspect all the values for every

408 19th USENIX Conference on File and Storage Technologies USENIX Association

1 struct vt {
2 u64 id : 16 bits // id of a flow
3 u64 vt : 48 bits // virtual time of a flow
4 } gvt; // global virtual time
5
6 void update_gvt (vt my)
7 while (true) {
8 vt old = gvt
9 if ((old.id == NO_HOLDER)

10 || (old.id == my.id && old.vt < my.vt)
11 || (old.id != my.id && old.vt > my.vt)) {
12 if (CAS(&gvt, old, my) == SUCCESS)
13 return
14 } else
15 return
16 }
17
18 void release_gvt (vt my)
19 while (true) {
20 vt new, old = gvt
21 if (old.id == my.id) {
22 new.id = NO_HOLDER; new.vt = old.vt
23 if (CAS(&gvt, old, new) == SUCCESS)
24 return
25 } else
26 return
27 }

Figure 9: Pseudocode of tracking the global virtual time.

query of the minimum. An alternative is to use a scalable
minimum tracking object such as Mindicator [22].

In D2FQ, we take yet another approach of tracking gvt in
a sloppy way. We consider that it is not always necessary
to retrieve the true minimum value among the virtual time
of flows. The goal of tracking gvt is not to minimize the
virtual time gap between any flows. It is to make the pace of
virtual time progression of any flows at a similar rate. If the
value of gvt is not far from the true minimum value, the sloppy
management hardly affects the policy of low or medium queue
selection since the use of the thresholds gives tolerance to the
queue selection policy.

In this regard, our scheme maintains the gvt holder, the
flow owning gvt, and allows only the gvt holder to be able
to increase gvt (line 9–13 in Figure 9). Other flows can also
update gvt but only when their virtual time is smaller than gvt
(line 11). A little inaccuracy can happen when the gvt holder
increases gvt and it now overtakes the virtual time of other
flows, hence violating that gvt is not the minimum. However,
this little inaccuracy comes with the simplification of the gvt
update operation; otherwise, every gvt update needs to inspect
the virtual time of all the flows.

The function update_gvt() is called when I/O comple-
tion happens. When the gvt holder becomes inactive, it calls
release_gvt(), and any flow can become the gvt holder. We
use the atomic instruction compare_and_swap (CAS) and the
while loop to secure minimal serialization between concurrent
gvt updates.

3.5 Implementation
D2FQ is implemented in the multi-queue block layer [5] of
the Linux kernel. Figure 10 represents the high-level pseudo

1 per−CPU structures:
2 high/medium/low class SQ
3
4 per−flow structures:
5 vt // virtual time
6 nr_inflight // # of in−flight requests
7 weight // I/O weight of this flow
8
9 void dispatch_request (request R, flow F)

10 if (F−>active == false)
11 F−>active = true; F−>vt = gvt
12 F−>nr_inflight += 1
13 vt_gap = F−>vt − gvt
14 if (vt_gap > threshold_low)
15 R−>dispatch_Q = low class SQ
16 else if (vt_gap > threshold_medium)
17 R−>dispatch_Q = medium class SQ
18 else
19 R−>dispatch_Q = high class SQ
20
21 void complete_request (request R, flow F)
22 F−>vt += R−>length / F−>weight
23 F−>nr_inflight −= 1
24 if (F−>nr_inflight == 0)
25 enter_grace_period(F)
26 update_gvt()

Figure 10: Pseudocode for D2FQ working flow.

code of D2FQ. Each core has three submission queues (high,
medium and low) (line 2). Each flow has virtual time, the
number of in-flight requests and its weight value (line 4–7).

The function dispatch_request() (line 9) is the
core function that selects the queue to dispatch an
I/O request. It is invoked in the block layer function
blk_mq_start_request(). However, D2FQ is independent
to the block layer since it has no staging operation. Accord-
ingly, it can also be invoked elsewhere before request dis-
patching, such as nvme_queue_rq().

The number of in-flight requests is used to detect the ac-
tiveness of flows. If it becomes zero, a grace period is given,
and after that the flow becomes idle (line 24). The use of the
grace period is to avoid the deceptive idleness [12].

The function complete_request() is invoked whenever
a request is completed. In our implementation, it is called
from the block layer function blk_mq_finish_request().
It is also independent to the block layer so it can be invoked
elsewhere after request completion.

4 Evaluation

4.1 Methodology

Table 1 shows our experimental configuration. We used Sam-
sung Z-SSD as the main storage device because it supports
the NVMe WRR feature. The NVMf on ramdisk is used only
for the scalability test due to lack of WRR support.

We evaluated the following four schedulers:
• None performs no I/O scheduling in the block layer.
• D2FQ is the prototype of our scheme which is based on

None as explained in Section 3.5. The dynamic H/L ratio
adjustment is enabled. The H/L ratio is initially 256. The

USENIX Association 19th USENIX Conference on File and Storage Technologies 409

0.0

1.0

2.0

3.0

None D2FQ MQFQ BFQ

B
a
n

d
w

i
d

t
h

(
G

B
/
s
) 4KB 8KB

(a) I/O request size (4 KB vs 8 KB)

0.0

1.0

2.0

3.0

None D2FQ MQFQ BFQ

B
a
n

d
w

i
d

t
h

(
G

B
/
s
) 2 threads 6 threads

(b) # of threads (2 vs 6)

0.0

0.5

1.0

1.5

None D2FQ MQFQ BFQ

B
a
n

d
w

i
d

t
h

(
G

B
/
s
) w8 w6 w4 w2

(c) Weight ratio 8:6:4:2

Figure 11: Fairness measurement with varying (a) I/O request size, (b) the number of threads and (c) the weight of each flow.

0

100

200

300

400

500

600

0

20

40

60

80

100

None D2FQ MQFQ BFQ

S
y

s
t
e
m

-
j
i
f
f
i
e
s
/
K

B

C
P

U

u

t
i
l
i
z
a
t
i
o
n
 (

%
)

CPU utilization (%)

System-jiffies/KB

(a) I/O request size (4 KB vs 8 KB)

0

100

200

300

0

20

40

60

80

100

None D2FQ MQFQ BFQ

S
y

s
t
e
m

-
j
i
f
f
i
e
s
/
K

B

C
P

U

u

t
i
l
i
z
a
t
i
o
n
 (

%
)

CPU utilization (%)

System-jiffies/KB

(b) # of threads (2 vs 6)

0

100

200

300

0

20

40

60

80

100

None D2FQ MQFQ BFQ

S
y

s
t
e
m

-
j
i
f
f
i
e
s
/
K

B

C
P

U

u

t
i
l
i
z
a
t
i
o
n
 (

%
)

CPU utilization (%)

System-jiffies/KB

(c) Weight ratio 8:6:4:2

Figure 12: CPU utilization and I/O processing cost of the workloads in Figure 11.

0

5

10

None D2FQ MQFQ BFQ

L
a
t
e
n

c
y

(
m

s
e
c
) 4KB 8KB

L
a
t
e
n

c
y

(
m

s
e
c
)

(a) I/O request size (4 KB vs 8 KB)

0

5

10

None D2FQ MQFQ BFQ

L
a
t
e
n

c
y

(
m

s
e
c
) 2 threads 6 threads

L
a
t
e
n

c
y

(
m

s
e
c
)

(b) # of threads (2 vs 6)

0

5

10

15

None D2FQ MQFQ BFQ

L
a
t
e
n

c
y

(
m

s
e
c
) w8 w6 w4 w2

L
a
t
e
n

c
y

(
m

s
e
c
)

(c) Weight ratio 8:6:4:2

Figure 13: Average I/O latency of the workloads in Figure 11.

Machine A
CPU Intel Xeon Gold 5112 3.60 GHz 8 cores

Memory DDR4 192 GB
Storage Samsung Z-SSD 800 GB

Hardware Machine B
configuration CPU Intel Xeon Gold 6226 2.70 GHz 24 cores

Memory DDR4 192 GB

Storage Samsung Z-SSD 800 GB
NVMf ramdisk 64 GB

Network Mellanox Connect X-4 56 Gbps
OS Ubuntu 18.04.4

Software Kernel Linux version 5.3.10
configuration FIO libaio, random read, direct I/O

YCSB Uniform request distribution

Table 1: Experimental configuration.

threshold τl is set to 8 MB for flows with weight 8 which is
1 MB for flows with weight 1; then the rest of the thresholds
are automatically set τm = τl/2, τw = 2× τl . The period of
the H/L ratio adjustment is set to one second.

• MQFQ is the state-of-the-art fair-queueing I/O scheduler.
Unfortunately the source code is unavailable. So we made
our own implementation of MQFQ, which faithfully follows
the design described in the MQFQ paper [11]. We ported
the Mindicator written in C++ [24] to C for the integration
with the Linux kernel. MQFQ has two parameters: D is 64
and T is 45 KB in our setting.

• BFQ is the time slice-based proportional share I/O sched-
uler in Linux [4]. We set max_budget to 256.

The four schedulers use ionice() to set the weight of each
flow. The weight values range from 1 to 8 in the experiment.
Unless specified, the default weight value is 8.

The evaluation is organized to answer the three questions:
(1) whether our scheme provides fairness when the storage
device is saturated, (2) how well our scheduler shows good I/O
performance when the storage device is unsaturated, and (3)
whether our scheme provides fairness with realistic workload.

4.2 Fairness

Providing fairness is the primary goal of fair queueing when
multiple flows contend on a storage device. We build three
workloads with varying the following factors: I/O request
size, the number of threads and the weight of flows. Then,
we measure the bandwidth of each flow in Figure 11. Unless
specified, the I/O depth is 128 by default in each thread.
I/O Request Size. Figure 11a shows the bandwidth distri-
bution of two I/O flows with different I/O request sizes: 4
KB vs 8 KB. Each flow has 4 threads. Since the two flows
have the same weight, the SSD bandwidth should be fairly
distributed to the two flows, and D2FQ, MQFQ and BFQ pro-
vide the fairness. The total bandwidth is identical across the
three schedulers: None, D2FQ and MQFQ.
Thread Count. Figure 11b shows the bandwidth distribution
of two I/O flows with different number of threads: 2 threads
vs 6 threads. The I/O request size is 8 KB in both flows. In
this experiment, both flows need to evenly share the SSD
bandwidth and D2FQ, MQFQ and BFQ achieve this while
None does not.
Weight. Figure 11c shows the bandwidth consumed by four
I/O flows with different weight values: 8, 6, 4 and 2; each

410 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 14: Bandwidth fluctuation test between fair I/O sched-
ulers (same configuration as figure 11a).

flow has two threads, and the request size is 8 KB. Hence, the
bandwidth ratio of the four flows needs to be identical to the
ratio of weights. As shown in the figure, D2FQ and MQFQ
show correct bandwidth distribution ratio while BFQ shows a
slightly poor bandwidth distribution. In the three workloads,
the total bandwidth of BFQ is lower than the others. Please
note that, in the above three experiments with D2FQ, the H/L
ratio is 256 at the beginning and converges to 3, 3 and 6,
respectively, by our dynamic H/L ratio adjustment.
Cost of Fairness. The cost of I/O scheduling is CPU cycles
and D2FQ minimizes them by avoiding arbitration including
request staging in the block layer. This effect results in the
reduction in CPU cycles or CPU overhead for each I/O request
handling. Figure 12 shows the CPU utilization and system
jiffies per 1 KB I/O of the three workloads in Figure 11. As
shown in the figure, BFQ shows the highest CPU utilization
and also fails to fully utilize the SSD. MQFQ shows similar
CPU utilization to BFQ due to its computation for request
arbitration. D2FQ consume slightly more CPU cycles than
None since D2FQ needs a few CPU cycles to select queue
during dispatch and maintain scheduler statistics, such as
virtual time. D2FQ reduces the CPU utilization by up to
45% as compared to MQFQ in Figure 12a. If the metric
is CPU cycles per I/O (i.e., system-jiffies/KB), None and
D2FQ show lower per-request CPU cost than MQFQ and
BFQ. In summary, D2FQ provides fairness with minimal
CPU cycles and the saved CPU cycles may be able to be used
more usefully for applications.
Latency. Figure 13 shows the average I/O latency of the three
workloads in Figure 11. With the fair I/O schedulers, the I/O
latency is largely affected by I/O throttling; the throttled flows
show longer I/O latency than the others. D2FQ and MQFQ
show similar latency results. However, BFQ shows longer
latency than the two schedulers. None shows the shortest
latency in all the cases but fails to provide the fairness.
Short-term Fairness. While other fair queueing sched-
ulers [9, 11, 13] have theoretical upper-bound in unfairness,
D2FQ has none. This leads us to measure how much short-
term unfairness occurs at least empirically. To this end, we
measure the bandwidth of each flow of the request size ex-
periment (Figure 11a) every short time interval (10 ms) and
depicts the time-series bandwidth in Figure 14. Interestingly,

(a) Bandwidth of each flow for
the second 10 seconds

(b) Bandwidth of each flow for the third
10 seconds

90

95

100

0 50 100

P
e
r
c
e
n
t
i
l
e

Latency (msec)

dynamic static-128

(c) Tail latency of the base flow

90

95

100

0 50 100

P
e
r
c
e
n
t
i
l
e

Latency (msec)

dynamic static-128

(d) Tail latency of the flows in event2

H
/
L

r
a
t
i
o

Times (sec)

0

10

20

0 5 10 15 20 25 30

event2 begins

event1 begins

(e) Dynamic H/L ratio change over time

Figure 15: Effect of the dynamic H/L ratio adjustment.

our scheme shows very stable bandwidth distribution in both
flows. This indicates that both flows almost evenly share
the SSD bandwidth in every short time period. Meanwhile,
MQFQ shows fluctuation of bandwidth in both flows; this
phenomenon is due to frequent exchange of dispatch slots
across the cores/sockets.

Dynamic H/L Ratio Adjustment. To test the effect of our
dynamic H/L ratio adjustment, we build a synthetic workload
with three flow groups with different lifetimes: (1) base that
contains one weight-1 flow and runs from the beginning to
the end, (2) event1 that contains three weight-3 flows and runs
from the 10-second point in time to the end, and (3) event2
that contains four weight-3 flows and runs from the 20-second
point to the end. Each flow has 2 threads and issues 4 KB
I/O requests with 128 I/O queue depth. We run the workload
with the three H/L ratio configurations: static-3, static-128,
and dynamic, and depict the bandwidth, latency and H/L ratio
change (dynamic only) in Figure 15.

Static-3 fails to provide the bandwidth fairness in Fig-
ure 15a and 15b; the bandwidth ratio between base and the
rest should be 1:3. Static-128 and dynamic achieve the target
bandwidth ratio because their H/L ratios are high enough to
satisfy the fairness. However, as shown in Figure 15c and 15d,
static-128 shows long tail latency because the H/L ratio of 128
is too high and flows using the low queues experience long
I/O delays. Our dynamic H/L ratio adjustment adaptively sets
the H/L ratio properly based on the I/O patterns of the flows.
The H/L ratio changes over time as shown in Figure 15e; it is
set to 7 when event1 begins and to 17–18 when event2 begins.
Please note that the H/L ratio is not 22 as in Section 3.2.1 be-
cause the use of the medium queues gives additional fairness
control over the low queues.

USENIX Association 19th USENIX Conference on File and Storage Technologies 411

(a) Bandwidth and latency (b) Single-core utilization

Figure 16: Latency, bandwidth and CPU (single core) utiliza-
tion with a single-thread flow with varying I/O depths.

Figure 17: Scalability test of the global virtual time tracking
schemes.

4.3 I/O Performance

The I/O scheduler performs not only when the storage device
is saturated but also when the device is unsaturated. When
the device is unsaturated, the performance of I/O scheduler
is the major factor to the I/O performance. In this regard, we
measure the I/O performance under low I/O contention.

In this experiment, we add another scheme to demonstrate
that D2FQ is independent of the multi-queue block layer
in Linux. A low-latency I/O stack [19] achieves low I/O
latency by its submit=dispatch characteristic. Unfortunately,
it lacks I/O scheduling support, which can be complemented
by D2FQ; LL-D2FQ is the low-latency I/O stack with D2FQ,
thereby having the I/O scheduling capability.

Figure 16 shows the latency, bandwidth and CPU utilization
of each I/O scheduler. For the workload, we run a single-
thread FIO performing 8 KB random read with varying its
I/O depth from 1 to 16.

Basically, the increase in I/O depth results in the increase
of bandwidth as well as latency in all the schedulers as shown
in Figure 16a. Unless the CPU is saturated, increasing the I/O
depth increases the CPU utilization due to handling more I/O
requests as shown in Figure 16b.

More importantly, the overhead of I/O scheduler signifi-
cantly affects the I/O latency, I/O bandwidth and the CPU
utilization. As shown in the figure, MQFQ shows the low-
est performance in terms of the three metrics. D2FQ and
None show similar position in performance since they ex-
clude the I/O scheduler in the block layer. Finally, LL-D2FQ
outperforms the others by up to 35% in latency and 54% in
bandwidth due to its low overhead in I/O request handling. It
delays the CPU saturation point to the I/O depth of 14 whereas
the other schedulers saturate the CPU at the I/O depth of 9 in

Figure 16b.
Scalability. We test the scalability of D2FQ with varying the
gvt tracking methodology. None performs no gvt tracking.
D2FQ uses our gvt tracking method in Section 3.4. Mindi-
cator tracks gvt using Mindicator [22] as in MQFQ [11].
D2FQ-serial tracks gvt by inspecting all flows every time of
accessing gvt.

As shown in Figure 17, with increasing the number of cores
(i.e., flows), D2FQ-serial does not scale after 12 cores due to
cross-socket communication [6]. Mindicator scales well, but
its tree-based data management incurs overheads with high
core counts. D2FQ shows identical scaling to None.

4.4 Realistic workload
Finally, we measure the impact of D2FQ on realistic work-
loads. We run two flows: one flow of YCSB workloads [37]
on the RocksDB and the other contending flow of the FIO
benchmark. Since we run a realistic workload, YCSB sat-
urates CPU first in Machine A. So, we use Machine B in
this experiment. This machine has another difficulty in queue
assignment since 24 cores need 72 command queues (three
queues for each core), but Z-SSD provides only 32 command
queues. To resolve this issue, we group three queues of three
adjacent cores and make the three cores share the three queues
as the three-class queues in this experiment.

The FIO workload issues 4 KB random read using 4 threads
with 128 I/O depth. In the YCSB workload performs 64 mil-
lion operations on 64 GB key-value dataset with 1 KB value
size. The physical memory is reduced to 16 GB.

Figure 18 shows the bandwidth and CPU utilization of the
workload with the four schedulers. As shown in the figure,
None cannot fairly distribute the SSD bandwidth to the two
flows. YCSB consumes lower bandwidth than FIO since FIO
is more bandwidth hungry. With fair queueing schedulers, the
bandwidth is fairly distributed across the two flows; D2FQ
shows 1.00 – 1.05 bandwidth ratio (YCSB bandwidth over
FIO bandwidth) and MQFQ shows 1.00 – 1.08 bandwidth
ratio. None shows lower CPU utilization than D2FQ and
MQFQ because YCSB, which consumes more CPU cycles
per I/O than FIO, takes a smaller portion in total bandwidth
than D2FQ and MQFQ.

D2FQ shows a slightly higher total bandwidth than MQFQ
by up to 1.83% on average. This is due to the true work-
conserving characteristic of D2FQ; all submitted requests
are dispatched to the device queues. MQFQ rarely fails to
maximally utilize the device bandwidth due to the exchange
of request dispatch slots between cores and sockets.

Figure 19 shows the average I/O latency of each workload
normalized to the result of None. The YCSB workload re-
ports the latency and number of operations for each operation
type, so we calculate the weighted average latency in that
case. As shown in the figure, basically flows showing higher
I/O bandwidth achieve shorter I/O latency. With None, FIO

412 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 18: I/O bandwidth and CPU utilization of the realistic workload (YCSB with FIO). The number above each histogram
shows the bandwidth ratio (the FIO bandwidth over the YCSB bandwidth).

Figure 19: Normalized latency of the realistic workload
(YCSB with FIO).

achieves high I/O bandwidth and low I/O latency whereas
YCSB shows low I/O bandwidth and high I/O latency. On the
contrary, D2FQ and MQFQ show smaller FIO bandwidths
and larger YCSB bandwidths than None. Accordingly, both
show longer I/O latency with FIO and shorter I/O latency
with YCSB. BFQ shows very long I/O latency due to its
inefficiency in I/O scheduling.

5 Related Work

Fair-share I/O Schedulers. Fair resource sharing is one of
important goals of I/O resource sharing. Linux employs time
slice-based fair schedulers, such as CFQ [3], BFQ [34], Ar-
gon [35] and FIOS [30]. Time slice-based schedulers are
non-work conserving: I/O resources can remain unused while
requests are available. Ahn et al. [2] proposed a budget-based
fair share I/O scheduler implemented in Linux cgroup layer;
it is also a non-work conserving scheduler. H-BFQ [28] has
expanded the original BFQ to hierarchical cgroup structure.
Fair queueing I/O schedulers [8, 9, 29] including D2FQ are
work-conserving so they always try to keep I/O resource busy
whenever requests exist. Fair queueing schedulers provide
fairness using virtual time [8, 9, 29], and they controls the or-
der of I/O requests to minimize the virtual time gap between
any flows. With the advance in storage performance, it is nec-
essary to dispatch multiple requests to a device to maximize
the I/O performance. This relaxes the requirement of mini-
mizing the virtual time gap between any flows. SFQ(D) [13]
allows at most D outstanding requests. MQFQ [11] relaxes
the requirement further to enable parallel dispatch with a little
communication across cores. D2FQ also relaxes the assump-
tion which is determined by the two thresholds (τm and τl)
for a different reason: too small thresholds increases the tail
latency by unnecessarily throttling requests.
Other I/O Schedulers. Lee et al. [20] isolate queues to pri-
oritize reads over writes. Kyber [18] prioritize synchronous

I/Os over asynchronous ones to foreground performance. Kim
et al. [16] prioritize requests from foreground context holisti-
cally throughout the I/O stack. These schedulers, however, do
not provide fair I/O resource management.
Scheduling Offloading to Device. FLIN [33] implements
fair-share scheduler in the SSD firmware and identifies and
considers the major sources of performance interference in a
flash-based SSD. Joshi et al. [14] enlightens the use of NVMe
WRR in Linux for SSD resource fairness. The use of NVMe
WRR to the block cgroup is later implemented in the mainline
Linux [27]. None of these work consider the sharing of queues
with multiple flows, which is necessary when the number of
flows exceeds the number of queues.

6 Conclusion

This paper proposes D2FQ, a low overhead high-performance
fair-queueing I/O scheduler. D2FQ is carefully designed to
implement the sophisticated fair-queueing I/O scheduler on
top of the simple device-side I/O scheduling feature (i.e.,
NVMe WRR). Therefore, the CPU overhead associated with
scheduling decision is minimized, thereby saving CPU cycles
and improving I/O performance. Modern high-performance
SSDs are changing the paradigm that the bottleneck is no
longer I/O but CPU. We expect our light-weight fair-queueing
scheme will help reduce the contention on the CPU and allow
applications to use more CPU cycles for a useful way. We
plan to extend our scheme to leverage the urgent priority class
of the NVMe WRR for better quality of service of block I/O
scheduling.

Acknowledgments

We would like to thank the anonymous reviewers and our shep-
herd, Janki Bhimani, for their valuable comments. This work
was supported partly by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT)
(NRF-2020R1A2C2102406), by the MSIT (Ministry of Sci-
ence and ICT), Korea, under the ICT Creative Consilience
program (IITP-2020-0-01821) and by Samsung Electronics.

Availability

The source code is available at https://github.com/
skkucsl/d2fq

USENIX Association 19th USENIX Conference on File and Storage Technologies 413

https://github.com/skkucsl/d2fq
https://github.com/skkucsl/d2fq

References

[1] Samsung 980 Pro. https://news.samsung.com/
global/samsung-delivers-next-level-ssd-
performance-with-980-pro-for-gaming-and-
high-end-pc-applications.

[2] Sungyong Ahn, Kwanghyun La, and Jihong Kim. Im-
proving I/O Resource Sharing of Linux Cgroup for
NVMe SSDs on Multi-Core Systems. In Proceedings
of the 8th USENIX Conference on Hot Topics in Storage
and File Systems, HotStorage’16, page 111–115, USA,
2016. USENIX Association.

[3] Jens Axboe. Linux block IO—present and future. In
Ottawa Linux Symp, pages 51–61, 2004.

[4] Budget Fair Queueing. https://lwn.net/Articles/
784267/, 2019.

[5] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux Block IO: Introducing Multi-
Queue SSD Access on Multi-Core Systems. In Pro-
ceedings of the 6th International Systems and Storage
Conference, SYSTOR ’13, New York, NY, USA, 2013.
Association for Computing Machinery.

[6] Tudor David, Rachid Guerraoui, and Vasileios Trigo-
nakis. Everything You Always Wanted to Know about
Synchronization but Were Afraid to Ask. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, page 33–48, New York,
NY, USA, 2013. Association for Computing Machinery.

[7] Data center bridging task group. http:
//www.ieee802.org/1/pages/dcbridges.html.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. SIGCOMM
Comput. Commun. Rev., 19(4):1–12, August 1989.

[9] Pawan Goyal, Harrick M. Vin, and Haichen Chen. Start-
Time Fair Queueing: A Scheduling Algorithm for Inte-
grated Services Packet Switching Networks. SIGCOMM
Comput. Commun. Rev., 26(4):157–168, August 1996.

[10] Jun He, Kan Wu, Sudarsun Kannan, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau. Read as Needed:
Building WiSER, a Flash-Optimized Search Engine. In
18th USENIX Conference on File and Storage Technolo-
gies, FAST’20, pages 59–73, Santa Clara, CA, February
2020. USENIX Association.

[11] Mohammad Hedayati, Kai Shen, Michael L. Scott, and
Mike Marty. Multi-Queue Fair Queueing. In Proceed-
ings of the 2019 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’19, page 301–314,
USA, 2019. USENIX Association.

[12] Sitaram Iyer and Peter Druschel. Anticipatory Schedul-
ing: A Disk Scheduling Framework to Overcome De-
ceptive Idleness in Synchronous I/O. In Proceedings of
the Eighteenth ACM Symposium on Operating Systems
Principles, SOSP ’01, page 117–130, New York, NY,
USA, 2001. Association for Computing Machinery.

[13] Wei Jin, Jeffrey S. Chase, and Jasleen Kaur. Interposed
Proportional Sharing for a Storage Service Utility. SIG-
METRICS Perform. Eval. Rev., 32(1):37–48, June 2004.

[14] Kanchan Joshi, Praval Choudhary, and Kaushal Yadav.
Enabling NVMe WRR Support in Linux Block Layer. In
Proceedings of the 9th USENIX Conference on Hot Top-
ics in Storage and File Systems, HotStorage’17, page 22,
USA, 2017. USENIX Association.

[15] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah,
Joonhyuk Yoo, and Mahmut T. Kandemir. HIOS: A Host
Interface I/O Scheduler for Solid State Disks. SIGARCH
Comput. Archit. News, 42(3):289–300, June 2014.

[16] Sangwook Kim, Hwanju Kim, Joonwon Lee, and Jinkyu
Jeong. Enlightening the I/O Path: A Holistic Approach
for Application Performance. In Proceedings of the
15th Usenix Conference on File and Storage Technolo-
gies, FAST’17, page 345–358, USA, 2017. USENIX
Association.

[17] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Kolt-
sidas. Reaping the Performance of Fast NVM Storage
with Udepot. In Proceedings of the 17th USENIX Con-
ference on File and Storage Technologies, FAST’19,
page 1–15, USA, 2019. USENIX Association.

[18] Kyber multi-queue i/o scheduler. https://lwn.net/
Articles/720071/, 2017.

[19] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W. Lee, and Jinkyu Jeong. Asynchronous I/O Stack:
A Low-Latency Kernel I/O Stack for Ultra-Low Latency
SSDs. In Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference, USENIX ATC
’19, page 603–616, USA, 2019. USENIX Association.

[20] Minkyeong Lee, Dong Hyun Kang, Minho Lee, and
Young Ik Eom. Improving Read Performance by Isolat-
ing Multiple Queues in NVMe SSDs. In Proceedings of
the 11th International Conference on Ubiquitous Infor-
mation Management and Communication, IMCOM ’17,
New York, NY, USA, 2017. Association for Computing
Machinery.

[21] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. KVell: The Design and Implementation of
a Fast Persistent Key-Value Store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,

414 19th USENIX Conference on File and Storage Technologies USENIX Association

https://news.samsung.com/global/samsung-delivers-next-level-ssd-performance-with-980-pro-for-gaming-and-high-end-pc-applications
https://news.samsung.com/global/samsung-delivers-next-level-ssd-performance-with-980-pro-for-gaming-and-high-end-pc-applications
https://news.samsung.com/global/samsung-delivers-next-level-ssd-performance-with-980-pro-for-gaming-and-high-end-pc-applications
https://news.samsung.com/global/samsung-delivers-next-level-ssd-performance-with-980-pro-for-gaming-and-high-end-pc-applications
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/
http://www.ieee802.org/1/pages/dcbridges.html
http://www.ieee802.org/1/pages/dcbridges.html
https://lwn.net/Articles/720071/
https://lwn.net/Articles/720071/

SOSP ’19, page 447–461, New York, NY, USA, 2019.
Association for Computing Machinery.

[22] Yujie Liu, Victor Luchangco, and Michael Spear. Mindi-
cators: A Scalable Approach to Quiescence. In Proceed-
ings of the 2013 IEEE 33rd International Conference
on Distributed Computing Systems, ICDCS ’13, page
206–215, USA, 2013. IEEE Computer Society.

[23] MELLANOX TECHNOLOGIES. ConnectX-4 VPI.
https://www.mellanox.com/files/doc-2020/pb-
connectx-4-vpi-card.pdf.

[24] Mindicator. https://github.com/mfs409/
nonblocking/tree/master/tsx_acceleration/
mindicator.

[25] Multi-queue deadline I/O Scheduler. https://
lwn.net/Articles/767987/, 2016.

[26] NVM express specification. https://
nvmexpress.org/wp-content/uploads/NVM-
Express-1_4a-2020.03.09-Ratified.pdf.

[27] Add support Weighted Round Robin for blkcg and nvme.
https://lwn.net/Articles/810726/.

[28] Kwonje Oh, Jonggyu Park, and Young Ik Eom. H-BFQ:
Supporting Multi-Level Hierarchical Cgroup in BFQ
Scheduler. In 2020 IEEE International Conference on
Big Data and Smart Computing (BigComp 20), pages
366–369. IEEE, 2020.

[29] Abhay Kumar Parekh. A generalized processor shar-
ing approach to flow control in integrated services net-
works. PhD thesis, Massachusetts Institute of Technol-
ogy, 1992.

[30] Stan Park and Kai Shen. FIOS: A Fair, Efficient Flash
I/O Scheduler. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies, FAST’12,
page 13, USA, 2012. USENIX Association.

[31] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar
Jeyakumar, Abdul Kabbani, George Porter, and Amin
Vahdat. SENIC: Scalable NIC for End-Host Rate Lim-
iting. In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementation,
NSDI’14, page 475–488, USA, 2014. USENIX Associ-
ation.

[32] Brent Stephens, Aditya Akella, and Michael M. Swift.
Loom: Flexible and Efficient NIC Packet Scheduling.
In Proceedings of the 16th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’19,
page 33–46, USA, 2019. USENIX Association.

[33] Arash Tavakkol, Mohammad Sadrosadati, Saugata
Ghose, Jeremie S. Kim, Yixin Luo, Yaohua Wang,
Nika Mansouri Ghiasi, Lois Orosa, Juan Gómez-Luna,
and Onur Mutlu. FLIN: Enabling Fairness and En-
hancing Performance in Modern NVMe Solid State
Drives. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, ISCA ’18, page
397–410. IEEE Press, 2018.

[34] Paolo Valente and Arianna Avanzini. Evolution of the
BFQ Storage-I/O scheduler. In 2015 Mobile Systems
Technologies Workshop, pages 15–20. IEEE, 2015.

[35] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska,
and Gregory R. Ganger. Argon: Performance Insulation
for Shared Storage Servers. In Proceedings of the 5th
USENIX Conference on File and Storage Technologies,
FAST ’07, page 5, USA, 2007. USENIX Association.

[36] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An Efficient
Design and Implementation of LSM-Tree Based Key-
Value Store on Open-Channel SSD. In Proceedings of
the Ninth European Conference on Computer Systems,
EuroSys ’14, New York, NY, USA, 2014. Association
for Computing Machinery.

[37] Yahoo! Cloud Serving Benchmark. https://
github.com/brianfrankcooper/YCSB.

[38] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Changlim Lee, Mohammad Alian, Myoungjun
Chun, Mahmut Taylan Kandemir, Nam Sung Kim, Ji-
hong Kim, and Myoungsoo Jung. Flashshare: Punching
through Server Storage Stack from Kernel to Firmware
for Ultra-Low Latency SSDs. In Proceedings of the 13th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’18, page 477–492, USA, 2018.
USENIX Association.

USENIX Association 19th USENIX Conference on File and Storage Technologies 415

https://www.mellanox.com/files/doc-2020/pb-connectx-4-vpi-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-4-vpi-card.pdf
https://github.com/mfs409/nonblocking/tree/master/tsx_acceleration/mindicator
https://github.com/mfs409/nonblocking/tree/master/tsx_acceleration/mindicator
https://github.com/mfs409/nonblocking/tree/master/tsx_acceleration/mindicator
https://lwn.net/Articles/767987/
https://lwn.net/Articles/767987/
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4a-2020.03.09-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4a-2020.03.09-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4a-2020.03.09-Ratified.pdf
https://lwn.net/Articles/810726/
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB

An In-Depth Study of Correlated Failures in Production SSD-Based Data Centers
Shujie Han1, Patrick P. C. Lee1, Fan Xu2, Yi Liu2, Cheng He2, and Jiongzhou Liu2

1The Chinese University of Hong Kong 2Alibaba Group

Abstract
Flash-based solid-state drives (SSDs) are increasingly
adopted as the mainstream storage media in modern data
centers. However, little is known about how SSD failures in
the field are correlated, both spatially and temporally. We ar-
gue that characterizing correlated failures of SSDs is critical,
especially for guiding the design of redundancy protection for
high storage reliability. We present an in-depth data-driven
analysis on the correlated failures in the SSD-based data cen-
ters at Alibaba. We study nearly one million SSDs of 11 drive
models based on a dataset of SMART logs, trouble tickets,
physical locations, and applications. We show that correlated
failures in the same node or rack are common, and study the
possible impacting factors on those correlated failures. We
also evaluate via trace-driven simulation how various redun-
dancy schemes affect the storage reliability under correlated
failures. To this end, we report 15 findings. Our dataset and
source code are now released for public use.

1 Introduction
Maintaining high storage reliability is undoubtedly impor-
tant for modern data centers, yet it is often challenged by
correlated failures, such as bursts of latent sector errors [25],
correlated disk failures [5, 26], co-occurring node failures
[5, 8, 11, 19], or correlated crashes of data and protocols [1].
Correlated failures complicate the design of redundancy pro-
tection schemes, which may be sufficient for tolerating inde-
pendent failures but not correlated failures [19].

Modern data centers now increasingly build on flash-based
solid-state drives (SSDs), and their storage reliability guar-
antees critically depend on the reliability of SSDs. Several
field studies have characterized SSD failures in production
environments, including Facebook [16], Google [2, 27], Mi-
crosoft [18], Alibaba [30], and NetApp [15] (see §6 for de-
tails). However, some of the studies [2, 15, 16, 27] analyze
the proprietary customized attributes that are inapplicable for
general production environments; others [18, 30] leverage the
SMART (Self-Monitoring, Analysis and Reporting Technol-
ogy) attributes that are known to provide statistical details for
disk drive failure symptoms, yet SMART attributes do not
provide the location details of how multiple failures mani-
fest across storage scopes (e.g., nodes and racks). Although
correlated failures are reportedly found in SSD-based data
centers [15, 16], little is known about the characteristics of
correlated failures and their implications on storage reliability
in production environments.

To elaborate, the following questions on correlated failures
remain unexplored: (i) How far are SSD failures spaced apart
across different scopes in large-scale data centers? (ii) How
likely does an SSD fail after another failure occurs in the
same scope? (iii) How long is the time interval between two
consecutive SSD failures in the same scope? (iv) Do SSD
failures that are close in space imply that they are also close
in time? (v) What are the factors that affect the correlated fail-
ures? (vi) What should be the proper redundancy protection
schemes in the presence of correlated failures? The answers
to these questions can provide insights into achieving high
storage reliability in production environments.

In this paper, we present an in-depth data-driven analysis
on the correlated failures, from both spatial and temporal
perspectives, of SSD-based data centers at Alibaba, one of
the largest Internet companies in the world. We present an
extensive study on the correlated failures of nearly one million
SSDs, belonging to 11 drive models from three vendors, over
a span of two years. Our dataset covers the SMART logs,
trouble tickets, physical locations of SSDs (e.g., nodes and
racks), and the applications hosted by the underlying SSDs.
Our analysis makes the following findings:

• We characterize two main types of correlated failures in the
same node and rack that occur within a short time (e.g., 30
minutes), referred to as intra-node failures and intra-rack
failures, respectively. We observe a non-negligible fraction
of intra-node and intra-rack failures, implying the existence
of strong spatial and temporal correlations of SSD failures.

• We analyze four impacting factors of drive characteristics
on the correlated failures: drive models, lithography, age,
and capacity. We show that such factors pose different
effects on the spatial and temporal correlations of SSD
failures. In particular, intra-node (intra-rack) failures likely
occur in the nodes (racks) that are attached by many SSDs
of the same drive model. Both intra-node and intra-rack
failures of aged SSDs tend to occur within a short time.

• We analyze the impact of SMART attributes and applica-
tions on both intra-node and intra-rack failures. We find
that SMART attributes have limited correlations with both
intra-node and intra-rack failures and are not good indica-
tors for detecting the existence of intra-node and intra-rack
failures. Also, write-dominant applications lead to more
intra-node and intra-rack failures than read-dominant ones.

• We conduct trace-driven simulation using our dataset on
the impact of different redundancy protection schemes on

USENIX Association 19th USENIX Conference on File and Storage Technologies 417

storage reliability. We show that redundancy schemes with
high fault tolerance are critical to storage reliability under
correlated failures.

We release our dataset, including the SMART logs of
all failed SSDs, trouble tickets, locations, and applications,
for the 11 drive models at https://github.com/alibaba-
edu/dcbrain/tree/master/ssd open data. The community
can leverage our dataset and findings to design effective
reliability solutions in production environments. We also
open-source our analysis scripts and simulator prototype at
http://adslab.cse.cuhk.edu.hk/software/ssdanalysis.

2 Dataset
In this section, we introduce the dataset for our analysis. We
describe our data collection methodology (§2.1) and study the
drive population and characteristics of our dataset (§2.2). We
also discuss the limitations of our dataset (§2.3).

2.1 Data Collection
We collected data from multiple SSD-based data centers at
Alibaba. Each data center comprises multiple racks, each of
which holds multiple machines called nodes. Each node is
further attached with one or multiple SSDs.

Our dataset spans two years from January 2018 to Decem-
ber 2019. It covers a population of nearly one million SSDs of
11 drive models from three vendors. The SSDs are deployed
in 200 K nodes of 30 K racks. Note that the SSDs of the same
drive model were typically purchased from multiple batches
at different times, and the SSDs attached to each node may be
heterogeneous in terms of vendors, models, capacities, and
deployment times. However, among the nodes with at least
two SSDs, 88.6% of them are attached to the SSDs of the
same drive model.

Our dataset includes multiple data types: SMART logs,
trouble tickets, locations, and applications.

SMART logs. SMART is a widely adopted tool for moni-
toring disk drive status. It periodically reports the numerical
values of the performance and reliability statistics on dif-
ferent dimensions, called attributes. Each SMART attribute
includes both the raw and normalized values. Our dataset con-
tains daily collected SMART logs over the two-year span, and
its collected SMART attributes are summarized in Table 1.
Since the definitions of SMART attributes vary across ven-
dors, for easy comparison, we focus on the SMART attributes
that are reported by more than half of SSDs (shown in the
“Reported%” column). We categorize the SMART attributes
by their monitoring types into five groups, namely internal
errors, spare blocks, wearout degree, workload, and power.
Some SMART attributes have identical meanings but are as-
signed different SMART IDs by vendors (e.g., S170/S180,
S171/S181, and S172/S182). Also, some SMART attributes
have vendor-specific raw values (marked with an asterisk ‘*’
in Table 1), so we only consider their normalized values.

Category ID Attribute name Reported%

Internal
errors

S5 Reallocated sector count 100.0%
S183 SATA downshift error count 96.5%
S184 End-to-end errors 100.0%
S187 Reported uncorrectable errors 100.0%
S195 Hardware ECC recovered 55.4%
S197 Current pending sector count 87.5%
S199 UltraDMA CRC error count 100.0%

S171/S181 Program failed count 100.0%
S172/S182 Erase failed count 100.0%

Spare
blocks*

S170/S180 Available reserved blocks 100.0%

Wearout
degree*

S173 Wear leveling count
100.0%S177 Wear range delta

S233 Media wearout indicator

Workload
S241 Number of blocks written 68.8%
S242 Number of blocks read 56.3%

Power

S9 Power on hours 100.0%
S12 Power cycle count 99.1%

S174 Unexpected power loss count 78.5%
S175* Power loss protection failure 57.0%

Table 1: Overview of SMART attributes in our dataset. “Reported%”
is the percentage of SSDs with the corresponding SMART attribute.
Only the normalized values are considered for the vendor-specific
SMART attributes marked by an asterisk ‘*’.

Trouble tickets. Each node runs a background monitor-
ing daemon that periodically collects SMART statistics and
system-level logs/alerts from its attached SSDs and sends
the collected data to a centralized maintenance system that
monitors failures. The maintenance system applies rule-based
detection, defined by administrators, to detect and report any
failure behavior in the form of trouble tickets. Each trouble
ticket records the node ID, drive ID, timestamp, and failure
description. Administrators further manually validate each
trouble ticket to confirm the failure status. We use the trouble
tickets as the ground-truths for our failure analysis. Through-
out the two-year span, we collected about 19 K trouble tickets
(i.e., 19 K failed SSDs in total).

Our trouble tickets cover two main types of SSD failures:
(i) whole drive failures, in which an SSD either cannot be
accessed or loses all data that is unrecoverable; and (ii) partial
drive failure, in which part of the data in an SSD either cannot
be accessed and is unrecoverable.
Locations. Our dataset records the physical location of each
SSD, including the machine room ID, rack ID, node ID, drive
ID, and slot number. In particular, we can correlate an SSD
to the SMART logs and trouble tickets by its drive ID.
Applications. Our dataset covers hundreds of applications,
including both internal (e.g., resource management, develop-
ment, testing, etc.) and external services (e.g., web services,
data analytics, etc.). Each node is configured to serve a single
application (note that the applications within a rack may be
different) and distributes a set of tasks to the attached SSDs
as evenly as possible. We can correlate an SSD to its hosted

418 19th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/alibaba-edu/dcbrain/tree/master/ssd_open_data
https://github.com/alibaba-edu/dcbrain/tree/master/ssd_open_data
http://adslab.cse.cuhk.edu.hk/software/ssdanalysis

Applications Total% Failures%
Web service management (WSM) 39.4% 48.5%
Resource management (RM) 19.1% 16.4%
Web proxy services (WPS) 4.6% 2.9%
SQL services (SS) 3.4% 1.0%
Database (DB) 2.8% 1.1%
Web services (WS) 1.8% 1.3%
Data analytics engine (DAE) 1.7% 6.6%
Network attached storage (NAS) 1.5% 2.9%

Table 2: Overview of the top eight most widely used applications
with more than hundreds of failed SSDs, including the percentage
of deployed SSDs in the whole population (“Total%”) and the per-
centage of SSD failures in the failed SSD population (“Failures%”).
Note that SS and DB are two similar applications, but belong to
different business units.

application via its node ID. Table 2 shows the top eight most
widely used applications, each of which contains hundreds of
failed SSDs in our dataset. Specifically, WSM covers 39.4%
of all SSDs and 48.5% of all failed SSDs. WPS, SS, and DB
cover 10.8% of all SSDs, while covering only 5.0% of all
failed SSDs. DAE and NAS have 3.2% of all SSDs, while
covering 9.5% of all failed SSDs. We will give a detailed
analysis on the relationships between the failure patterns and
workload distributions of the eight applications (§4.4).

2.2 Summary of Statistics
We first analyze the basic statistics and SSD characteristics in
our dataset, as shown in Table 3.

Population statistics. We consider 11 drive models from
three vendors. Each drive model is denoted by “Vendor”“k”,
where “Vendor” is represented by a letter (‘A’, ‘B’, and ‘C’)
for each of the three vendors, and “k” (1 to 6) refers to the
k-th most numerous model in the same vendor. The first three
columns in Table 3 show the percentages of each drive model
in the same vendor and the whole population. The 11 drive
models together cover nearly one million SSDs.

Drive characteristics. The fourth to sixth columns in Table 3
describe the key drive characteristics, including the flash tech-
nology, lithography, and capacity. All 11 drive models use the
SATA interface. The drive models in vendors A and B build
on enterprise-class MLC NAND cells, while those in vendor
C build on 3D-TLC flash. These drive models have different
lithography parameters (bill-of-material (BOM) revision for
3D-TLC) and capacities (ranging from 240 to 1920 GB).

Usage. The seventh to ninth columns in Table 3 show
the statistical summaries of SSD usage, including the over-
provisioning (OP) factor (i.e., the fraction of dedicatedly re-
served space in SSDs for internal garbage collection), the
average power-on years computed from S9 (Table 1), and
the mean of rated life used (i.e., the percentage of erase cy-
cles over the erase cycle limit) computed from the SMART
attributes related to the wearout degree (Table 1).

Reliability. The last three columns in Table 3 show three
reliability metrics, including the mean percentage of spare
blocks used, the mean number of bad sectors, and the annual-
ized failure rate (AFR). We compute the percentage of spare
blocks using the SMART attributes related to spare blocks
(S170/S180), and the number of bad sectors using S5 in Ta-
ble 1. We define the AFR by the following formula [13, 18]:

AFR(%) =
f

n1 +n2 + . . .+ntwo−year
×365×100,

where f is the total number of failed SSDs reported in our
trouble tickets and ni is the number of operational SSDs on
day i over the two-year span. The overall AFR of all MLC
SSDs (A1 to A6 and B1 to B3) is 0.55%, and their AFRs range
from 0.16% to 2.52%, slightly lower than those reported for
SSDs in Google’s data centers (1-2.5%) [27]. In contrast, the
AFRs of 3D-TLC SSDs (C1 and C2) are higher than 3%. The
overall AFR of all SSDs in our dataset is 1.16%.

2.3 Limitations
Our analysis has the following limitations, mainly due to the
unavailable information in our dataset.
Data missing. We expect that the SMART logs contain daily
statistics without loss, yet our dataset indeed contains incom-
plete SMART data over time in both failed and healthy SSDs.
Reasons of such data missing include network failures, soft-
ware maintenance or upgrades, system crashes, etc. In this
work, we mainly focus on analyzing the correlations of SSD
failures via trouble tickets, rather than the correlations of
SMART attributes over time. Thus, the data missing in the
SMART logs does not compromise our analysis.
Failure symptoms. Our dataset reports SSD failures via trou-
ble tickets, but does not cover the failure symptoms at the
operating system level. Such failure symptoms can be found
in kernel syslogs, which are not collected in our dataset.
Drive repair. Our dataset does not include the repair details
for failed SSDs. In practice, how long the data in a failed
SSD is recovered depends on the importance of its stored
data to the upper-level applications. Administrators may not
immediately repair the failed SSDs that store less critical data
to save operational overhead [2, 30]. Due to limited details,
we assume that all SSDs store data with the same importance,
and the repair time depends on the amount of data to be
reconstructed (§5).
Redundancy protection. Production storage systems use
erasure coding for redundancy protection against failures
[8, 12, 17]. In Alibaba production, 3-way replication is the
commonly used redundancy mechanism [30]. However, the
redundancy parameters may also vary across applications
and we do not have access to the redundancy parameters for
each application. In this work, we assume that all applications
adopt the same redundancy parameters to drive our reliability
analysis (§5).

USENIX Association 19th USENIX Conference on File and Storage Technologies 419

Population statistics Drive characteristics Usage Reliability

Model Ven- Total% Flash Litho- Capa- OP Power- Rated life Spare blocks # bad AFR
dor% Tech. graphy city on years used (%) used (%) sectors (%)

A1 52.3% 29.8% MLC 20 nm 480 GB 7% 4.6 17.8 (±0.067) 0.18 (±0.0080) 9.3 (±0.60) 0.16%
A2 21.8% 12.4% MLC 20 nm 800 GB 28% 4.5 17.2 (± 0.15) 0.19 (±0.013) 12.5 (±1.3) 0.46%
A3 7.9% 4.5% MLC 20 nm 480 GB 7% 5.5 25.9 (±0.41) 0.022 (±0.012) 12.4 (±2.4) 2.36%
A4 7.2% 4.1% MLC 16 nm 240 GB 7% 3.2 8.8 (±0.074) 0.064 (±0.013) 2.4 (±0.72) 0.64%
A5 5.7% 3.3% MLC 16 nm 480 GB 7% 3.2 27.0 (±0.28) 0.087 (±0.015) 5.0 (±1.2) 0.45%
A6 5.1% 2.9% MLC 20 nm 800 GB 28% 4.6 24.7 (±0.44) 0.018 (±0.013) 13.7 (±2.9) 0.49%
B1 51.5% 10.3% MLC 21 nm 480 GB 7% 3.8 6.4 (±0.029) 0.0063 (±0.0010) 0.036 (±0.024) 0.21%
B2 25.5% 5.1% MLC 19 nm 1920 GB 7% 3.3 2.0 (±0.014) 0.086 (±0.0092) 12.2 (±1.4) 0.71%
B3 23.0% 4.6% MLC 24 nm 1920 GB 7% 2.1 3.6 (±0.028) 0.021 (±0.0041) 0.50 (±0.25) 2.52%
C1 89.3% 20.6% 3D-TLC V1 1920 GB 7% 2.0 4.3 (±0.022) 0.064 (±0.0054) 10.1 (±0.74) 3.29%
C2 10.7% 2.5% 3D-TLC V1 960 GB 7% 1.4 2.0 (±0.062) 0.0049 (±0.0047) 0.67 (±0.37) 3.92%

Table 3: Summary of statistics of collected dataset. The population statistics include the percentage of drives in the same vendor (“Vendor%”)
and the percentage of drives in the whole drive population in the dataset (“Total%”). For the “Rated life used”, “Spare blocks used”, and “# bad
sectors” columns, each value in brackets denotes the 95% confidence interval.

3 Overview of Analysis Methodology
Our analysis studies the correlated failures of SSDs in our
dataset, and focuses on several dimensions.
Spatial and temporal properties. We study how SSD fail-
ures manifest within a scope, either a node or a rack, within
a certain time period. We consider both intra-node failures
and intra-rack failures to refer to the failures co-occurring
within a node and a rack, respectively. We also define the
intra-node (intra-rack) failure time interval as the time in-
terval between two consecutive failures that co-occur within
the same node (rack). We refer to a failure as an intra-node
(intra-rack) failure if its intra-node (intra-rack) failure time
interval with its preceding or following failure in the same
node (rack) is smaller than a pre-specified threshold. Here,
we set a default threshold as 30 minutes, assuming that this
is the minimum time for a failure to be detected before it is
repaired [12]. In other words, a node (rack) may contain more
than one active failure at a time under intra-node (intra-rack)
failures. We define the intra-node (intra-rack) failure group
as a sequence of intra-node (intra-rack) failures starting from
an intra-node (intra-rack) failure without a preceding one un-
til an intra-node (intra-rack) failure without a following one.
We also vary the thresholds of the intra-node and intra-rack
failure time interval in our analysis.
Correlation properties. We use the Spearman’s Rank Cor-
relation Coefficient (SRCC) [29] to measure the correlation
of two variables. For example, to measure the correlation
between an SSD failure and a SMART attribute using the
SRCC, we use an indicator variable to represent if an SSD is
failed (i.e., 1 means failed; or 0 otherwise), and a numerical
variable to represent the value of a SMART attribute. The
SRCC calculates the Pearson Correlation Coefficient [21]
between the rank values of two variables to measure their
monotonic relationships. The SRCC ranges from -1 (i.e., high
negative correlation) to +1 (i.e., high positive correlation); a
zero SRCC means that the two variables are independent.

4 Correlation Analysis
We analyze the correlated failures of SSDs in our dataset in
four aspects: (i) spatial and temporal correlations among fail-
ures (§4.1), (ii) the impacting factors on correlated failures,
including the drive models, lithography, age, and capacity
(§4.2), (iii) the impact of SMART attributes on correlated fail-
ures (§4.3), and (iv) the impact of applications on correlated
failures (§4.4). Finally, we discuss the implications of our
findings (§4.5).

4.1 Correlations among Failures
We first examine the severity of correlated failures by the
intra-node and intra-rack failure group sizes (i.e., by count-
ing the number of failures within a group). Figure 1 shows
the percentage of failures versus the intra-node or intra-rack
failure group sizes; note that for Figure 1(b), we omit the
plots for the intra-rack failure group sizes that exceed 60 (the
maximum is 89) due to the sparseness. We see that a non-
negligible fraction of SSD failures belong to intra-node and
intra-rack failures. In particular, 12.9% (18.3%) of failures
are intra-node (intra-rack) failures. Also, the intra-node and
intra-rack failure group size can exceed the tolerable limit
of some typical redundancy protection schemes (e.g., four
failures) (see §5 for details).

Finding 1. A non-negligible fraction of SSD failures be-
long to intra-node and intra-rack failures (12.9% and 18.3%
in our dataset, respectively). Also, the intra-node and intra-
rack failure group size can exceed the tolerable limit of some
typical redundancy protection schemes.

We further check whether the likelihood of an SSD failure
depends on the already existing SSD failures among the intra-
node and intra-rack failures. Borrowing the idea by Mesa et
al. [16], we compute the conditional probability of having
an additional SSD failure per intra-node (intra-rack) failure
group given the existing intra-node (intra-rack) failures, by
dividing the number of intra-node (intra-rack) failure groups

420 19th USENIX Conference on File and Storage Technologies USENIX Association

0

1

2

3

4

0 2 4 6 8 10 12

Failure group size

F
a

ilu
re

s
 (

%
)

0

1

2

3

4

0 10 20 30 40 50 60

Failure group size

F
a

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 1: Finding 1. Percentages of failures for different intra-node
and intra-rack failure group sizes.

0

20

40

60

80

100

0 2 4 6 8 10 12
x

P
ro

b
a

b
ili

ty
 (

%
)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16
x

P
ro

b
a

b
ili

ty
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 2: Finding 2. Conditional probabilities of having an addi-
tional SSD failure for different failure group sizes per intra-node or
intra-rack failure group.

with a failure group size of x+1 by the number of intra-node
(intra-rack) failure groups with a failure group size of x or
x+1.

Figure 2 shows that the conditional probability of an ad-
ditional SSD failure depends on the already existing SSD
failures among the intra-node and intra-rack failures. The
conditional probability of having an additional SSD failure
in an intra-node (intra-rack) failure group ranges from 26.3%
to 64.3% as x ranges from 2 to 11 (from 27.3% to 58.7% as
x ranges from 2 to 88); note that we omit the plots for the
intra-rack failure group size that exceeds 16 in Figure 2(b)
due to the sparseness. If there is no correlation among intra-
node (intra-rack) failures and the SSD failures are uniformly
distributed on nodes (racks), the conditional probability of
having an additional SSD failure given the existing intra-node
(intra-rack) failures is similar to the AFR [16].

Finding 2. The likelihood of having an additional intra-
node (intra-rack) failure in an intra-node (intra-rack) failure
group depends on the already existing intra-node (intra-rack)
failures.

We examine how the percentages of intra-node and intra-
rack failures are affected by various thresholds of the intra-
node and intra-rack failure time intervals, respectively. Fig-
ure 3 shows that a non-negligible fraction of intra-node and
intra-rack failures occur within a short period of time. The
intra-node (intra-rack) failures with one month as the thresh-
old of the failure time interval account for 29.2% (63.0%).
When the threshold of the failure time interval falls in one
minute, the intra-node (intra-rack) failures still account for
10.0% (14.4%).

Finding 3. A non-negligible fraction of intra-node and

0

20

40

60

80

100

1 m
in

30 m
ins

1 hour
1 day

1 week

1 m
onth

1 year

Failure time interval

F
a

ilu
re

s
 (

%
) Intra-node

Intra-rack

Figure 3: Finding 3. Percentages of intra-node (intra-rack) failures
broken down by different thresholds of the intra-node (intra-rack)
failure time intervals.

intra-rack failures occur within a short period of time, even
within one minute.

4.2 Impacting Factors on Correlated Failures
We next study how various factors affect the spatial and tem-
poral correlations of failures.

4.2.1 Drive Models

We analyze the impact of drive models on correlated fail-
ures. Figure 4 shows that the relative percentages of failures
(over all SSD failures of the same drive model) for differ-
ent sets of intra-node and intra-rack failure group sizes vary
highly across the drive models. In particular, the relative per-
centages of intra-node (intra-rack) failures range from 0% to
33.4% (from 2.8% to 39.4%). Interestingly, A2 has only 3.7%
of intra-node failures, but has 39.4% of intra-rack failures,
among which 26.4% reside in the intra-rack failure groups of
sizes larger than 30.

We next examine the reason of high percentages of intra-
node and intra-rack failures of some drive models, by ex-
amining the average numbers of SSDs per node or rack for
different drive models. Figure 5 shows the distribution of the
average number of SSDs per node and rack (each error bar
shows the 95% confidence interval). In general, putting more
SSDs from the same drive model in the same nodes (racks)
leads to a higher percentage of intra-node (intra-rack) failures.

However, we observe some exceptions. A3 and A6 have
the same average number of SSDs per node (i.e., 12.0), but the
relative percentage of intra-node failures for A3 is higher than
that for A6 by 14.8%. One possible reason is that the AFR of
A3 (2.36%) is 5× that of A6 (0.49%). Note that the AFR is not
always the root cause of leading to high relative percentages of
intra-node and intra-rack failures. For example, one exception
is that C1 has more average number of SSDs per node (rack)
than B3 by 1.8 (20.7), but the relative percentage of intra-node
(intra-rack) failures for C1 is lower than that for B3 by 13.7%
(18.9%). Similar exceptions include the intra-rack failures
for A2 and A3. However, the AFR of B3 (A2) is lower than
that of C1 (A3) by 0.77% (1.9%). We further examine the
machine rooms where intra-rack failures reside for A2 and B3.
We observe that the relative percentages of intra-rack failures

USENIX Association 19th USENIX Conference on File and Storage Technologies 421

Failure group size [2, 10] (10, 20] (20, 30] (30, 89]

0

10

20

30

40

50

A1A2A3A4A5A6B1B2B3C1C2

Drive models

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

A1A2A3A4A5A6B1B2B3C1C2

Drive models

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 4: Finding 4. Relative percentages of failures for different
sets of intra-node or intra-rack failure group sizes across the drive
models.

0
2
4
6
8

10
12

A1A2A3A4A5A6B1B2B3C1C2

Drive models

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
S

S
D

s

0

10

20

30

40

50

A1A2A3A4A5A6B1B2B3C1C2

Drive models

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
S

S
D

s

(a) Per node (b) Per rack

Figure 5: Finding 4. Average numbers of SSDs per node or rack for
the drive models (with 95% confidence intervals as error bars).

from two machine rooms account for 29.6% and 15.3% for
A2 and B3, respectively, and the intra-rack failure group sizes
are larger than 20 and 30 for A2 and B3, respectively. Thus,
the high relative percentages of intra-rack failures may also
be attributed to the machine rooms (e.g., high temperature in
a machine room can lead to more SSD failures [30]).

Finding 4. The relative percentages of intra-node and intra-
rack failures vary across drive models. Putting too many SSDs
from the same drive model in the same nodes (racks) leads to
a high percentage of intra-node (intra-rack) failures. Also, the
AFR and environmental factors (e.g., temperature) affect the
relative percentages of intra-node and intra-rack failures.

We vary the thresholds of the intra-node and intra-rack fail-
ure time intervals, broken down by the drive models. Figure 6
shows that the intra-node and intra-rack failures with a short
failure time interval account for non-negligible percentages
for most drive models. In particular, the relative percentages
of intra-node (intra-rack) failures with a threshold of one day
range from 4.4 to 34.3% (from 11.8 to 44.2%), except for A4
and C2 due to their limited numbers of SSDs per node or rack.
The relative percentages of intra-node (intra-rack) failures
with a threshold of one minute still account for 3.5-33.4%
(7.8-37.1%) except for A4 and C2 (C2).

Finding 5. There exist non-negligible fractions of intra-
node and intra-rack failures with a short failure time interval
for most drive models (e.g., up to 33.4% and 37.1% with
a failure time interval of within one minute in our dataset,
respectively) .

Failure time interval
[0, 1 minute] (1 minute, 30 minutes]

(30 minutes, 1 day] (1 day, 1 month]

0

10

20

30

40

50

A1A2A3A4A5A6B1B2B3C1C2

Drive models

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

A1A2A3A4A5A6B1B2B3C1C2

Drive models

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 6: Finding 5. Relative percentages of failures for different
thresholds of intra-node or intra-rack failure time intervals across
the drive models.

4.2.2 Lithography

We analyze the impact of lithography on correlated failures.
For MLC SSDs, a smaller lithography implies that the SSDs
have a higher density. Also, 3D-TLC SSDs (C1 and C2) have
higher densities than those of the MLC SSDs. Figure 7 shows
that the SSDs of a smaller lithography (i.e., a higher density)
generally have lower relative percentages of intra-node and
intra-rack failures (over all SSD failures of the same lithogra-
phy). In particular, for MLC SSDs, the relative percentages of
intra-node (intra-rack) failures decrease from 23.5% to 5.0%
(from 32.3% to 10.1%) from 24 nm to 16 nm. An exception
is 21 nm SSDs, due to its limited number of failures. For 3D-
TLC SSDs, the relative percentages of both intra-node and
intra-rack failures are close to 19 nm MLC SSDs.

We also vary the thresholds of the intra-node and intra-
rack failure time intervals, broken down by the lithography.
Figure 8 shows that the relative percentages of intra-node and
intra-rack failures for different thresholds decrease generally
with a smaller lithography for MLC SSDs. In particular, the
relative percentages of intra-node (intra-rack) failures with a
threshold of one minute increase from 20.6% to 4.3% (28.0%
to 9.3%) from 24 nm to 16 nm except for 21 nm SSDs due
to few failures. The intra-rack failures with a threshold of
one minute for 20 nm and 24 nm SSDs account for higher
percentages than other MLC SSDs by 18.7-22.4%, since they
include the intra-rack failures from A2 and B3, respectively
(Figure 4(b)).

Finding 6. MLC SSDs with higher densities generally have
lower relative percentages of intra-node and intra-rack fail-
ures.

4.2.3 Age

We analyze the impact of the age of a failed SSD (e.g., the
power-on years until the failure occurs) on correlated failures.
Figure 9 shows that the relative percentages of intra-node
(intra-rack) failures (over all SSD failures of the same age
group) for different sets of intra-node (intra-rack) group sizes
increase with age in general. In particular, the relative per-
centages of intra-node (intra-rack) failures of each age group
increase from 6.8% to 33.2% (from 11.0% to 37.6%) from

422 19th USENIX Conference on File and Storage Technologies USENIX Association

Failure group size [2, 10] (10, 20] (20, 30] (30, 89]

0

10

20

30

40

50

24nm
21nm

20nm
19nm

16nm
V1

Lithography

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

24nm
21nm

20nm
19nm

16nm
V1

Lithography

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 7: Finding 6. Relative percentages of failures for different
sets of intra-node or intra-rack failure group sizes across the lithog-
raphy.

Failure time interval
[0, 1 minute] (1 minute, 30 minutes]

(30 minutes, 1 day] (1 day, 1 month]

0

10

20

30

40

50

24nm
21nm

20nm
19nm

16nm
V1

Lithography

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

24nm
21nm

20nm
19nm

16nm
V1

Lithography

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 8: Finding 6. Relative percentages of failures for different
thresholds of intra-node or intra-rack failure time intervals across
the lithography.

zero to six years old. Also, the relative percentage of intra-
node (intra-rack) failures for 1-2 years old is slightly higher
than that for 2-3 years old by 2.4% (3.2%). One possible
reason is that the infant mortality of SSD failures can last for
more than a year [15].

Figure 10 shows a noticeable trend that the intra-node and
intra-rack failures at an older age are more likely to occur
within a short time. In particular, the relative percentages of
intra-node (intra-rack) failures with a threshold of one minute
increase from 3.1% to 32.5% (from 5.2% to 36.9%) from zero
to six years old. We also examine the average rated life used
for intra-node and intra-rack failures at different ages (not
shown in plots). The rated life used for intra-node (intra-rack)
failures (with the default threshold of 30 minutes) increases
from 1.6% (1.4%) for 0-1 year old to 67.5% (68.4%) for 5-6
years old on average, showing that a longer rated life used
increases the likelihood of intra-node and intra-rack failures.

Finding 7. The relative percentages of intra-node and intra-
rack failures increase with age. The intra-node and intra-rack
failures at an older age are more likely to occur within a short
time due to the increasing rated life used.

4.2.4 Capacity

We examine the impact of the capacity on correlated failures.
Figure 11 shows that the relative percentages of intra-node
(intra-rack) failures (over all SSD failures of the same capac-
ity) for different sets of intra-node (intra-rack) failure group
sizes vary significantly across the capacity. Specifically, the

Failure group size [2, 10] (10, 20] (20, 30] (30, 89]

0

10

20

30

40

50

[0, 1)[1, 2)[2, 3)[3, 4)[4, 5)[5, 6)

Age (years)

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

[0, 1)[1, 2)[2, 3)[3, 4)[4, 5)[5, 6)

Age (years)

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 9: Finding 7. Relative percentages of failures for different
sets of intra-node or intra-rack failure group sizes across the age.

Failure time interval
[0, 1 minute] (1 minute, 30 minutes]

(30 minutes, 1 day] (1 day, 1 month]

0

10

20

30

40

50

[0, 1)[1, 2)[2, 3)[3, 4)[4, 5)[5, 6)

Age (years)

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

[0, 1)[1, 2)[2, 3)[3, 4)[4, 5)[5, 6)

Age (years)

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 10: Finding 7. Relative percentages of failures for different
thresholds of intra-node or intra-rack failure time intervals across
the age.

relative percentages of intra-node (intra-rack) failures for each
capacity range from 0% to 25.2% (from 2.9% to 35.4%). As
the SSDs with capacities of 480 GB, 800 GB, and 1920 GB
cover more failures (Table 3), they have higher relative per-
centages of intra-node and intra-rack failures.

We next vary the thresholds of the intra-node and intra-rack
failure time intervals, broken down by the capacity. Figure 12
shows no clear trend between the relative percentages of intra-
node or intra-rack failures and the capacity. In particular, the
480 GB SSDs have the highest relative percentage of intra-
node failures with a threshold of one minute, since they cover
A3 with 34.4% of intra-node failures (Figure 6(a)), while the
800 GB SSDs have the highest relative percentage of intra-
rack failures with a threshold of one minute, since they cover
A2 with 36.6% of intra-rack failures (Figure 6(b)).

Finding 8. The relative percentages of intra-node and intra-
rack failures vary significantly across the capacity. There is
no clear trend between the relative percentages of intra-node
(or intra-rack) failures for different thresholds of failure time
intervals and the capacity.

4.3 Impact of SMART Attributes
We analyze how SMART attributes are correlated with intra-
node and intra-rack failures. We use the SRCC [29] (§3) to
examine which SMART attributes are correlated with intra-
node and intra-rack failures. Figure 13 shows that the SMART
attributes have limited correlations with intra-node or intra-
rack failures, and the differences of the absolute values of
SRCC between intra-node and intra-rack failures are very

USENIX Association 19th USENIX Conference on File and Storage Technologies 423

Failure group size [2, 10] (10, 20] (20, 30] (30, 89]

0

10

20

30

40

50

240 480 800 960 1920

Capacity (GB)

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

240 480 800 960 1920

Capacity (GB)

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 11: Finding 8. Relative percentages of failures for different
sets of intra-node or intra-rack failure group sizes across the capacity.

Failure time interval
[0, 1 minute] (1 minute, 30 minutes]

(30 minutes, 1 day] (1 day, 1 month]

0

10

20

30

40

50

240 480 800 960 1920

Capacity (GB)

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

240 480 800 960 1920

Capacity (GB)

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 12: Finding 8. Relative percentages of failures for different
thresholds of intra-node or intra-rack failure time intervals across
the capacity.

small. In particular, the SMART attributes related to internal
errors (e.g., S187) are more correlated with intra-node and
intra-rack failures, yet the highest SRCC values are only 0.23
for both intra-node and intra-rack failures. This implies that
SMART attributes are not good indicators for detecting the
existence of intra-node and intra-rack failures. Furthermore,
the differences of the absolute values of SRCC between intra-
node and intra-rack failures are very small and less than 0.02.

Finding 9. The SMART attributes have limited correla-
tions with intra-node and intra-rack failures, and the highest
SRCC values (from S187) are only 0.23 for both intra-node
and intra-rack failures. Thus, SMART attributes are not good
indicators for detecting the existence of intra-node and intra-
rack failures. Also, intra-node and intra-rack failures have no
significant difference of the absolute values of SRCC for each
SMART attribute.

4.4 Impact of Applications
We analyze the relationships between the failure patterns and
workload distributions of the eight applications (Table 2), and
study the impact of applications on correlated failures.

We first examine the relationships between the AFRs and
workload distributions of the eight applications. In particular,
we use the raw values of SMART attributes S241 and S242
to calculate the percentage of writes among the total work-
loads of reads and writes, and determine if each SSD is read-
dominant (i.e., more reads than writes) or write-dominant
(i.e., more writes than reads). Figure 14(a) shows the average
percentages of writes per SSD for the eight applications (each

-0.1

0

0.1

0.2

0.3

S
5

S
1
8
3

S
1
8
4

S
1
8
7

S
1
9
5

P
ro
g
ra
m

B
lo
c
k
s
*

W
e
a
ro
u
t*

S
2
4
1

S
2
4
2

S
9

S
1
2

S
1
7
4

S
1
7
5
*

S
R
C
C

Intra-node

Intra-rack

Figure 13: Finding 9. SRCC values between each SMART attribute
and intra-node or intra-rack failures. Note that we omit three SMART
attributes, including S197, S199, and erase failed counts, since their
absolute SRCC values are less than 0.01 for both intra-node and
intra-rack failures.

0

20

40

60

80

100

WSM RM
WPS SS DB WS

DAE
NAS

W
ri

te
s
 (

%
)

0

1

2

3

4

5

WSM RM
WPS SS DB WS

DAE
NAS

A
F

R
 (

%
)

(a) Average percentages of
writes per SSD

(b) AFRs

Figure 14: Finding 10. Average percentages of writes per SSD
(with 95% confidence intervals as error bars) and AFRs for the
applications.

error bar shows the 95% confidence interval). Reads are dom-
inant for WPS, SS, and DB, while writes are dominant for the
remaining five applications. Figure 14(b) shows the AFRs for
the applications. The AFRs of write-dominant applications in
general are higher than those of read-dominant applications.
This implies that write-dominant workloads lead to more SSD
failures overall, conforming to prior findings [18].

However, write-dominant workloads are not the only im-
pacting factor on the AFRs. We see that DAE has the highest
AFR (i.e., 4.9%), and it is mainly hosted on the drive model
C1, which has a high AFR (3.29% in Table 3). Also, WPS
has a higher AFR than SS and DB by 0.29%, although it has
a lower percentage of writes than SS and DB. The reason is
that C1 is mainly used in WPS, while A1, which has a low
AFR (0.16% in Table 3), is the drive model mainly used in
SS and DB.

Finding 10. Write-dominant workloads lead to more SSD
failures overall, but are not the only impacting factor on the
AFRs. Other factors (e.g., drive models) can affect the AFRs.

We analyze the impact of applications on correlated failures.
Figure 15 shows that the relative percentages of intra-node
(intra-rack) failures (over all SSD failures of the same ap-
plication) for different sets of intra-node (intra-rack) failure
group sizes vary across the applications. In particular, the
relative percentages of intra-node (intra-rack) failures for the
applications range from 2.1% to 33.6% (from 2.8% to 40.5%).

424 19th USENIX Conference on File and Storage Technologies USENIX Association

Failure group size [2, 10] (10, 20] (20, 30] (30, 89]

0

10

20

30

40

50

WSMRM
WPS SS DB WS

DAE
NAS

Applications

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

WSMRM
WPS SS DB WS

DAE
NAS

Applications

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 15: Finding 11. Relative percentages of failures for differ-
ent sets of intra-node or intra-rack failure group sizes across the
applications.

0
2
4
6
8

10
12

WSMRM
WPS SS DB WS

DAE
NAS

Applications

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
S

S
D

s

0

10

20

30

40

50

WSMRM
WPS SS DB WS

DAE
NAS

Applications

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
S

S
D

s

(a) Per node (b) Per rack

Figure 16: Finding 11. Average numbers of SSDs per node or rack
for the applications (with 95% confidence intervals as error bars).

To explain these differences across the applications, we
examine the average number of SSDs per node or rack for
each application. Figure 16 shows that attaching more SSDs
on nodes and racks for applications tends to have a high
percentage of intra-node (intra-rack) failures. However, there
are some exceptions. The average number of SSDs per node
for WSM (4.6) is close to that of WPS (5.0), yet the relative
percentage of intra-node failures for WSM is higher than that
of WPS by 5.0%. The reason is that WPS has read-dominant
workloads, while WSM has write-dominant workloads that
lead to more failures (Figure 14(a)). Similar observations also
hold for intra-rack failures. The average number of SSDs per
rack for DAE (10.7) is much less than that for WPS (21.0),
yet the relative percentage of intra-rack failures of DAE is
higher than that of WPS by 17.9%.

Finding 11. The applications with more SSDs per node
(rack) and write-dominant workloads tend to have a high
percentage of intra-node (intra-rack) failures.

We further examine the impact of applications on correlated
failures by varying the thresholds of the intra-node and intra-
rack failure time intervals. Figure 17 shows that the relative
percentages of intra-node and intra-rack failures for different
thresholds of the failure time intervals vary across the appli-
cations. In particular, the relative percentages of intra-node
(intra-rack) failures with a threshold of one minute account
for 1.9-22.0% (2.6-31.8%).

To explain these differences among the applications, we
examine the average ages of intra-node and intra-rack failures
for the applications (not shown in plots). The average ages of
intra-node (intra-rack) failures with a threshold of one minute
for RM, SS, DB, and WS range from 3.2 to 3.9 years old

Failure time interval
[0, 1 minute] (1 minute, 30 minutes]

(30 minutes, 1 day] (1 day, 1 month]

0

10

20

30

40

50

WSMRM
WPS SS DB WS

DAE
NAS

Applications

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

0

10

20

30

40

50

WSMRM
WPS SS DB WS

DAE
NAS

Applications

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
o

f
fa

ilu
re

s
 (

%
)

(a) Intra-node failures (b) Intra-rack failures

Figure 17: Finding 12. Relative percentages of failures for different
thresholds of intra-node or intra-rack failure time intervals across
the applications.

(from 3.2 to 4.1 years old), which are older than those of the
remaining applications, i.e., from 1.3 to 2.5 years old (from
1.2 to 2.2 years old). This conforms to Finding 7. However,
there are two exceptions: (i) The average ages of intra-node
and intra-rack failures for WS are younger than those for SS
and DB by 0.48-0.65 years, while the relative percentage of
intra-node (intra-rack) failures with a threshold of one minute
for WS is higher than those for SS and DB by 2.3-4.5% (1.0-
7.4%). (ii) The average age of intra-node (intra-rack) failures
for NAS is younger than that for WPS by 1.0 (0.79) years,
while the relative percentage of intra-node (intra-rack) failures
with a threshold of one minute for NAS is higher than that
for WPS by 19.9% (29.1%). The reasons for these exceptions
are due to more write-dominant workloads for WS and NAS
(Figure 14(a)).

Finding 12. Among individual applications, the intra-node
and intra-rack failures at an older age and with more write-
dominant workloads tend to occur in a short time.

4.5 Discussion
We highlight the findings in the correlation analysis:

• Intra-node and intra-rack failures commonly exist in SSD
failures. Even worse, a non-negligible fraction of intra-node
and intra-rack failures occur within a short time. In the
presence of intra-node and intra-rack failures, it is critical
to deploy the redundancy protection schemes with high
fault tolerance to cope with such correlated failures.

• We analyze the effects of the four impacting factors, namely
drive models, lithography, age, and capacity, on intra-node
and intra-rack failures. We find that drive models and age
have larger impacts on correlated failures than lithography
and capacity. Also, intra-node (intra-rack) failures tend to
occur with many SSDs from the same drive model on the
same node (rack), and the intra-node and intra-rack failures
of aged SSDs are more likely to occur within a short time.
System operators should avoid putting such SSDs in the
same scope to limit the occurrences of correlated failures.

• Intra-node and intra-rack failures have limited correlations
with the SMART attributes and have no significant differ-

USENIX Association 19th USENIX Conference on File and Storage Technologies 425

ences of correlations with each SMART attribute. Thus, the
SMART attributes are not good indicators for detecting the
existence of intra-node and intra-rack failures in practice.
Other data sources, such as system logs, may be useful to
detect any potential correlated failures.

• In addition to SSD characteristics, applications also play
a role in the behavior of correlated failures. Intra-node
and intra-rack failures are more likely to occur in write-
dominant applications than read-dominant ones. Thus, high
fault-tolerance protection schemes are more essential for
write-dominant applications.

5 Case Study: Redundancy Protection
In this section, we present a trace-driven simulation analysis
on how redundancy schemes affect the storage reliability in
the face of correlated failures using our dataset.

5.1 Simulation Methodology
Redundancy schemes. Replication and erasure coding are
two widely adopted redundancy approaches to provide fault
tolerance in modern data centers. Our analysis considers three
redundancy schemes:

• r-way replication (Rep(r)): For each data chunk, it makes
r > 1 exact chunk copies to tolerate any r−1 chunk failures.
We consider Rep(2) and Rep(3), where Rep(3) is used by
traditional distributed file systems [6, 9].

• Reed-Solomon coding [23] (RS(k,m)): For every coding
group of k data chunks, it encodes them into m parity
chunks, such that any k out of k+m data/parity chunks (i.e.,
any m chunk failures can be tolerated). We consider RS(6,3)
(used by Google Colossus [7] and Quantcast File Sys-
tem [20]), RS(10,4) (used by Facebook [17]), and RS(12,4)
(the same redundancy as in Azure [12]).

• Local Reconstruction Coding [12] (LRC(k, l,g)): For every
coding group of k data chunks, it encodes each subgroup
of k/l data chunks into a local parity chunk, and encodes
all k data chunks into g global parity chunks. Thus, each
single chunk failure can be reconstructed from any k/l non-
failed chunks, while tolerating any g+1 chunk failures. We
consider LRC(12,2,2), as used by Azure [12]. Note that it
has the same redundancy as RS(12,4), but can only tolerate
any three chunk failures and some of the four chunk failures
(but not all four chunk failures as in RS(12,4)).

Replication is simple to implement, but incurs high storage
overhead. Reed-Solomon coding incurs much lower storage
overhead than replication, but incurs high repair bandwidth
since any lost chunk needs to be reconstructed by accessing k
non-failed chunks. Local Reconstruction Coding mitigates the
repair bandwidth as any lost chunk can now be reconstructed
by k/l non-failed chunks.

To mitigate repair bandwidth, we also consider lazy re-
covery [28], which triggers a repair operation only when

more than one chunk fails (in Reed-Solomon coding, all data
chunks remain available if no more than m chunks fail). This
is in contrast to eager recovery, which triggers a repair opera-
tion immediately when there exists any failed chunk.

Simulator. We extend the C++ discrete-event simulator
SIMEDC [31] to support the reliability evaluation on our
dataset. Our simulator runs multiple iterations. In each itera-
tion, it initializes the data center topology, redundancy scheme,
and chunk placement. It issues the failure events based on
the chronological failure patterns in our dataset. It also gen-
erates the repair events, whose repair durations depend on
the amount of repair bandwidth and the available data center
capacity; for lazy recovery, the repair events are triggered only
when a threshold number of failures occurs. Each iteration
runs over a mission time. To generate randomness across iter-
ations, we configure random chunk placements (see details
below). We report the averaged results over all iterations.

Metrics. We measure the reliability with the following met-
rics over the mission time:

• Probability of data loss (PDL). It measures the likelihood
that (unrecoverable) data loss occurs in a data center (i.e.,
the number of chunk failures in a coding group exceeds the
tolerable limit).

• Normalized magnitude of data loss (NOMDL) [10]. It mea-
sures the amount of (unrecoverable) data loss (in bytes)
normalized to the storage capacity.

Simulator setup. We configure the chunks in a coding group
to be stored on different racks (one chunk per rack), so as to
provide both node-level and rack-level fault tolerance. How-
ever, in our dataset, the number of racks varies highly across
the clusters. Thus, we focus on the clusters that have at least
16 racks to support all redundancy schemes that we consider
(the maximum number of chunks in a coding group is 16,
for RS(12,4) and LRC(12,2,2)). To this end, we select 128
clusters from our dataset for evaluation. Due to the varying
SSD capacity in our dataset, we fix the capacities of all SSDs
as 512 GiB for simplicity. We set the chunk size as 256 MiB,
the default chunk size in Facebook [24]. We also fix the same
percentage of used storage capacity for data chunks as 50%
for each redundancy scheme setting. We set the network link
capacity for repair as 1 Gb/s, the parameter used for measur-
ing the repair performance in erasure-coded storage [12, 24].
Furthermore, we set the mission time as ten years and run a
sufficient number of iterations for each cluster until the rela-
tive error of PDL is less than 20% [31]. As our dataset spans
only two years, we replay the dataset from beginning to end
repeatedly in each iteration.

5.2 Simulation Results
We first evaluate the reliability of different redundancy
schemes based on the SSD failure patterns in our dataset.
Figure 18 shows that erasure coding achieves lower PDL and

426 19th USENIX Conference on File and Storage Technologies USENIX Association

5.3 1.5 1.7 4.9
10.1

59.9

0
10
20
30
40
50
60

Rep(2)

Rep(3)

RS(6,3)

RS(10,4)

RS(12,4)

LRC(12,2,2)

P
D

L
 (

%
)

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

Re
p(2
)

Re
p(3
)

RS
(6,
3)

RS
(10
,4)

RS
(12
,4)

LR
C(
12
,2,
2)

N
O
M
D
L

(a) PDL (b) NOMDL

Figure 18: Finding 13. Comparison of the redundancy schemes.

NOMDL (i.e., higher reliability) than replication. In particu-
lar, Rep(2) has the highest PDL (59.9%), indicating that two
chunk copies are insufficient to tolerate failures. Also, Rep(3)
is not good enough with a PDL of 10.1%. In contrast, RS(10,4)
has the lowest PDL and NOMDL among all RS codes, since
it tolerates more failures than RS(6,3) and has less repair
bandwidth than RS(12,4). LRC(12,2,2) has slightly higher
PDL and NOMDL than RS(12,4), since it cannot tolerate four
chunks at any time.

Finding 13. Erasure coding shows higher reliability than
replication based on the failure patterns in our dataset.

We claim that the redundancy schemes that are sufficient
for tolerating independent failures may be insufficient for
correlated failures. To justify this claim, we examine the re-
liability under only independent failures (generated from a
mathematical failure model) and under the failure patterns in
our dataset (including both independent and correlated ones).
Specifically, we generate independent SSD failures following
an exponential distribution with the mean time between fail-
ures (i.e., the number of hours in a year over the overall AFR
in §2.2) in our dataset as the rate parameter, i.e., 8760

1.16% .
Figure 19 shows the results of the PDL and NOMDL for

eager recovery under only independent failures and the failure
patterns in our dataset. The PDL and NOMDL under only
independent failures for Rep(3), RS(6,3), RS(10,4), RS(12,4),
and LRC(12,2,2) are zero. However, the reliability of these
redundancy schemes degrades under the failure patterns in
our dataset. The reason is that some correlated failures occur
within a short time period (Finding 3) and additional failures
are likely to occur in a short time with the existing correlated
failures on the same node or rack (Finding 2), leading to the
competition for network bandwidth resources and a slowdown
of the repair process. This increases the likelihood of data
loss. In addition, the PDL under only independent failures for
Rep(2) is higher than that under the failures in our dataset by
13.8%. The reason is that the number of failures generated by
the mathematical failure model may be more than that in our
dataset for some clusters, leading to more failed chunks that
exceed the tolerable limit of Rep(2). This implies that Rep(2)
is still insufficient under only independent failures.

Finding 14. Redundancy schemes that are sufficient for tol-
erating independent failures may be insufficient for tolerating
the correlated failures as shown in our dataset.

We next evaluate the reliability of lazy recovery under only

0 0 0 0 00
10
20
30
40
50
60

Rep(2)

Rep(3)

RS(6,3)

RS(10,4)

RS(12,4)

LRC(12,2,2)

P
D

L
 (

%
)

Independent Correlated

0 0 0 0 00

20

40

60

80

Rep(2)

Rep(3)

RS(6,3)

RS(10,4)

RS(12,4)

LRC(12,2,2)

P
D

L
 (

%
)

0 0 0 0 01e-09

1e-08

1e-07

1e-06

1e-05

Re
p(2
)

Re
p(3
)

RS
(6,
3)

RS
(10
,4)

RS
(12
,4)

LR
C(
12
,2,
2)

N
O
M
D
L

(a) PDL (b) NOMDL

Figure 19: Finding 14. Comparison of the PDL and NOMDL of
eager recovery under independent failures (“Independent”) and the
failure patterns in our dataset (“Correlated”).

05
10152025

1 2 3 4

Number of chunk failures

P
D

L
 (

%
)

Independent, RS(10,4) Independent, RS(12,4)

Correlated, RS(10,4) Correlated, RS(12,4)

0

5

10

15

20

25

1 2 3 4

Number of chunk failures

P
D

L
 (

%
)

0 0 0
1e-10

1e-09

1e-08

1e-07

1e-06

1 2 3 4

Number of chunk failures

N
O

M
D

L

(a) PDL (b) NOMDL

Figure 20: Finding 15. Comparison of the PDL and NOMDL for
the threshold number of chunk failures for recovery under only in-
dependent failures (“Independent”) and the failure patterns in our
dataset (“Correlated”).

independent failures derived from the mathematical failure
model and under the failure patterns in our dataset. For lazy
recovery, we vary the threshold of triggering recovery from
one to four failed chunks (note that four is the tolerable limit
for RS(10,4) and RS(12,4)); a threshold of one implies eager
recovery.

Figure 20 shows that RS(10,4) and RS(12,4) achieve a
high reliability under only independent failures, but their re-
liability degrades under the failure patterns in our dataset as
the threshold increases. In particular, under only independent
failures, RS(10,4) and RS(12,4) can achieve a high reliabil-
ity without data loss with a threshold of one to three failed
chunks, conforming to the prior work [18]. They have a small
PDL (0.14-0.56%) with a threshold of four failed chunks
since having any additional failed chunk will lead to data
loss. However, under the failure patterns in our dataset, the
PDL values for RS(10,4) and RS(12,4) increase by 0.98-1.5%
when the threshold increases from one to two failed chunks,
and continue to increase by more than 10% from two to four
failed chunks. The reason of the reliability degradation of
lazy recovery under the failures in our dataset is that when the
number of failed chunks reaches a larger threshold of chunk
failures, additional correlated failures are also more likely
to occur in a short time (Findings 2 and 3). Thus, the most
proper threshold number of chunk failures is one, i.e., eager
recovery, under the failure patterns in our dataset.

Finding 15. Lazy recovery is less suitable than eager re-
covery for tolerating correlated failures in our dataset.

USENIX Association 19th USENIX Conference on File and Storage Technologies 427

6 Related Work
SSD measurement. Field studies have analyzed the reliabil-
ity of SSDs and characterized the correlations between SSD
failures and their symptoms [2,15,16,18,27,30]. For example,
some studies [16, 18, 27] analyze the symptoms (e.g., uncor-
rectable errors) reported by proprietary customized attributes
and SMART attributes in SSD failures. Xu et al. [30] inves-
tigate the effects of system-level symptoms on SSD failures.
Alter et al. [2] exploit the failure patterns from the symptoms
to predict future SSD failures. Maneas et al. [15] analyze how
SSD replacements and other factors affect the replacement
rates within a RAID system. Although some studies [15, 16]
report the existence of correlated failures in SSD-based stor-
age systems, they do not cover the location details of SSD
failures due to the limited information in their datasets. In
general, the above studies mainly focus on how SSD failures
are correlated with different factors, while our work focuses
on the correlations among the SSD failures. In particular, we
characterize the correlated failures within a node or a rack.
We study the impact of different factors on correlated failures,
and the implications on storage reliability under correlated
failures in SSD-based data centers.

HDD measurement. Field studies have analyzed the reliabil-
ity of hard disk drives (HDDs) in production environments.
Pinheiro et al. [22] analyze different factors that are corre-
lated with HDD failures based on SMART logs at Google.
Schroeder et al. [26] characterize the HDD replacement rates
statistically. Also, prior studies present the patterns of latent
sector errors [4, 25] and data corruptions [3] at NetApp. In
the literature, Lu et al. [14] leverage the locations of HDDs
to predict HDD failures. Instead, our work uses the locations
to study correlated failures of SSDs.

Correlated failures. Prior studies have characterized the cor-
related failures on various storage scopes. Chun et al. [5] and
Nath et al. [19] investigate the correlated failures that threaten
the durability and availability of storage systems. Schroeder et
al. [25, 26] provide a statistical analysis on correlated failures
of hard disks and the bursts of latent sector errors in disks.
Ford et al. [8] characterize the statistical behavior of corre-
lated node failures. In contrast, we focus on characterizing
the correlated failures in SSD-based data centers in a more
comprehensive manner.

7 Conclusion
We present an in-depth analysis on correlated failures of SSDs
based on the large-scale dataset at Alibaba. Our analysis in-
cludes spatial and temporal correlations of SSD failures and
the impact of different factors on correlated failures. We also
evaluate the reliability of various redundancy schemes under
correlated failures via trace-driven simulation. We report 15
findings, and release our dataset and source code for public
validation.

Acknowledgement
We thank our shepherd, Jiri Schindler, and the anonymous
reviewers for their comments. We also thank Qiuping Wang
and Jinhong Li for their feedback. This work was supported in
part by Alibaba Group via the Alibaba Innovation Research
(AIR) program and the Research Grants Council of Hong
Kong (AoE/P-404/18).

References
[1] R. Alagappan, A. Ganesan, Y. Patel, T. S. Pillai, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Correlated
crash vulnerabilities. In Proc. of USENIX OSDI, 2016.

[2] J. Alter, J. Xue, A. Dimnaku, and E. Smirni. SSD fail-
ures in the field: Symptoms, causes, and prediction mod-
els. In Proc. of ACM/IEEE SC, 2019.

[3] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, G. R. Goodson, and B. Schroeder. An
analysis of data corruption in the storage stack. ACM
Trans. on Storage, 4(3):8, Nov 2008.

[4] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy,
and J. Schindler. An analysis of latent sector errors in
disk drives. In Proc. of ACM SIGMETRICS, 2007.

[5] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weather-
spoon, M. F. Kaashoek, J. Kubiatowicz, and R. T. Morris.
Efficient replica maintenance for distributed storage sys-
tems. In Proc. of USENIX NSDI, 2006.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In Proc. of ACM SOSP, 2007.

[7] A. Fikes. Storage architecture and challenges. Talk at
the Google Faculty Summit, 2010.

[8] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan. Avail-
ability in globally distributed storage systems. In Proc.
of USENIX OSDI, 2010.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proc. of ACM SOSP, 2003.

[10] K. M. Greenan, J. S. Plank, J. J. Wylie, et al. Mean time
to meaningless: MTTDL, Markov models, and storage
system reliability. In Proc. of USENIX HotStorage,
2010.

[11] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive
correlated failures. In Proc. of USENIX NSDI, 2005.

[12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure coding
in windows azure storage. In Proc. of USENIX ATC,
2012.

428 19th USENIX Conference on File and Storage Technologies USENIX Association

[13] S. Kadekodi, K. Rashmi, and G. R. Ganger. Cluster
storage systems gotta have HeART: improving storage
efficiency by exploiting disk-reliability heterogeneity.
In Proc. of USENIX FAST, 2019.

[14] S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi.
Making disk failure predictions SMARTer! In Proc. of
USENIX FAST, 2020.

[15] S. Maneas, K. Mahdaviani, T. Emami, and B. Schroeder.
A study of SSD reliability in large scale enterprise stor-
age deployments. In Proc. of USENIX FAST, 2020.

[16] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. A large-scale
study of flash memory failures in the field. In Proc. of
ACM SIGMETRICS, 2015.

[17] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,
S. Pan, S. Shankar, V. Sivakumar, L. Tang, et al. f4:
Facebook’s warm BLOB storage system. In Proc. of
USENIX OSDI, 2014.

[18] I. Narayanan, D. Wang, M. Jeon, B. Sharma,
L. Caulfield, A. Sivasubramaniam, B. Cutler, J. Liu,
B. Khessib, and K. Vaid. SSD failures in datacenters:
What? when? and why? In Proc. of ACM SYSTOR,
2016.

[19] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan. Subtleties
in tolerating correlated failures in wide-area storage
systems. In Proc. of USENIX NSDI, 2006.

[20] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao,
and J. Kelly. The Quantcast file system. In Proc. of the
VLDB Endowment, 2013.

[21] K. Pearson. Vii. note on regression and inheritance in
the case of two parents. Proc. of the Royal Society of
London, 58(347-352):240–242, 1895.

[22] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure
Trends in a Large Disk Drive Population. In Proc. of
USENIX FAST, 2007.

[23] I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal of the Society for Industrial
and Applied Mathematics, 8(2):300–304, 1960.

[24] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G.
Dimakis, R. Vadali, S. Chen, and D. Borthakur. XORing
Elephants: Novel erasure codes for big data. In Proc. of
the VLDB Endowment, 2013.

[25] B. Schroeder, S. Damouras, and P. Gill. Understanding
latent sector errors and how to protect against them.
ACM Trans. on Storage, 6(3):1–23, 2010.

[26] B. Schroeder and G. A. Gibson. Understanding disk
failure rates: What does an MTTF of 1,000,000 hours
mean to you? ACM Trans. on Storage (TOS), 3(3):8–es,
2007.

[27] B. Schroeder, R. Lagisetty, and A. Merchant. Flash reli-
ability in production: The expected and the unexpected.
In Proc. of USENIX FAST, 2016.

[28] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and
M. Dahlin. Lazy means smart: Reducing repair band-
width costs in erasure-coded distributed storage. In Proc.
of ACM SYSTOR, 2014.

[29] C. Spearman. The proof and measurement of associ-
ation between two things. The American Journal of
Psychology, 100(3/4):441–471, 1987.

[30] E. Xu, M. Zheng, F. Qin, Y. Xu, and J. Wu. Lessons
and actions: What we learned from 10K SSD-related
storage system failures. In Proc. of USENIX ATC, 2019.

[31] M. Zhang, S. Han, and P. P. Lee. SimEDC: A simulator
for the reliability analysis of erasure-coded data cen-
ters. IEEE Trans. on Parallel and Distributed Systems,
30(12):2836–2848, 2019.

USENIX Association 19th USENIX Conference on File and Storage Technologies 429

	fast21_front-matter
	fast21_full_proceedings_interior
	fast21-ma
	Introduction
	Practical Considerations
	Functionality
	Variable-sized Keys
	Range Queries

	Persistence Overhead
	Correctness
	Anomaly Resolution
	Memory Safety

	Design of ROART
	Radix Tree and its Persistent Variants
	Our Solution: ROART Structure
	Reducing Persistence Overhead
	Selective Metadata Persistence
	Minimally Ordered Split
	Persistence Analysis

	Making ROART Correct
	Anomaly Resolution in ROART
	Delayed Check Memory Management

	Evaluation
	Evaluation Setup
	Overall Performance
	Effects of Each Design
	Performance of NVM Allocators
	Real-World System Evaluation

	Related Works
	Conclusion

	fast21-chen-hao
	Introduction
	Background and Motivation
	LSM-tree based KV Stores
	Group WAL Writes
	High-Performance SSDs Interfaces

	SpanDB Overview
	Design and Implementation
	Asynchronous Request Processing
	High-speed Logging via SPDK
	Offloading LSM-tree Levels to SD

	Evaluation
	Experimental Setup
	Microbenchmark Results
	Overall Performance
	Recovery

	Related Work
	Conclusion
	Appendix
	Correctness of Parallel Batched Logging
	Additional Evaluation Results

	fast21-dong
	Introduction
	Background
	Embedded storage on flash based SSDs
	RocksDB architecture

	Evolution of resource optimization targets
	Lessons on serving large-scale systems
	Lessons on failure handling
	Lessons on the key-value interface
	Related Work
	Future Work and Open Questions
	Conclusions
	RocksDB Feature Timeline
	Recap of lessons learned
	Recap of design choices revisited

	fast21-zhong
	Introduction
	Background
	REMIX
	The REMIX Data Structure
	Efficient Search in a Segment
	Search Efficiency
	REMIX Storage Cost

	RemixDB
	The Structures of RemixDB Files
	Compaction
	Rebuilding REMIXes

	Evaluation
	Performance of REMIX-indexed Tables
	Performance of RemixDB

	Related Work
	Conclusion

	fast21-miller
	Introduction
	Motivation
	High Velocity is Hard
	Existing Alternatives
	Our Approach: Bento
	Rust Primer

	The Bento System
	The System Architecture
	Interacting with VFS
	Interacting with Kernel Services
	File System Upgrade
	Userspace Debugging Support

	Implementation & Experiences
	BentoFS
	Experiences Using Bento

	Evaluation
	Experimental setup
	Microbenchmarks
	Application Workloads
	Live Upgrade

	Related Work
	Conclusion

	fast21-chen-youmin
	Introduction
	Motivation
	The Kuco Architecture
	Overview
	Collaborative Indexing
	Two-Level Locking
	Three-Phase Write
	Versioned Read

	KucoFS Implementation
	Data Layout
	Crash Consistency and Recovery
	Write Protection
	Read Protection
	Memory-Mapped I/O
	KucoFS's APIs
	Examples: Putting It All Together

	Evaluation
	Experimental Setup
	Effects of Individual Techniques
	Effects of Collaborative Indexing
	Effects of Versioned Read
	Effects of Three-Phase Writes

	Filebench: Macro-Benchmarks
	Redis: Real-World Application

	Related Work
	Conclusion

	fast21-neal
	Introduction
	File Mapping Background
	File Mapping Challenges
	File Mapping Non-Challenges

	PM File Mapping Design
	Traditional, Per-File Mapping
	Extent Trees
	Radix Trees

	PM-specific Global File Mapping
	Global Cuckoo Hash Table
	HashFS

	Evaluation
	Locality
	Fragmentation
	File Size
	IO Size
	Space Utilization
	Concurrency
	Page Caching
	Application Workloads
	File Mapping via Level Hashing?

	Discussion
	Related Work
	Conclusion

	fast21-domingo
	Introduction
	Background and Motivation
	Hardware and Software Trends
	File System Checking and Repair
	Related Work

	Motivation and Analysis
	e2fsck Overview
	Setup and Runtime Analysis
	Compute time and I/O utilization

	pFSCK Goals and Insights
	Goals
	Design Insights

	Design and Implementation
	Data Parallelism
	Pipeline Parallelism
	Per-Pass Thread Pools and Work Queues.
	Delayed Certification for Concurrency.

	Dynamic Thread Scheduler
	System Resource-Aware Scheduling
	Efficient CPU Sharing
	Efficient CPU and File System Sharing

	Verifying Correctness and Optimizations

	Evaluation
	Experimental Setup
	Data Parallelism
	Pipeline Parallelism and Scheduling.
	Storage Throughput and Memory Usage
	Storage Throughput
	Memory Usage

	System Resource-Aware Scheduler
	Offline C/R with CPU Sharing.
	Online C/R with CPU Sharing.

	Performance with Errors

	Conclusion & Future Work

	fast21-ji
	Introduction
	Background and Motivation
	I/O System and Storage of Mobile Devices
	Pitfalls of File Compression
	Benefits of File Compression with LFS

	Pattern-Guided File Compression
	File Access Behaviors of Mobile Apps
	Foreground Compression
	Non-Sequential File Block Compression
	Selective Foreground File Compression
	Metadata-Level File Compression

	Background Compression
	Highly Random Reads of Executable Files
	Read-Guided File Compression

	Implementation
	Dynamic Compression Window
	Sub-Block L2P Mapping
	Decompression with P2L Mapping
	Logging and Cleaning
	Design Summary
	Overhead Analysis and Discussions

	Performance Evaluation
	Experimental Setup
	Evaluation Results

	Related Work
	Conclusion

	fast21-wu-kai
	Introduction
	Background
	Persistent Memory Transactions
	Memory Management in PM Transactions
	Emerging PM Architecture

	Performance Characterization
	Transaction Performance Study
	Performance Study of PM Writes

	Design Principles and Major Techniques
	Logless
	Minimize Metadata Modification on PM
	Scalable Object Referencing
	Contiguous Memory Allocations
	Reduce Memory Fragmentation

	ArchTM Implementation
	Data Structures
	Background Threads
	Transaction Operations
	Memory Management for Transactions
	Recovery Management
	Reduction of Recovery Time

	Evaluation
	Micro-benchmarks
	Real World Workloads
	Performance Analysis

	Related Work
	Conclusions

	fast21-castro
	Introduction
	Background on PTM
	SPHT
	Transaction processing and durability
	Linking transactions in the log
	NUMA-Aware Parallel Log Replay

	Experimental Evaluation
	Transaction processing
	STAMP
	TPC-C

	Log replay

	Conclusions

	fast21-zou
	Introduction
	Background and Related Work
	Background of Data Deduplication
	Deduplication Techniques

	Observation and Motivation
	Analysis for Fragmentation and Read Amplification after Deduplication
	An Optimal Data Layout
	Derivation Relationship of Backups

	Design and Implementation
	MFDedup Overview
	Neighbor-Duplicate-Focus Indexing
	Across-Version-Aware Reorganization
	Restore and Garbage Collection
	Discussion and Limitations

	Performance Evaluation
	Experimental Setup
	Actual Deduplication Ratio
	Backup Throughput
	Restore Throughput
	Arranging vs. Traditional GC
	Size Distribution of Volumes/Categories

	Conclusion and Future Work

	fast21-zhou
	Introduction
	Background
	Motivation
	Duplicate Writes
	Exploiting SSD Address Remapping
	Schemes for Mapping Consistency

	Design
	Overview of Remap-SSD
	Co-management of Flash and NVRAM
	Remapping Metadata
	Garbage Collection
	Power-off Recovery
	Discussion

	Case Studies and Evaluation
	Experimental Setups
	Intra-SSD Deduplication
	Write-ahead Logging in SQLite
	Cleaning in F2FS

	Related Work
	Conclusion

	fast21-mohan
	Introduction
	Background
	The Current State of Checkpointing
	Checkpointing is Incorrect
	Checkpointing is Inefficient
	Summary

	CheckFreq: Design and Implementation
	Goals
	CheckFreq Recovery Guarantees
	Design
	Checkpointing Mechanism
	Checkpointing Policy

	Implementation

	Evaluation
	Experimental setup
	Accuracy implications
	Performance of checkpointing mechanism
	Checkpoint stalls
	Breakdown of benefits

	Checkpointing policy
	Recovery time
	End-to-end training

	Discussion
	Related Work
	Conclusion

	fast21-pan
	fast21-hu
	fast21-wei
	Introduction
	Background
	Structure of Cloud Logs
	Parser-based Log Compressor

	Restore the Promise of Parser-based Log Compression
	Further Compressing Numerical Variables
	Compressing Timestamps
	Correlation Identification and Utilization
	Elastic Encoder

	Architecture and Implementation
	Evaluation
	Overall Performance
	Effects of Individual Techniques
	Performance on Public Logs

	Related Work
	Conclusion

	fast21-merenstein
	fast21-wang
	Introduction
	Background
	Cache Coherence Protocols
	Programmable Switch

	Motivation
	Revisit Cache Coherence with Fast Network
	Challenges

	Concordia Overview
	Key Ideas
	Example

	Concordia Design In Depth
	FlowCC Protocol
	Protocol Details
	Correctness

	Ownership Migration
	Migration Requests
	Migration Workflow

	Packet Loss Handling
	Server Idempotence
	Switch Idempotence

	Practical Issues

	Implementation
	Evaluation
	Systems in Comparison
	Micro Benchmarks
	Sharing Ratio
	Read Ratio
	Data Locality
	Switch Failure Handling

	Distributed Key-Value Store
	Transaction Processing
	Distributed Graph Computing

	Related Work
	Conclusion
	Acknowledgements

	fast21-liu
	fast21-wu-kan
	fast21-abdi
	fast21-valdes
	Introduction
	Motivation
	Understanding Workloads
	Workload Primitive Types
	Composing Workloads

	Caching Algorithms
	Need for a New Approach

	Cacheus
	LeCaR: A Review
	Running Diagnostics on LeCaR
	Formalizing Cacheus(A,B)

	Scan Resistance
	SR-LRU

	Churn Resistance
	Evaluation
	Experimental Setup
	Time and Space Overheads
	Statistical Analysis
	Understanding Cacheus
	Cacheus C3 vs ARC
	Cacheus C3 vs LIRS
	Cacheus C3 vs LeCaR

	Related Work
	Conclusions

	fast21-jiang
	Introduction
	SSD RAID Latency Source Study
	Workload I/O Characteristics
	Write Overhead in SSD RAID
	Pathological Latency Spikes of SSDs

	Approach Overview
	FusionRAID Design
	Storage Organization
	Two-phase Write Operations
	Spike Detection and Request Redirection
	Metadata Management

	Performance Evaluation
	Experiment Setup
	Overall Performance
	Impact of Individual Techniques
	FusionRAID Overhead and Sensitivity

	Related Work
	Conclusion

	fast21-kim
	Introduction
	Background and Motivation
	DNN Training
	Extreme-scale Language Models
	Challenges for Extreme-scale Language Model Training

	Overview of Behemoth
	Training DNN Models on Behemoth
	Hardware Components of Behemoth
	Example Execution Walk-Through
	DNN Model Coverage

	Architecting Specialized Flash Memory System (FMS) for DNN Training
	Improving Effective Bandwidth of FMS
	Improving Endurance of FMS

	Evaluation
	Methodology
	Memory Cost Evaluation
	FMS Evaluation

	Related Work
	Conclusion

	fast21-bae
	Introduction
	Background and Motivation
	DNN Training
	Memory Capacity Wall in DNN Training
	Overcoming GPU Memory Capacity Wall

	FlashNeuron Design
	Overview
	Memory Manager
	Offloading Scheduler
	Peer-to-Peer Direct Storage Access

	Evaluation
	Methodology
	Performance Evaluation
	Case Studies
	Co-locating Bandwidth-Intensive Tasks on CPU
	Co-locating Latency-Critical Tasks on CPU

	Related Work
	Conclusion

	fast21-woo
	Introduction
	Background & Motivation
	Fair Queueing for SSDs
	I/O Scheduling Overheads in Software
	Weighted round-robin in NVMe Protocol

	Device-Direct Fair Queuing
	Overview
	Dynamic H/L Ratio Adjustment
	Increasing H/L Ratio
	Decreasing H/L Ratio

	Determining Thresholds
	Global Virtual Time Tracking
	Implementation

	Evaluation
	Methodology
	Fairness
	I/O Performance
	Realistic workload

	Related Work
	Conclusion

	fast21-han
	Introduction
	Dataset
	Data Collection
	Summary of Statistics
	Limitations

	Overview of Analysis Methodology
	Correlation Analysis
	Correlations among Failures
	Impacting Factors on Correlated Failures
	Drive Models
	Lithography
	Age
	Capacity

	Impact of SMART Attributes
	Impact of Applications
	Discussion

	Case Study: Redundancy Protection
	Simulation Methodology
	Simulation Results

	Related Work
	Conclusion

